Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92675
標題: 語言引導之變換器於聯邦式多標籤分類
Language-Guided Transformer for Federated Multi-Label Classification
作者: 劉亦傑
I-Jieh Liu
指導教授: 王鈺強
Yu-Chiang Frank Wang
關鍵字: 聯邦學習,多標籤分類,視覺與語言,
Federated Learning,Multi-label Classification,Vision and Language,
出版年 : 2024
學位: 碩士
摘要: 聯邦學習(FL)是一種新興的模型學習框架,該方法使多個用戶能夠在不共享私人數據的情況下協作訓練一個強大的模型,以保護隱私。大多數現有的FL方法僅考慮傳統的單標籤圖像分類問題,忽略了將任務轉移到多標籤圖像分類時的影響。然而,在現實世界的FL場景中,FL仍然難以應對用戶在本地數據分佈上的異質性,而在多標籤圖像分類中,這個問題變得更加嚴重。有鑑於變換器模型於中央化學習設定下之成功經驗,我們於是提出了一個新穎的FL框架用於多標籤分類。由於在訓練過程中本地客戶可能觀察到部分標籤之間的相關性,直接聚合本地更新的模型將不能產生滿意的全局模型效能。因此,我們提出了一個新穎的FL框架「語言引導之變換器」(FedLGT)來應對這一具有挑戰性的任務,旨在利用、傳輸不同客戶間的知識以學習一個強大的全局模型。根據我們於各種多標籤數據集(例如 FLAIR,MS-COCO等)進行大量實驗,我們展示了FedLGT能夠達到足夠好的性能,在多標籤FL場景下顯著優於標準FL技術。
Federated Learning (FL) is an emerging paradigm that enables multiple users to collaboratively train a robust model in a privacy-preserving manner without sharing their private data. Most existing approaches of FL only consider traditional single-label image classification, ignoring the impact when transferring the task to multi-label image classification. Nevertheless, it is still challenging for FL to deal with user heterogeneity in their local data distribution in the real-world FL scenario, and this issue becomes even more severe in multi-label image classification. Inspired by the recent success of Transformers in centralized settings, we propose a novel FL framework for multi-label classification. Since partial label correlation may be observed by local clients during training, direct aggregation of locally updated models would not produce satisfactory performances. Thus, we propose a novel FL framework of Language-Guided Transformer (FedLGT) to tackle this challenging task, which aims to exploit and transfer knowledge across different clients for learning a robust global model. Through extensive experiments on various multi-label datasets (e.g., FLAIR, MS-COCO, etc.), we show that our FedLGT is able to achieve satisfactory performance and outperforms standard FL techniques under multi-label FL scenarios. Code is available at https://github.com/Jack24658735/FedLGT.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92675
DOI: 10.6342/NTU202401012
全文授權: 同意授權(全球公開)
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.61 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved