請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92668完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李志中 | zh_TW |
| dc.contributor.advisor | Jyh-Jone Lee | en |
| dc.contributor.author | 張元 | zh_TW |
| dc.contributor.author | Yuan Chang | en |
| dc.date.accessioned | 2024-06-03T16:06:07Z | - |
| dc.date.available | 2024-06-04 | - |
| dc.date.copyright | 2024-06-03 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-05-29 | - |
| dc.identifier.citation | [1] Chablat, D. and Angeles, J., “The Computation of All 4R Serial Spherical Wrists with an Isotropic Architecture,” ASME Journal of Mechanical Design, 125(2), pp. 275-280, 2003.
[2] Lum, M. J. H., Rosen, J., Sinanan, M. N., and Hannaford, B., “Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches,” IEEE Transactions on Biomedical Engineering, 53(7), pp. 1440-1445, 2006. [3] Dvali, R. R. and Aleksishvili, N. I., “Design for an Automobile Steering Gear as a Spherical Four-Bar Linkage,” Journal of Mechanisms, 6(2), pp. 167-175, 1971. [4] Chiang, C.-H., “Synthesis of Spherical Four-Bar Path Generators,” Mechanism and Machine Theory, 21(2), pp. 135-143, 1986. [5] Morgan, A. P. and Wampler, C. W., Jr., “Solving a Planar Four-Bar Design Problem Using Continuation,” ASME Journal of Mechanical Design, 112(4), pp. 544-550, 1990. [6] Wampler, C. W., Morgan, A. P., and Sommese, A. J., “Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages,” ASME Journal of Mechanical Design, 114(1), pp. 153-159, 1992. [7] Lin, C.-C., “Complete Solution of the Five-Position Synthesis for Spherical Four-Bar Mechanisms,” Journal of marine science and Technology, 6(1), pp. 3, 1998. [8] Suixian, Y., Hong, Y., and Tian, G. Y., “Optimal Selection of Precision Points for Function Synthesis of Spherical 4R Linkage,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(9), pp. 2183-2189, 2009. [9] Lee, W.-T., Russell, K., Shen, Q., and Sodhi, R. S., “On Adjustable Spherical Four-Bar Motion Generation for Expanded Prescribed Positions,” Mechanism and Machine Theory, 44(1), pp. 247-254, 2009. [10] Yang, M., Kpalma, K., and Ronsin, J., “A Survey of Shape Feature Extraction Techniques,” in Pattern Recognition Techniques, Technology and Applications, Yin, P.-Y. Ed., InTech. Rijeka, Croatia. Chapter 3, pp. 43-90, 2008. [11] Thompson, B. S., “A Survey of Analytical Path-Synthesis Techniques for Plane Mechanisms,” Mechanism and Machine Theory, 10(2-3), pp. 197-205, 1975. [12] Lee, W.-T. and Russell, K., “Developments in Quantitative Dimensional Synthesis (1970-Present): Four-Bar Path and Function Generation,” Inverse Problems in Science and Engineering, 26(9), pp. 1280-1304, 2018. [13] Zahn, C. T. and Roskies, R. Z., “Fourier Descriptors for Plane Closed Curves,” IEEE Transactions on Computers, C-21(3), pp. 269-281, 1972. [14] Freudenstein, F., “Harmonic Analysis of Crank-and-Rocker Mechanisms with Application,” ASME Journal of Applied Mechanics, 26(4), pp. 673-675, 1959. [15] Funabashi, H. and Freudenstein, F., “Performance Criteria for High-Speed Crank-and-Rocker Linkages—Part I: Plane Crank-and-Rocker Linkages,” ASME Journal of Mechanical Design, 101(1), pp. 20-25, 1979. [16] Farhang, K., Midha, A., and Bajaj, A. K., “Synthesis of Harmonic Motion Generating Linkages—Part I: Function Generation,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, 110(1), pp. 16-21, 1988. [17] Farhang, K., Midha, A., and Hall, A. S., Jr., “Synthesis of Harmonic Motion Generating Linkages—Part II: Path and Motion Generation,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, 110(1), pp. 22-27, 1988. [18] McGarva, J. and Mullineux, G., “Harmonic Representation of Closed Curves,” Applied Mathematical Modelling, 17(4), pp. 213-218, 1993. [19] McGarva, J. R., “Rapid Search and Selection of Path Generating Mechanisms from a Library,” Mechanism and Machine Theory, 29(2), pp. 223-235, 1994. [20] Ullah, I. and Kota, S., “Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods,” ASME Journal of Mechanical Design, 119(4), pp. 504-510, 1997. [21] Wu, J., Ge, Q. J., and Gao, F., “An Efficient Method for Synthesizing Crank-Rocker Mechanisms for Generating Low Harmonic Curves,” Volume 7: 33rd Mechanisms and Robotics Conference, Parts A and B. ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Aug 30-Sep 2, San Diego, California, USA. pp. 531-538, 2009. [22] Li, X.-Y., Wu, J., and Ge, Q. J., “A Fourier Descriptor-Based Approach to Design Space Decomposition for Planar Motion Approximation,” ASME Journal of Mechanisms and Robotics, 8(6): 064501, 2016. [23] Uesaka, Y., “A New Fourier Descriptor Applicable to Open Curves,” Electronics and Communications in Japan (Part I: Communications), 67(8), pp. 1-10, 1984. [24] Ding, J. J., Chao, W. L., Huang, J. D., and Kuo, C. J., “Asymmetric Fourier Descriptor of Non-Closed Segments,” 2010 IEEE International Conference on Image Processing, Sep 26-29, Hong Kong. IEEE. pp. 1613-1616, 2010. [25] Wu, J., Ge, Q. J., Gao, F., and Guo, W. Z., “On the Extension of a Fourier Descriptor Based Method for Planar Four-Bar Linkage Synthesis for Generation of Open and Closed Paths,” ASME Journal of Mechanisms and Robotics, 3(3): 031002, 2011. [26] Davis, P. J., “Least Square Approximation,” in Interpolation and Approximation, 1 ed. Courier Corporation. New York. Chapter 8, pp. 158-200, 1975. [27] Sharma, S., Purwar, A., and Jeffrey Ge, Q., “An Optimal Parametrization Scheme for Path Generation Using Fourier Descriptors for Four-Bar Mechanism Synthesis,” ASME Journal of Computing and Information Science in Engineering, 19(1): 014501, 2019. [28] Khan, N., Ullah, I., and Al-Grafi, M., “Dimensional Synthesis of Mechanical Linkages Using Artificial Neural Networks and Fourier Descriptors,” Mechanical Sciences, 6(1), pp. 29-34, 2015. [29] Deshpande, S. and Purwar, A., “A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages,” ASME Journal of Computing and Information Science in Engineering, 19(2): 021004, 2019. [30] Yu, S.-C., Chang, Y., and Lee, J.-J., “A Generative Model for Path Synthesis of Four-Bar Linkages Via Uniform Sampling Dataset,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(4), pp. 811-829, 2023. [31] Sun, J.-W. and Chu, J.-K., “Fourier Series Representation of the Coupler Curves of Spatial Linkages,” Applied Mathematical Modelling, 34(5), pp. 1396-1403, 2010. [32] Chu, J.-K. and Sun, J.-W., “Numerical Atlas Method for Path Generation of Spherical Four-Bar Mechanism,” Mechanism and Machine Theory, 45(6), pp. 867-879, 2010. [33] Mullineux, G., “Atlas of Spherical Four-Bar Mechanisms,” Mechanism and Machine Theory, 46(11), pp. 1811-1823, 2011. [34] Lestrel, P. E., Fourier Descriptors and Their Applications in Biology. Cambridge University Press, New York, pp. 466, 1997. [35] Kuhl, F. P. and Giardina, C. R., “Elliptic Fourier Features of a Closed Contour,” Computer Graphics and Image Processing, 18(3), pp. 236-258, 1982. [36] Lin, C.-S. and Hwang, C.-L., “New Forms of Shape Invariants from Elliptic Fourier Descriptors,” Pattern Recognition, 20(5), pp. 535-545, 1987. [37] Taxt, T. and Bjerde, K. W., “Classification of Handwritten Vector Symbols Using Elliptic Fourier Descriptors,” Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5), Oct 9-13, Jerusalem, Israel. 2, pp. 123-128, 1994. [38] Costa, C. et al., “Quantitative Evaluation of Tarocco Sweet Orange Fruit Shape Using Optoelectronic Elliptic Fourier Based Analysis,” Postharvest Biology and Technology, 54(1), pp. 38-47, 2009. [39] Godefroy, J. E., Bornert, F., Gros, C. I., and Constantinesco, A., “Elliptical Fourier Descriptors for Contours in Three Dimensions: A New Tool for Morphometrical Analysis in Biology,” Comptes Rendus - Biologies, 335(3), pp. 205-213, 2012. [40] Crampton, J. S., “Elliptic Fourier Shape-Analysis of Fossil Bivalves - Some Practical Considerations,” Lethaia, 28(2), pp. 179-186, 1995. [41] Niño-Sandoval, T. C., Morantes Ariza, C. F., Infante-Contreras, C., and Vasconcelos, B. C., “Evaluation of Natural Mandibular Shape Asymmetry: An Approach by Using Elliptical Fourier Analysis,” Dentomaxillofacial Radiology, 47(6): 20170345, 2018. [42] Caple, J., Byrd, J., and Stephan, C. N., “Elliptical Fourier Analysis: Fundamentals, Applications, and Value for Forensic Anthropology,” International Journal of Legal Medicine, 131(6), pp. 1675-1690, 2017. [43] Hsieh, C.-Y., Shieh, W.-B., Chen, C.-K., and Lee, J.-J., “Synthesis of Double-Rocker Mechanisms for Motion Generation Using Fourier Descriptor,” Uhl, T., Advances in Mechanism and Machine Science. IFToMM WC 2019, Krakow, Poland. Mechanisms and Machine Science, Springer International Publishing, Cham. 73, pp. 1285-1294, 2019. [44] Starosta, R., “Application of Genetic Algorithm and Fourier Coefficients (Ga-Fc) in Mechanism Synthesis,” Journal of theoretical and applied mechanics, 46(2), pp. 395-411, 2008. [45] Shiakolas, P. S., Koladiya, D., and Kebrle, J., “On the Optimum Synthesis of Four-Bar Linkages Using Differential Evolution and the Geometric Centroid of Precision Positions,” Inverse Problems in Engineering, 10(6), pp. 485-502, 2002. [46] Kang, Y.-H., Lin, J.-W., and You, W.-C., “Comparative Study on the Synthesis of Path-Generating Four-Bar Linkages Using Metaheuristic Optimization Algorithms,” Applied Sciences-Basel, 12(15), pp. 7368, 2022. [47] Chang, Y., Chang, J.-L., and Lee, J.-J., “Atlas-Based Path Synthesis of Planar Four-Bar Linkages Using Elliptical Fourier Descriptors,” Okada, M., Advances in Mechanism and Machine Science. IFToMM WC 2023, Shinjuku, Tokyo, Japan. Mechanisms and Machine Science, Springer Nature Switzerland, Cham. 149, pp. 198-207, 2024. [48] Chang, Y., Chang, J.-L., and Lee, J.-J., “Path Synthesis of Planar Four-Bar Linkages for Closed and Open Curves Using Elliptical Fourier Descriptors,” Journal of Mechanical Science and Technology, 38(5), 2024. [49] Davis, J. C. and Sampson, R. J., Statistics and Data Analysis in Geology. John Wiley & Sons, New York, 1986. [50] Dutt, A. and Rokhlin, V., “Fast Fourier Transforms for Nonequispaced Data,” SIAM Journal on Scientific Computing, 14(6), pp. 1368-1393, 1993. [51] Chiang, C.-H., Kinematics of Spherical Mechanism. McGraw-Hill Int’l Enterprises Inc, Taiwan, 1986. [52] Tsai, L.-W., Robot Analysis: The Mechanics of Serial and Parallel Manipulators. John Wiley & Sons, New York, 1999. [53] Chiang, C.-H., “On the Classification of Spherical Four-Bar Linkages,” Mechanism and Machine Theory, 19(3), pp. 283-287, 1984. [54] Storn, R. and Price, K., “Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” Journal of Global Optimization, 11(4), pp. 341-359, 1997. [55] Vermetten, D., van Stein, B., Kononova, A. V., and Caraffini, F., “Analysis of Structural Bias in Differential Evolution Configurations,” in Differential Evolution: From Theory to Practice, Kumar, B. V., Oliva, D., and Suganthan, P. N. Eds., (Studies in Computational Intelligence, no. 1009) Springer Nature Singapore. Singapore. Chapter 1, pp. 1-22, 2022. [56] Bernstein, D. J., “Chacha, a Variant of Salsa20,” Workshop Record of SASC, Feb 13-14, Lausanne, Switzerland. Citeseer. 8(1), pp. 3-5, 2008. [57] Yu, H.-Y., Tang, D.-W., and Wang, Z.-X., “Study on a New Computer Path Synthesis Method of a Four-Bar Linkage,” Mechanism and Machine Theory, 42(4), pp. 383-392, 2007. [58] Zhang, T., Stackhouse, P. W., Macpherson, B., and Mikovitz, J. C., “A Solar Azimuth Formula That Renders Circumstantial Treatment Unnecessary without Compromising Mathematical Rigor: Mathematical Setup, Application and Extension of a Formula Based on the Subsolar Point and Atan2 Function,” Renewable Energy, 172, pp. 1333-1340, 2021. [59] McDonald, M. and Agrawal, S. K., “Design of a Bio-Inspired Spherical Four-Bar Mechanism for Flapping-Wing Micro Air-Vehicle Applications,” ASME Journal of Mechanisms and Robotics, 2(2): 021012, 2010. [60] Sun, J.-W., Liu, W.-R., and Chu, J.-K., “Synthesis of Spherical Four-Bar Linkage for Open Path Generation Using Wavelet Feature Parameters,” Mechanism and Machine Theory, 128, pp. 33-46, 2018. [61] Chang, Y. “Four-Bar.” https://kmolyuan.github.io/four-bar-rs/ (Accessed: May 10, 2024), 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92668 | - |
| dc.description.abstract | 在機構設計領域,連桿機構的尺度合成對於精確控制機械運動至關重要。本研究將聚焦於平面與球面四連桿機構的尺度合成。傳統的傅立葉描述子 (Fourier Descriptors, FD) 的複數坐標在描述空間曲線時存在限制。因此,我們引入橢圓傅立葉描述子 (Elliptical Fourier Descriptors, EFD) 作為新的形狀表示法,以提高描述的準確性和通用性。EFD通過本研究改良後的正規化係數取得幾何不變性,使用傅立葉功率分析自動選擇諧波數,並可擴展至空間曲線。本研究採用圖集與差分進化法進行數值最佳化,對機構尺度進行最佳化設計。通過各種耦桿曲線和合成條件的測試,我們實現了更精確的路徑生成與剛體導引。以平面與球面四連桿機構為例,多種案例分析表明,EFD能有效解決開放曲線與空間曲線的描述問題,驗證了方法的有效性。研究創新點在於首次將EFD應用於機構合成領域,解決了FD在描述複雜曲線時的局限性。此外,本研究還提出了一種新的開放曲線描述方法,其精確性和效率相較於過往方法有顯著提升。 | zh_TW |
| dc.description.abstract | In mechanism design, dimensional synthesis of linkages is crucial for precisely controlling mechanical motion. This study focuses on the dimensional synthesis of planar and spherical four-bar linkages. The complex coordinates of conventional Fourier Descriptors (FD) have limitations in describing spatial curves. Therefore, we introduce Elliptical Fourier Descriptors (EFD) as a new shape representation to enhance accuracy and generality. EFD achieves geometric invariance through improved normalization coefficients in this study, automatically selects the number of harmonics using Fourier power analysis, and can be extended to spatial curves. Numerical optimization of linkage dimensions is conducted using atlas-based and differential evolution methods. Through tests on various coupler curves and synthesis conditions, we verified path generation and rigid body guidance can be achieved efficiently and precisely through EFD. Using planar and spherical four-bar linkages as examples, multiple case studies demonstrate that EFD effectively addresses the description issues of open and spatial curves, validating the method’s effectiveness. The innovation of this research lies in the first application of EFD in the field of linkage synthesis, overcoming the limitations of FD in describing complex curves. Additionally, a new method for describing open curves is proposed in this study, which significantly improves accuracy and efficiency compared to previous methods. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-03T16:06:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-06-03T16:06:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 圖次 viii 表次 xi 符號表 xiii 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 傅立葉分析方法 2 1.2.2 數值最佳化方法 5 1.3 研究動機與目的 6 1.4 論文架構 7 第2章 橢圓傅立葉描述子 8 2.1 封閉曲線描述 8 2.2 圖形正規化 11 2.3 空間描述與正規化 13 2.4 傅立葉功率分析 15 2.5 開放曲線描述 17 2.5.1 三角函數多項式曲線擬合法 18 2.5.2 往復描述法 22 2.6 係數比較 25 2.7 小結 27 第3章 平面與球面四連桿機構 29 3.1 平面四連桿機構 29 3.1.1 耦桿曲線計算 30 3.1.2 連桿分類 31 3.1.3 去正規化 32 3.1.4 剛體導引機構 33 3.2 球面四連桿機構 34 3.2.1 耦桿曲線計算 34 3.2.2 等效連桿分類 37 3.2.3 去正規化 39 3.3 小結 40 第4章 合成方法 41 4.1 圖集資料庫 41 4.2 數值最佳化 43 4.2.1 差分進化法 45 4.3 改良距離誤差法 48 4.3.1 正規化時間參數 48 4.3.2 目標函數設計 50 4.4 平面剛體導引 51 4.4.1 時間導引與運動標記 53 4.4.2 多目標最佳化 56 4.4.3 距離誤差法 59 4.5 小結 60 第5章 案例探討 61 5.1 實驗架構 61 5.2 封閉曲線路徑生成 62 5.2.1 範例1-1 62 5.2.2 範例1-2 64 5.2.3 範例1-3 66 5.2.4 範例1-4 68 5.2.5 範例1-5 69 5.3 開放曲線路徑生成 71 5.3.1 範例2-1 72 5.3.2 範例2-2 73 5.4 封閉曲線片段路徑匹配 74 5.4.1 範例3-1 74 5.4.2 範例3-2 76 5.4.3 範例3-3 77 5.5 改良距離誤差合成 78 5.6 平面四連桿剛體導引 80 5.6.1 改良距離誤差剛體導引 85 第6章 結論與未來展望 90 6.1 結論 90 6.2 未來展望 91 參考文獻 92 附錄 I 離散點坐標近似至EFD係數推導 98 附錄 II 往復開放曲線簡化EFD係數證明 100 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 傅立葉分析 | zh_TW |
| dc.subject | 橢圓傅立葉描述子 | zh_TW |
| dc.subject | 路徑生成 | zh_TW |
| dc.subject | 四連桿機構 | zh_TW |
| dc.subject | 剛體導引 | zh_TW |
| dc.subject | Four-Bar Linkages | en |
| dc.subject | Fourier Analysis | en |
| dc.subject | Elliptical Fourier Descriptors | en |
| dc.subject | Rigid-Body Guidance | en |
| dc.subject | Path Generation | en |
| dc.title | 基於橢圓傅立葉描述子之平面與球面四連桿機構運動合成 | zh_TW |
| dc.title | Kinematic Synthesis of Planar and Spherical Four-Bar Linkages Using Elliptical Fourier Descriptors | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 詹魁元;徐冠倫;蘇偉儁;張秉純;謝文賓 | zh_TW |
| dc.contributor.oralexamcommittee | Kuei-Yuan Chan;Kuan-Lun Hsu;Wei-Jiun Su;Biing-Chwen Chang;Win-Bin Shieh | en |
| dc.subject.keyword | 橢圓傅立葉描述子,傅立葉分析,四連桿機構,路徑生成,剛體導引, | zh_TW |
| dc.subject.keyword | Elliptical Fourier Descriptors,Fourier Analysis,Four-Bar Linkages,Path Generation,Rigid-Body Guidance, | en |
| dc.relation.page | 100 | - |
| dc.identifier.doi | 10.6342/NTU202401033 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-05-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 7.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
