請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92662
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蕭大智 | zh_TW |
dc.contributor.advisor | Ta-Chih Hsiao | en |
dc.contributor.author | 李東磬 | zh_TW |
dc.contributor.author | Dong-Qing Li | en |
dc.date.accessioned | 2024-05-31T16:06:26Z | - |
dc.date.available | 2024-06-01 | - |
dc.date.copyright | 2024-05-31 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-05-22 | - |
dc.identifier.citation | Ahrens, L., Harner, T., Shoeib, M., Lane, D. A., & Murphy, J. G. (2012). Improved characterization of gas–particle partitioning for per- and polyfluoroalkyl substances in the atmosphere using annular diffusion denuder samplers. Environmental science & technology, 46(13), 7199-7206. https://doi.org/10.1021/es300898s
Alexander, B., Sherwen, T., Holmes, C. D., Fisher, J. A., Chen, Q., Evans, M. J., & Kasibhatla, P. (2020). Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations. Atmospheric Chemistry and Physics, 20(6), 3859-3877. https://doi.org/10.5194/acp-20-3859-2020 Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M., Liu, A., You, Y., & Zorn, S. R. (2011). Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon ele. Atmospheric Chemistry and Physics, 11(21), 10995-11006. https://doi.org/10.5194/acp-11-10995-2011 Bertram, T. H., & Thornton, J. A. (2009). Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride. Atmospheric Chemistry and Physics, 9(21), 8351-8363. https://doi.org/10.5194/acp-9-8351-2009 Bertram, T. H., Thornton, J. A., Riedel, T. P., Middlebrook, A. M., Bahreini, R., Bates, T. S., Quinn, P. K., & Coffman, D. J. (2009). Direct observations of N2O5 reactivity on ambient aerosol particles. Geophysical Research Letters, 36(19). https://doi.org/10.1029/2009gl040248 Bian, Y. X., Zhao, C. S., Ma, N., Chen, J., & Xu, W. Y. (2014). A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain. Atmospheric Chemistry and Physics, 14(12), 6417-6426. https://doi.org/10.5194/acp-14-6417-2014 Burger, J. M., Joyce, E., Hastings, M. G., Spence, K. A. M., & Altieri, K. E. (2023). A seasonal analysis of aerosol NO3− sources and NOx oxidation pathways in the Southern Ocean marine boundary layer. Atmospheric Chemistry and Physics, 23(10), 5605-5622. https://doi.org/10.5194/acp-23-5605-2023 Calvert, J. G., & Stockwell, W. R. (1983). Acid generation in the troposphere by gas-phase chemistry. Environmental science & technology, 17(9), 428A-443A. https://doi.org/10.1021/es00115a002 Chameides, W. L. (1984). The photochemistry of a remote marine stratiform cloud. Journal of Geophysical Research, 89(D3), 4739. https://doi.org/10.1029/jd089id03p04739 Chen, X., Wang, H., Lu, K., Li, C., Zhai, T., Tan, Z., Ma, X., Yang, X., Liu, Y., Chen, S., Dong, H., Li, X., Wu, Z., Hu, M., Zeng, L., & Zhang, Y. (2020). Field determination of nitrate formation pathway in winter Beijing. Environmental science & technology, 54(15), 9243-9253. https://doi.org/10.1021/acs.est.0c00972 Cheng, M. T., & Tsai, Y. I. (2000). Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas. Science of The Total Environment, 263(1-3), 101-114. https://doi.org/10.1016/S0048-9697(00)00670-7 Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., & Carmichael, G. (2016). Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science advances, 2(12), e1601530. https://doi.org/10.1126/sciadv.1601530 Duan, J., Huang, R.-J., Lin, C., Dai, W., Wang, M., Gu, Y., Wang, Y., Zhong, H., Zheng, Y., & Ni, H. (2019). Distinctions in source regions and formation mechanisms of secondary aerosol in Beijing from summer to winter. Atmospheric Chemistry and Physics, 19(15), 10319-10334. https://doi.org/10.5194/acp-19-10319-2019 Elshorbany, Y., Zhu, Y., Wang, Y., Zhou, X., Sanderfield, S., Ye, C., Hayden, M., & Peters, A. J. (2022). Seasonal dependency of the atmospheric oxidizing capacity of the marine boundary layer of Bermuda. Atmospheric Environment, 289, 119326. https://doi.org/https://doi.org/10.1016/j.atmosenv.2022.119326 Ervens, B., Turpin, B. J., & Weber, R. J. (2011). Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmospheric Chemistry and Physics, 11(21), 11069-11102. https://doi.org/10.5194/acp-11-11069-2011 Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., & Weber, R. J. (2017). Highly acidic ambient particles, soluble metals, and oxidative potential: a link between sulfate and aerosol toxicity. Environmental science & technology, 51(5), 2611-2620. https://doi.org/10.1021/acs.est.6b06151 Feng, T., Bei, N., Zhao, S., Wu, J., Li, X., Zhang, T., Cao, J., Zhou, W., & Li, G. (2018). Wintertime nitrate formation during haze days in the Guanzhong basin, China: A case study. Environmental Pollution, 243, 1057-1067. https://doi.org/10.1016/j.envpol.2018.09.069 Fountoukis, C., & Nenes, A. (2007). ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+– Ca2+– Mg2+– NH4+– Na+– Ca2+– SO42-– NO3+– Cl-– H2O aerosols. Atmospheric Chemistry and Physics, 7(17), 4639-4659. https://doi.org/10.5194/acp-7-4639-2007 Fountoukis, C., Nenes, A., Sullivan, A., Weber, R., Van Reken, T., Fischer, M., Matías, E., Moya, M., Farmer, D., & Cohen, R. C. (2009). Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006. Atmospheric Chemistry and Physics, 9(6), 2141-2156. https://doi.org/10.5194/acp-9-2141-2009 Fu, X., Wang, T., Gao, J., Wang, P., Liu, Y., Wang, S., Zhao, B., & Xue, L. (2020). Persistent heavy winter nitrate pollution driven by increased photochemical oxidants in Northern China. Environmental science & technology, 54(7), 3881-3889. https://doi.org/10.1021/acs.est.9b07248 Ge, W., Liu, J., Yi, K., Xu, J., Zhang, Y., Hu, X., Ma, J., Wang, X., Wan, Y., & Hu, J. (2021). Influence of atmospheric in-cloud aqueous-phase chemistry on the global simulation of SO 2 in CESM2. Atmospheric Chemistry and Physics, 21(21), 16093-16120. https://doi.org/10.5194/acp-21-16093-2021 Gligorovski, S., Strekowski, R., Barbati, S., & Vione, D. (2015). Environmental implications of hydroxyl radicals (• OH). Chemical Reviews, 115(24), 13051-13092. https://doi.org/10.1021/cr500310b Griffith, S. M., Huang, X. H., Louie, P. K. K., & Yu, J. Z. (2015). Characterizing the thermodynamic and chemical composition factors controlling PM2.5 nitrate: Insights gained from two years of online measurements in Hong Kong. Atmospheric Environment, 122, 864-875. https://doi.org/10.1016/j.atmosenv.2015.02.009 Guo, H., Liu, J., Froyd, K. D., Roberts, J. M., Veres, P. R., Hayes, P. L., Jimenez, J. L., Nenes, A., & Weber, R. J. (2017). Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. Atmospheric Chemistry and Physics, 17(9), 5703-5719. https://doi.org/10.5194/acp-17-5703-2017 Guo, H., Otjes, R., Schlag, P., Kiendler-Scharr, A., Nenes, A., & Weber, R. J. (2018). Effectiveness of ammonia reduction on control of fine particle nitrate. Atmospheric Chemistry and Physics, 18(16), 12241-12256. https://doi.org/10.5194/acp-18-12241-2018 Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite, J. R., Carlton, A. G., Lee, S. H., Bergin, M. H., Ng, N. L., Nenes, A., & Weber, R. J. (2015). Fine-particle water and pH in the southeastern United States. Atmospheric Chemistry and Physics, 15(9), 5211-5228. https://doi.org/10.5194/acp-15-5211-2015 Harris, E., Sinha, B., Van Pinxteren, D., Tilgner, A., Fomba, K. W., Schneider, J., Roth, A., Gnauk, T., Fahlbusch, B., & Mertes, S. (2013). Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2. Science, 340(6133), 727-730. https://doi.org/10.1126/science.1230911 He, P., Alexander, B., Geng, L., Chi, X., Fan, S., Zhan, H., Kang, H., Zheng, G., Cheng, Y., Su, H., Liu, C., & Xie, Z. (2018). Isotopic constraints on heterogeneous sulfate production in Beijing haze. Atmospheric Chemistry and Physics, 18(8), 5515-5528. https://doi.org/10.5194/acp-18-5515-2018 He, P., Xie, Z., Chi, X., Yu, X., Fan, S., Kang, H., Liu, C., & Zhan, H. (2018). Atmospheric Δ17O(NO3−) reveals nocturnal chemistry dominates nitrate production in Beijing haze. Atmospheric Chemistry and Physics, 18(19), 14465-14476. https://doi.org/10.5194/acp-18-14465-2018 Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., & Otto, T. (2015). Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase. Chemical Reviews, 115(10), 4259-4334. https://doi.org/10.1021/cr500447k Huang, R.-J., Cheng, R., Jing, M., Yang, L., Li, Y., Chen, Q., Chen, Y., Yan, J., Lin, C., Wu, Y., Zhang, R., El Haddad, I., Prevot, A. S. H., O’Dowd, C. D., & Cao, J. (2018). Source-specific health risk analysis on particulate trace elements: coal combustion and traffic emission as major contributors in wintertime Beijing. Environmental science & technology, 52(19), 10967-10974. https://doi.org/10.1021/acs.est.8b02091 Huang, R.-J., Duan, J., Li, Y., Chen, Q., Chen, Y., Tang, M., Yang, L., Ni, H., Lin, C., Xu, W., Liu, Y., Chen, C., Yan, Z., Ovadnevaite, J., Ceburnis, D., Dusek, U., Cao, J., Hoffmann, T., & O''Dowd, C. D. (2020). Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing. Science of The Total Environment, 717, 137190. https://doi.org/10.1016/j.scitotenv.2020.137190 Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., . . . Prévôt, A. S. H. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521), 218-222. https://doi.org/10.1038/nature13774 Jiang, B., & Xia, D. (2017). Role identification of NH3 in atmospheric secondary new particle formation in haze occurrence of China. Atmospheric Environment, 163, 107-117. https://doi.org/10.1016/j.atmosenv.2017.05.035 Jin, X., Wang, Y., Li, Z., Zhang, F., Xu, W., Sun, Y., Fan, X., Chen, G., Wu, H., Ren, J., Wang, Q., & Cribb, M. (2020). Significant contribution of organics to aerosol liquid water content in winter in Beijing, China. Atmospheric Chemistry and Physics, 20(2), 901-914. https://doi.org/10.5194/acp-20-901-2020 Kim, N., Yum, S. S., Cho, S., Jung, J., Lee, G., & Kim, H. (2022). Atmospheric sulfate formation in the Seoul Metropolitan Area during spring/summer: Effect of trace metal ions. Environmental Pollution, 315, 120379. https://doi.org/10.1016/j.envpol.2022.120379 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367-371. https://doi.org/10.1038/nature15371 Li, H., Zhang, Q., Zheng, B., Chen, C., Wu, N., Guo, H., Zhang, Y., Zheng, Y., Li, X., & He, K. (2018). Nitrate-driven urban haze pollution during summertime over the North China Plain. Atmospheric Chemistry and Physics, 18(8), 5293-5306. https://doi.org/10.5194/acp-18-5293-2018 Lin, Y.-C., Zhang, Y.-L., Fan, M.-Y., & Bao, M. (2020). Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China. Atmospheric Chemistry and Physics, 20(6), 3999-4011. https://doi.org/10.5194/acp-20-3999-2020 Liu, L., Bei, N., Wu, J., Liu, S., Zhou, J., Li, X., Yang, Q., Feng, T., Cao, J., Tie, X., & Li, G. (2019). Effects of stabilized Criegee intermediates (sCIs) on sulfate formation: a sensitivity analysis during summertime in Beijing–Tianjin–Hebei (BTH), China. Atmospheric Chemistry and Physics, 19(21), 13341-13354. https://doi.org/10.5194/acp-19-13341-2019 Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu, Y., & Zhu, T. (2017). Fine particle pH during severe haze episodes in northern China. Geophysical Research Letters, 44(10), 5213-5221. https://doi.org/10.1002/2017gl073210 Liu, M., Wang, W., Li, J., Wang, T., Xu, Z., Song, Y., Zhang, W., Zhou, L., Lian, C., & Yang, J. (2022). High fraction of soluble trace metals in fine particles under heavy haze in central China. Science of The Total Environment, 841, 156771. https://doi.org/10.1016/j.scitotenv.2022.156771 Liu, P., Ye, C., Xue, C., Zhang, C., Mu, Y., & Sun, X. (2020). Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: gas-phase, heterogeneous and aqueous-phase chemistry. Atmospheric Chemistry and Physics, 20(7), 4153-4165. https://doi.org/10.5194/acp-20-4153-2020 Liu, Y., Zheng, M., Yu, M., Cai, X., Du, H., Li, J., Zhou, T., Yan, C., Wang, X., Shi, Z., Harrison, R. M., Zhang, Q., & He, K. (2019). High-time-resolution source apportionment of PM2.5 in Beijing with multiple models. Atmospheric Chemistry and Physics, 19(9), 6595-6609. https://doi.org/10.5194/acp-19-6595-2019 McDuffie, E. E., Womack, C. C., Fibiger, D. L., Dube, W. P., Franchin, A., Middlebrook, A. M., Goldberger, L., Lee, B. H., Thornton, J. A., Moravek, A., Murphy, J. G., Baasandorj, M., & Brown, S. S. (2019). On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter formation during wintertime pollution events in Northern Utah. Atmospheric Chemistry and Physics, 19(14), 9287-9308. https://doi.org/10.5194/acp-19-9287-2019 Nenes, A., Pandis, S. N., Weber, R. J., & Russell, A. (2020). Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability. Atmospheric Chemistry and Physics, 20(5), 3249-3258. https://doi.org/10.5194/acp-20-3249-2020 Nguyen, T. K. V., Zhang, Q., Jimenez, J. L., Pike, M., & Carlton, A. G. (2016). Liquid water: ubiquitous contributor to aerosol mass. Environmental science & Technology Letters, 3(7), 257-263. https://doi.org/10.1021/acs.estlett.6b00167 Pang, N., Gao, J., Zhu, G., Hui, L., Zhao, P., Xu, Z., Tang, W., & Chai, F. (2021). Impact of clean air action on the PM2.5 pollution in Beijing, China: Insights gained from two heating seasons measurements. Chemosphere, 263, 127991. https://doi.org/10.1016/j.chemosphere.2020.127991 Pathak, R. K., Wu, W. S., & Wang, T. (2009). Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics, 9(5), 1711-1722. https://doi.org/10.5194/acp-9-1711-2009 Peng, J., Hu, M., Shang, D., Wu, Z., Du, Z., Tan, T., Wang, Y., Zhang, F., & Zhang, R. (2021). Explosive secondary aerosol formation during severe haze in the North China Plain. Environmental science & technology, 55(4), 2189-2207. https://doi.org/10.1021/acs.est.0c07204 Quan, J., Liu, Q., Li, X., Gao, Y., Jia, X., Sheng, J., & Liu, Y. (2015). Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events. Atmospheric Environment, 122, 306-312. https://doi.org/10.1016/j.atmosenv.2015.09.068 Sahu, L. K., Tripathi, N., Gupta, M., Singh, V., Yadav, R., & Patel, K. (2022). Impact of COVID‐19 pandemic lockdown in ambient concentrations of aromatic volatile organic compounds in a metropolitan city of western India. Journal of Geophysical Research: Atmospheres, 127(6). https://doi.org/10.1029/2022jd036628 Sarwar, G., Simon, H., Fahey, K., Mathur, R., Goliff, W. S., & Stockwell, W. R. (2014). Impact of sulfur dioxide oxidation by Stabilized Criegee Intermediate on sulfate. Atmospheric Environment, 85, 204-214. https://doi.org/10.1016/j.atmosenv.2013.12.013 Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric Chemistry and Physics, A Wiley-Inter Science Publication. In John Wiley & Sons Inc. Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song, S., Zhao, Y., Xie, Z., Zhang, L., & Alexander, B. (2019). Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing. Atmospheric Chemistry and Physics, 19(9), 6107-6123. https://doi.org/10.5194/acp-19-6107-2019 Shu, L., Wang, T., Xie, M., Li, M., Zhao, M., Zhang, M., & Zhao, X. (2019). Episode study of fine particle and ozone during the CAPUM-YRD over Yangtze River Delta of China: Characteristics and source attribution. Atmospheric Environment, 203, 87-101. https://doi.org/10.1016/j.atmosenv.2019.01.044 Song, T., Feng, M., Song, D., Zhou, L., Qiu, Y., Tan, Q., & Yang, F. (2022). Enhanced nitrate contribution during winter haze events in a megacity of Sichuan Basin, China: Formation mechanism and source apportionment. Journal of Cleaner Production, 370, 133272. https://doi.org/10.1016/j.jclepro.2022.133272 Su, H., Cheng, Y., & Pöschl, U. (2020). New multiphase chemical processes influencing atmospheric aerosols, air quality, and climate in the anthropocene. Accounts of chemical research, 53(10), 2034-2043. https://doi.org/10.1021/acs.accounts.0c00246 Tao, J., Zhang, L., Cao, J., & Zhang, R. (2017). A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China. Atmospheric Chemistry and Physics, 17(15), 9485-9518. https://doi.org/10.5194/acp-17-9485-2017 Tao, Y., Wang, S., Xu, D., & Qu, X. (2016). Experiment and analysis on flow rate of improved subsurface drainage with ponded water. Agricultural Water Management, 177, 1-9. https://doi.org/10.1016/j.agwat.2016.05.016 Tian, J., Wang, Q., Zhang, Y., Yan, M., Liu, H., Zhang, N., Ran, W., & Cao, J. (2021). Impacts of primary emissions and secondary aerosol formation on air pollution in an urban area of China during the COVID-19 lockdown. Environment International, 150, 106426. https://doi.org/10.1016/j.envint.2021.106426 Tian, M., Liu, Y., Yang, F., Zhang, L., Peng, C., Chen, Y., Shi, G., Wang, H., Luo, B., Jiang, C., Li, B., Takeda, N., & Koizumi, K. (2019). Increasing importance of nitrate formation for heavy aerosol pollution in two megacities in Sichuan Basin, southwest China. Environmental Pollution, 250, 898-905. https://doi.org/10.1016/j.envpol.2019.04.098 Tian, X., Yu, H., Wei, Y., Shi, Z., Feng, Y., Zhang, L., & Shi, G. (2023). Gas-particle partitioning process contributes more to nitrate dominated air pollution than oxidation process in northern China. Aerosol Science and Technology, 1-14. https://doi.org/10.1080/02786826.2023.2294944 Ting, Y.-C., Young, L.-H., Lin, T.-H., Tsay, S.-C., Chang, K.-E., & Hsiao, T.-C. (2022). Quantifying the impacts of PM2.5 constituents and relative humidity on visibility impairment in a suburban area of eastern Asia using long-term in-situ measurements. Science of The Total Environment, 818, 151759. https://doi.org/10.1016/j.scitotenv.2021.151759 Tsukahara, H., Ishida, T., & Mayumi, M. (1999). Gas-phase oxidation of nitric oxide: chemical kinetics and rate constant. Nitric Oxide, 3(3), 191-198. https://doi.org/10.1006/niox.1999.0232 Vereecken, L., Harder, H., & Novelli, A. (2012). The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere. Physical Chemistry Chemical Physics, 14(42), 14682. https://doi.org/10.1039/c2cp42300f Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., . . . Molina, M. J. (2016). Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences, 113(48), 13630-13635. https://doi.org/10.1073/pnas.1616540113 Wang, H., Ding, J., Xu, J., Wen, J., Han, J., Wang, K., Shi, G., Feng, Y., Ivey, C. E., & Wang, Y. (2019). Aerosols in an arid environment: The role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols. Science of The Total Environment, 646, 564-572. https://doi.org/10.1016/j.scitotenv.2018.07.321 Wang, H., Lu, K., Chen, X., Zhu, Q., Chen, Q., Guo, S., Jiang, M., Li, X., Shang, D., Tan, Z., Wu, Y., Wu, Z., Zou, Q., Zheng, Y., Zeng, L., Zhu, T., Hu, M., & Zhang, Y. (2017). High N2O5 concentrations observed in urban Beijing: implications of a large nitrate formation pathway. Environmental science & Technology Letters, 4(10), 416-420. https://doi.org/10.1021/acs.estlett.7b00341 Wang, H., Zhu, B., Shen, L., Xu, H., An, J., Pan, C., & Liu, D. (2016). Regional characteristics of air pollutants during heavy haze events in the Yangtze River Delta, China. Aerosol and Air Quality Research, 16(9), 2159-2171. https://doi.org/10.4209/aaqr.2015.09.0551 Wang, J., Gao, J., Che, F., Wang, Y., Lin, P., & Zhang, Y. (2022). Decade-long trends in chemical component properties of PM2.5 in Beijing, China (2011− 2020). Science of The Total Environment, 832, 154664. https://doi.org/10.1016/j.scitotenv.2022.154664 Wang, S., Wang, L., Fan, X., Wang, N., Ma, S., & Zhang, R. (2022). Formation pathway of secondary inorganic aerosol and its influencing factors in Northern China: Comparison between urban and rural sites. Science of The Total Environment, 840, 156404. https://doi.org/10.1016/j.scitotenv.2022.156404 Wang, W., Liu, M., Wang, T., Song, Y., Zhou, L., Cao, J., Hu, J., Tang, G., Chen, Z., Li, Z., Xu, Z., Peng, C., Lian, C., Chen, Y., Pan, Y., Zhang, Y., Sun, Y., Li, W., Zhu, T., . . . Ge, M. (2021). Sulfate formation is dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces during haze events. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-22091-6 Wang, Y., Chen, Y., Wu, Z., Shang, D., Bian, Y., Du, Z., Schmitt, S. H., Su, R., Gkatzelis, G. I., Schlag, P., Hohaus, T., Voliotis, A., Lu, K., Zeng, L., Zhao, C., Alfarra, M. R., McFiggans, G., Wiedensohler, A., Kiendler-Scharr, A., . . . Hu, M. (2020). Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility. Atmospheric Chemistry and Physics, 20(4), 2161-2175. https://doi.org/10.5194/acp-20-2161-2020 Wu, Z., Wang, Y., Tan, T., Zhu, Y., Li, M., Shang, D., Wang, H., Lu, K., Guo, S., Zeng, L., & Zhang, Y. (2018). Aerosol liquid water driven by anthropogenic inorganic salts: implying its key role in haze formation over the North China Plain. Environmental science & Technology Letters, 5(3), 160-166. https://doi.org/10.1021/acs.estlett.8b00021 Xie, F., Su, Y., Tian, Y., Shi, Y., Zhou, X., Wang, P., Yu, R., Wang, W., He, J., Xin, J., & Lü, C. (2023). The shifting of secondary inorganic aerosol formation mechanisms during haze aggravation: the decisive role of aerosol liquid water. Atmospheric Chemistry and Physics, 23(4), 2365-2378. https://doi.org/10.5194/acp-23-2365-2023 Xie, Y., Ding, A., Nie, W., Mao, H., Qi, X., Huang, X., Xu, Z., Kerminen, V.-M., Petäjä, T., Chi, X., Virkkula, A., Boy, M., Xue, L., Guo, J., Sun, J., Yang, X., Kulmala, M., & Fu, C. (2015). Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station. Journal of Geophysical Research: Atmospheres, 120(24), 12679-12694. https://doi.org/10.1002/2015jd023607 Xu, J., Chen, J., Zhao, N., Wang, G., Yu, G., Li, H., Huo, J., Lin, Y., Fu, Q., Guo, H., Deng, C., Lee, S.-H., Chen, J., & Huang, K. (2020). Importance of gas-particle partitioning of ammonia in haze formation in the rural agricultural environment. Atmospheric Chemistry and Physics, 20(12), 7259-7269. https://doi.org/10.5194/acp-20-7259-2020 Xue, J., Griffith, S. M., Yu, X., Lau, A. K., & Yu, J. Z. (2014). Effect of nitrate and sulfate relative abundance in PM2.5 on liquid water content explored through half-hourly observations of inorganic soluble aerosols at a polluted receptor site. Atmospheric Environment, 99, 24-31. https://doi.org/10.1016/j.atmosenv.2014.09.049 Xue, J., Yuan, Z., Griffith, S. M., Yu, X., Lau, A. K. H., & Yu, J. Z. (2016). Sulfate formation enhanced by a cocktail of high NOx, SO2, particulate matter, and droplet pH during haze-fog events in megacities in China: an observation-based modeling Investigation. Environmental science & technology, 50(14), 7325-7334. https://doi.org/10.1021/acs.est.6b00768 Xue, L., Gu, R., Wang, T., Wang, X., Saunders, S., Blake, D., Louie, P. K. K., Luk, C. W. Y., Simpson, I., Xu, Z., Wang, Z., Gao, Y., Lee, S., Mellouki, A., & Wang, W. (2016). Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode. Atmospheric Chemistry and Physics, 16(15), 9891-9903. https://doi.org/10.5194/acp-16-9891-2016 Yang, J., Wang, S., Zhang, R., & Yin, S. (2022). Elevated particle acidity enhanced the sulfate formation during the COVID-19 pandemic in Zhengzhou, China. Environmental Pollution, 296, 118716. https://doi.org/10.1016/j.envpol.2021.118716 Ye, Z., Liu, J., Gu, A., Feng, F., Liu, Y., Bi, C., Xu, J., Li, L., Chen, H., Chen, Y., Dai, L., Zhou, Q., & Ge, X. (2017). Chemical characterization of fine particulate matter in Changzhou, China, and source apportionment with offline aerosol mass spectrometry. Atmospheric Chemistry and Physics, 17(4), 2573-2592. https://doi.org/10.5194/acp-17-2573-2017 Young, L.-H., Hsiao, T.-C., Griffith, S. M., Huang, Y.-H., Hsieh, H.-G., Lin, T.-H., Tsay, S.-C., Lin, Y.-J., Lai, K.-L., & Lin, N.-H. (2022). Secondary inorganic aerosol chemistry and its impact on atmospheric visibility over an ammonia-rich urban area in Central Taiwan. Environmental Pollution, 312, 119951. https://doi.org/10.1016/j.envpol.2022.119951 Zang, H., Zhao, Y., Huo, J., Zhao, Q., Fu, Q., Duan, Y., Shao, J., Huang, C., An, J., Xue, L., Li, Z., Li, C., & Xiao, H. (2022). High atmospheric oxidation capacity drives wintertime nitrate pollution in the eastern Yangtze River Delta of China. Atmospheric Chemistry and Physics, 22(7), 4355-4374. https://doi.org/10.5194/acp-22-4355-2022 Zhai, T., Lu, K., Wang, H., Lou, S., Chen, X., Hu, R., & Zhang, Y. (2023). Elucidate the formation mechanism of particulate nitrate based on direct radical observations in the Yangtze River Delta summer 2019. Atmospheric Chemistry and Physics, 23(4), 2379-2391. https://doi.org/10.5194/acp-23-2379-2023 Zhang, T., Shen, Z. X., Su, H., Liu, S. X., Zhou, J. M., Zhao, Z. Z., Wang, Q. Y., Prévôt, A. S. H., & Cao, J. J. (2021). Effects of aerosol water content on the formation of secondary inorganic aerosol during a winter heavy PM2.5 pollution episode in Xi''an, China. Atmospheric Environment, 252, 118304. https://doi.org/10.1016/j.atmosenv.2021.118304 Zhang, Y., Tian, J., Wang, Q., Qi, L., Manousakas, M. I., Han, Y., Ran, W., Sun, Y., Liu, H., Zhang, R., Wu, Y., Cui, T., Daellenbach, K. R., Slowik, J. G., Prévôt, A. S. H., & Cao, J. (2023). High-time-resolution chemical composition and source apportionment of PM2.5 in northern Chinese cities: implications for policy. Atmospheric Chemistry and Physics, 23(16), 9455-9471. https://doi.org/10.5194/acp-23-9455-2023 Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., & Kimoto, T. (2015). Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmospheric Chemistry and Physics, 15(4), 2031-2049. https://doi.org/10.5194/acp-15-2031-2015 Zhu, T., Shang, J., & Zhao, D. (2011). The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Science China Chemistry, 54(1), 145-153. https://doi.org/10.1007/s11426-010-4181-y | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92662 | - |
dc.description.abstract | 二次無機氣膠(SIA)已被許多文獻普遍認為是細懸浮微粒(PM2.5)質量濃度的重要貢獻者,其中又以硝酸鹽(NO3-) 和硫酸鹽(SO42-)為主。本研究利用奇數氧(Ox)以及氣膠液態含水量(ALWC)分別作為光化學反應和液相反應是否盛行的指標,搭配即時且長期的氣膠化學成分、氣狀污染物和氣象條件等數據,探討在不同時期硝酸鹽和硫酸鹽的形成機制。
研究結果顯示光化學反應和液相反應都會影響硝酸鹽與硫酸鹽的生成,不過發現在不同季節間兩種形成機制對於硝酸鹽產生的相對貢獻具有不同的情況。在春、夏兩季,光化學反應可能對於硝酸鹽的形成具有更為顯著的影響;在秋季時,兩種反應機制的貢獻則較為相當;至於在冬季,硝酸鹽的生成可能會受到液相反應相對明顯的影響。而在不同季節,氣相氧化反應可能都對硫酸鹽的形成擁有較為顯著的貢獻。 氣膠酸度(aerosol acidity)也是涉及SIA形成的關鍵因子之一。本研究還解析在氣膠酸度較高的條件下(pH < 5),二氧化氮(NO2)與過渡金屬離子(TMI)對於液相硫酸鹽生成的影響。結果表明NO2與TMI對於形成液相硫酸鹽的貢獻可能存在季節性的差異,在春、夏、秋三季兩個物種的貢獻較為相當。然而,在冬季卻發現液相硫酸鹽的產生很可能是依賴TMI的催化反應途徑,NO2更多的是扮演輔助的角色。 另外,根據本研究進行的PM對於前驅物變化的敏感性分析可以得知,微粒主要是分布在對硝酸氣(HNO3)敏感的區域。為了控制和減少顆粒物的形成,可以透過降低前驅物濃度和改變氣-粒相分配比例來採取措施。以台中地區為例,首要重點應該放在抑制HNO3的生成上,而在夏季,有必要同時減少HNO3和NH3的濃度;另一個策略為降低顆粒物的pH值以減少硝酸鹽的分配比例,這可以藉由降低大氣氨濃度和降低鈉、鎂、鈣離子貢獻來源而獲得改善。 | zh_TW |
dc.description.abstract | Secondary Inorganic Aerosols (SIA) have been widely recognized in numerous studies as significant contributors to the mass concentration of fine particulate matter (PM2.5), primarily consisting of nitrate (NO3-) and sulfate (SO42-). This study employs odd oxygen (Ox) and aerosol liquid water content (ALWC) as indicators of photochemical reactions and aqueous-phase reactions, respectively. Coupled with real-time and long-term data on aerosol chemical compositions, gaseous pollutants, and meteorological conditions, this study investigates nitrate and sulfate formation mechanisms across different periods.
The results indicate that both photochemical and aqueous-phase reactions influence the formation of nitrate and sulfate. However, it was found that the relative contributions of these two mechanisms to nitrate production vary with the seasons. In spring and summer, photochemical reactions may significantly impact nitrate formation, while in autumn, the contributions from both mechanisms are comparable. In winter, nitrate formation is likely more influenced by aqueous-phase reactions. Moreover, gas-phase oxidation reactions may consistently play an important role in sulfate formation throughout seasons. Aerosol acidity is also a key factor in SIA formation. This study also analyzes the impact of nitrogen dioxide (NO2) and transition metal ions (TMIs) on the formation of aqueous sulfate under conditions of higher aerosol acidity (pH < 5). The results indicate that the contributions of NO2 and TMIs to the formation of aqueous sulfate might vary by season. In spring, summer, and autumn, the contributions of both species are relatively comparable. However, in winter, it was found that the production of aqueous sulfate likely relies solely on the catalytic reaction pathways of TMIs, with NO2 playing more of an auxiliary role. Furthermore, based on the sensitivity analysis of PM to precursor perturbation, it is evident that the cases are primarily distributed in the nitric acid (HNO3)-sensitive domain. Measures can be taken to control and reduce particle formation by decreasing precursors concentrations and altering the gas-particle partition ratio. Specifically, in the Taichung area, the primary focus should be suppressing the formation of HNO3. Besides, during the summer, concurrently reducing the concentrations of both HNO3 and NH3 is necessary. Another approach is to lower the aerosol pH to decrease the partition ratio of nitrate, achievable through reducing atmospheric ammonia levels and suppressing the emission of sodium, magnesium, and calcium ions. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-31T16:06:26Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-05-31T16:06:26Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 iii Abstract v Content viii List of figures ix List of tables xiii Chapter 1 Introduction 1 Chapter 2 Material and methods 9 2.1 Observation period and site description 9 2.2 Hourly measurement of chemical compositions of aerosol 11 2.3 SNA ratios 15 2.4 Inorganic aerosol equilibrium modeling - ISORROPIA II 16 2.5 Sensitivity to nitrate and ammonia perturbations 18 Chapter 3 Results and Discussion 22 3.1 Overview 22 3.1.1 Overall statistics and diurnal variation 22 3.1.2 Significance of nitrate 30 3.2 Formation mechanisms 32 3.2.1 Nitrate 33 3.2.2 Sulfate 51 3.3 The influence of pH on the variation of HNO3 and NH3 partition ratio 73 3.4 The impact of pH and NH3 on nitrate and sulfate 80 Chapter 4 Conclusion 85 Reference 88 Supplementary Information 99 口試委員意見回覆 121 | - |
dc.language.iso | en | - |
dc.title | 台中地區二次無機氣膠形成機制與影響因子之探討 | zh_TW |
dc.title | Investigating Secondary Inorganic Aerosol Formation Mechanisms and the Influencing Factors in Taichung Area | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林文印;楊禮豪;丁育頡 | zh_TW |
dc.contributor.oralexamcommittee | Wen-Yinn Lin;Li-Hao Young;Yu-Chieh Ting | en |
dc.subject.keyword | 硝酸鹽,硫酸鹽,形成機制,影響因子,氣膠液態含水量,氣膠酸度, | zh_TW |
dc.subject.keyword | Nitrate,Sulfate,Formation mechanisms,Influencing factors,Aerosol liquid water content,Aerosol acidity, | en |
dc.relation.page | 127 | - |
dc.identifier.doi | 10.6342/NTU202401002 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-05-22 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
dc.date.embargo-lift | 2029-05-22 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2029-05-22 | 10.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。