請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92658完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃念祖 | zh_TW |
| dc.contributor.advisor | Nien-Tsu Huang | en |
| dc.contributor.author | 陳彥安 | zh_TW |
| dc.contributor.author | Yen-An Chen | en |
| dc.date.accessioned | 2024-05-30T16:07:13Z | - |
| dc.date.available | 2024-05-31 | - |
| dc.date.copyright | 2024-05-30 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-05-22 | - |
| dc.identifier.citation | [1] Please refer to the APA Web site. https://lpi.oregonstate.edu/mic/health-disease/cardiovascular-disease
[2] Gaziano, T., Reddy, K. S., Paccaud, F., Horton, S., & Chaturvedi, V. (2006). Cardiovascular disease. Disease Control Priorities in Developing Countries. 2nd edition. [3] Mc Namara, K., Alzubaidi, H., & Jackson, J. K. (2019). Cardiovascular disease as a leading cause of death: how are pharmacists getting involved?. Integrated pharmacy research and practice, 1-11. [4] Bays, H. E., Taub, P. R., Epstein, E., Michos, E. D., Ferraro, R. A., Bailey, A. L., Toth, P. P. (2021). Ten things to know about ten cardiovascular disease risk factors. American journal of preventive cardiology, 5, 100149. [5] Godin, B., Sakamoto, J. H., Serda, R. E., Grattoni, A., Bouamrani, A., & Ferrari, M. (2010). Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends in pharmacological sciences, 31(5), 199-205. [6] Zakynthinos, E., & Pappa, N. (2009). Inflammatory biomarkers in coronary artery disease. Journal of cardiology, 53(3), 317-333. [7] Husseini, N. E., & Laskowitz, D. T. (2010). Clinical application of blood biomarkers in cerebrovascular disease. Expert review of neurotherapeutics, 10(2), 189-203. [8] Krishna, S. M., Moxon, J. V., & Golledge, J. (2015). A review of the pathophysiology and potential biomarkers for peripheral artery disease. International journal of molecular sciences, 16(5), 11294-11322. [9] Wen, D., Zhou, X. L., Li, J. J., & Hui, R. T. (2011). Biomarkers in aortic dissection. Clinica chimica acta, 412(9-10), 688-695. [10] Vasan, R. S. (2006). Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation, 113(19), 2335-2362. [11] Please refer to the APA Web site. https://bio.libretexts.org/Bookshelves/Human_Biology/Human_Biology_(Wakim_and_Grewal)/17%3A_Cardiovascular_System/17.7%3A_Cardiovascular_Disease [12] Stoner, L., Lucero, A. A., Palmer, B. R., Jones, L. M., Young, J. M., & Faulkner, J. (2013). Inflammatory biomarkers for predicting cardiovascular disease. Clinical biochemistry, 46(15), 1353-1371. [13] Noh, S., Kim, J., Kim, G., Park, C., Jang, H., Lee, M., & Lee, T. (2021). Recent advances in CRP biosensor based on electrical, electrochemical and optical methods. Sensors, 21(9), 3024. [14] Hosseinniay, S., Rezayan, A. H., Ghasemi, F., Malekmohamadi, M., Taheri, R. A., Hosseini, M., & Alvandi, H. (2023). Fabrication and evaluation of optical nanobiosensor based on localized surface plasmon resonance (LSPR) of gold nanorod for detection of CRP. Analytica Chimica Acta, 1237, 340580. [15] Nordestgaard, B. G., & Zacho, J. (2009). Lipids, atherosclerosis and CVD risk: is CRP an innocent bystander?. Nutrition, Metabolism and Cardiovascular Diseases, 19(8), 521-524. [16] Hoth, K. F., Haley, A. P., Gunstad, J., Paul, R. H., Poppas, A., Jefferson, A. L., Cohen, R. A. (2008). Elevated C‐reactive protein is related to cognitive decline in older adults with cardiovascular disease. Journal of the American Geriatrics Society, 56(10), 1898-1903. [17] CLELAND, S. J., SATTAR, N., PETRIE, J. R., FOROUHI, N. G., ELLIOTT, H. L., & CONNELL, J. M. (2000). Endothelial dysfunction as a possible link between C-reactive protein levels and cardiovascular disease. Clinical science, 98(5), 531-535. [18] Hally, K. E., Holley, A. S., Kristono, G. A., Harding, S. A., & Larsen, P. D. (2019). Immunoglobulin G levels predicts risk of recurrent adverse cardiovascular events in myocardial infarction patients. Acta Cardiologica. [19] Rakočević, J., Dobrić, M., Labudović-Borović, M., Milutinović, K., Milenković, S., & Tomašević, M. (2023). Anti-Inflammatory Therapy in Coronary Artery Disease: Where Do We Stand?. Reviews in Cardiovascular Medicine, 24(1). [20] Casas, J. P., Shah, T., Hingorani, A. D., Danesh, J., & Pepys, M. B. (2008). C‐reactive protein and coronary heart disease: a critical review. Journal of internal medicine, 264(4), 295-314. [21] Buch, M., & Rishpon, J. (2008). An electrochemical immunosensor for C‐reactive protein based on multi‐walled carbon nanotube‐modified electrodes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 20(23), 2592-2594. [22] Lai, Z. X., Wu, C. C., & Huang, N. T. (2022). A Microfluidic Platform with an Embedded Miniaturized Electrochemical Sensor for On-Chip Plasma Extraction Followed by In Situ High-Sensitivity C-Reactive Protein (hs-CRP) Detection. Biosensors, 12(12), 1163. [23] Zhou, Y., Han, W., Gong, D., Man, C., & Fan, Y. (2016). Hs-CRP in stroke: a meta-analysis. Clinica chimica acta, 453, 21-27. [24] Please refer to the APA Web site. https://www.medifee.com/blog/whats-crp-c-reactive-protein-test/ [25] Howie-Esquivel, J., & White, M. (2008). Biomarkers in acute cardiovascular disease. Journal of cardiovascular nursing, 23(2), 124-131. [26] Parsanathan, R., & Jain, S. K. (2020). Novel invasive and noninvasive cardiac-specific biomarkers in obesity and cardiovascular diseases. Metabolic syndrome and related disorders, 18(1), 10-30. [27] Han, X., Li, S., Peng, Z., Othman, A. M., & Leblanc, R. (2016). Recent development of cardiac troponin I detection. ACS sensors, 1(2), 106-114. [28] Garg, P., Morris, P., Fazlanie, A. L., Vijayan, S., Dancso, B., Dastidar, A. G., ... & Haaf, P. (2017). Cardiac biomarkers of acute coronary syndrome: from history to high-sensitivity cardiac troponin. Internal and emergency medicine, 12, 147-155. [29] Ostermann, M., Ayis, S., Tuddenham, E., Lo, J., Lei, K., Smith, J., ... & Treacher, D. (2017). Cardiac troponin release is associated with biomarkers of inflammation and ventricular dilatation during critical illness. Shock (Augusta, Ga.), 47(6), 702. [30] Vasantham, S., Alhans, R., Singhal, C., Nagabooshanam, S., Nissar, S., Basu, T., ... & Mathur, A. (2020). Paper based point of care immunosensor for the impedimetric detection of cardiac troponin I biomarker. Biomedical Microdevices, 22, 1-9. [31] Fathil, M. F. M., Arshad, M. M., Ruslinda, A. R., Nuzaihan, M., Gopinath, S. C., Adzhri, R., & Hashim, U. (2016). Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials. Analytica chimica acta, 935, 30-43. [32] Soetkamp, D., Raedschelders, K., Mastali, M., Sobhani, K., Bairey Merz, C. N., & Van Eyk, J. (2017). The continuing evolution of cardiac troponin I biomarker analysis: from protein to proteoform. Expert review of proteomics, 14(11), 973-986. [33] Zhang, J., Guy, M. J., Norman, H. S., Chen, Y. C., Xu, Q., Dong, X., Ge, Y. (2011). Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. Journal of proteome research, 10(9), 4054-4065. [34] Mair, J. (2014). High-sensitivity cardiac troponins in everyday clinical practice. World Journal of Cardiology, 6(4), 175. [35] Chinnadayyala, S. R., Park, J., Kim, Y. H., Choi, S. H., Lee, S. M., Cho, W. W., ... & Cho, S. (2019). Electrochemical detection of C-reactive protein in human serum based on self-assembled monolayer-modified interdigitated wave-shaped electrode. Sensors, 19(24), 5560. [36] Wu, T. L., Tsao, K. C., Chang, C. P. Y., Li, C. N., Sun, C. F., & Wu, J. T. (2002). Development of ELISA on microplate for serum C-reactive protein and establishment of age-dependent normal reference range. Clinica Chimica Acta, 322(1-2), 163-168. [37] Ding, P., Liu, R., Liu, S., Mao, X., Hu, R., & Li, G. (2013). Reusable gold nanoparticle enhanced QCM immunosensor for detecting C-reactive protein. Sensors and Actuators B: Chemical, 188, 1277-1283. [38] Wu, R., Zhou, S., Chen, T., Li, J., Shen, H., Chai, Y., & Li, L. S. (2018). Quantitative and rapid detection of C-reactive protein using quantum dot-based lateral flow test strip. Analytica Chimica Acta, 1008, 1-7. [39] Yeom, S. H., Han, M. E., Kang, B. H., Kim, K. J., Yuan, H., Eum, N. S., & Kang, S. W. (2013). Enhancement of the sensitivity of LSPR-based CRP immunosensors by Au nanoparticle antibody conjugation. Sensors and Actuators B: Chemical, 177, 376-383. [40] Rong, Z., Xiao, R., Xing, S., Xiong, G., Yu, Z., Wang, L., ... & Wang, S. (2018). SERS-based lateral flow assay for quantitative detection of C-reactive protein as an early bio-indicator of a radiation-induced inflammatory response in nonhuman primates. Analyst, 143(9), 2115-2121. [41] Rabbani, G., Khan, M. E., Ahmad, E., Khan, M. V., Ahmad, A., Khan, A. U., ... & Zakri, W. (2023). Serum CRP biomarker detection by using carbon nanotube field-effect transistor (CNT-FET) immunosensor. Bioelectrochemistry, 153, 108493. [42] An, Q. Q., Feng, X. Z., Zhan, T., Cheng, Y. Y., Han, G. C., Chen, Z., & Kraatz, H. B. (2024). A simple synthesis of a core-shell structure PPy-Au nanocomposite for immunosensing of C-reactive protein. Talanta, 267, 125158. [43] Yang, H. J., Kim, M. W., Raju, C. V., Cho, C. H., Park, T. J., & Park, J. P. (2023). Highly sensitive and label-free electrochemical detection of C-reactive protein on a peptide receptor− gold nanoparticle− black phosphorous nanocomposite modified electrode. Biosensors and Bioelectronics, 234, 115382. [44] Husile, B. A. I., Liu, H. E., Jing-Hai, L. I. U., Zuo-Jia, L. I. U., Jiang-Tao, R. E. N., & Er-Kang, W. A. N. G. (2023). Development of a simple enzyme-linked hybrid-sandwich assay for sensitive detection of cardiac troponin I. Chinese Journal of Analytical Chemistry, 51(3), 100190. [45] Lou, D., Fan, L., Ji, Y., Gu, N., & Zhang, Y. (2019). A signal amplifying fluorescent nanoprobe and lateral flow assay for ultrasensitive detection of cardiac biomarker troponin I. Analytical Methods, 11(28), 3506-3513. [46] Wang, Y., Singh, R., Chaudhary, S., Zhang, B., & Kumar, S. (2022). 2-D nanomaterials assisted LSPR MPM optical fiber sensor probe for cardiac troponin I detection. IEEE Transactions on Instrumentation and Measurement, 71, 1-9. [47] Hu, C., Ma, L., Guan, M., Mi, F., Peng, F., Guo, C., ... & Li, J. (2020). SERS-based magnetic immunoassay for simultaneous detection of cTnI and H-FABP using core–shell nanotags. Analytical Methods, 12(45), 5442-5449. [48] Wang, Y., Liu, T., Yang, M., Wu, C., Zhang, W., Chu, Z., & Jin, W. (2021). A handheld testing device for the fast and ultrasensitive recognition of cardiac troponin I via an ion-sensitive field-effect transistor. Biosensors and Bioelectronics, 193, 113554. [49] Gholami, M. D., O''mullane, A. P., Sonar, P., Ayoko, G. A., & Izake, E. L. (2021). Antibody coated conductive polymer for the electrochemical immunosensing of Human Cardiac Troponin I in blood plasma. Analytica Chimica Acta, 1185, 339082. [50] Campuzano, S., Pedrero, M., Yáñez-Sedeño, P., & Pingarrón, J. M. (2021). New challenges in point of care electrochemical detection of clinical biomarkers. Sensors and Actuators B: Chemical, 345, 130349. [51] Zhang, Z., Li, Q., Du, X., & Liu, M. (2020). Application of electrochemical biosensors in tumor cell detection. Thoracic cancer, 11(4), 840-850. [52] Kim, J. H., Suh, Y. J., Park, D., Yim, H., Kim, H., Kim, H. J., ... & Hwang, K. S. (2021). Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomedical Engineering Letters, 11(4), 309-334. [53] Omage, J. I., Easterday, E., Rumph, J. T., Brula, I., Hill, B., Kristensen, J., ... & Nguyen, V. T. (2022). Cancer Diagnostics and early detection using Electrochemical Aptasensors. Micromachines, 13(4), 522. [54] Bakirhan, N. K., Ozcelikay, G., & Ozkan, S. A. (2018). Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. Journal of pharmaceutical and biomedical analysis, 159, 406-424. [55] Grabowska, I., Sharma, N., Vasilescu, A., Iancu, M., Badea, G., Boukherroub, R., ... & Szunerits, S. (2018). Electrochemical aptamer-based biosensors for the detection of cardiac biomarkers. ACS omega, 3(9), 12010-12018. [56] Luka, G., Ahmadi, A., Najjaran, H., Alocilja, E., DeRosa, M., Wolthers, K., ... & Hoorfar, M. (2015). Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors, 15(12), 30011-30031. [57] Please refer to the APA Web site. http://kpubs.org/article/articleMain.kpubs?articleANo=E1JTC5_2019_v10n2_170 [58] Cuartero, M., Chai, L., Zhang, B., De Marco, R., & Crespo, G. A. (2019). Ferrocene self-assembled monolayer as a redox mediator for triggering ion transfer across nanometer-sized membranes. Electrochimica Acta, 315, 84-93. [59] Lima, F. C., Calzolari, A., Caldas, M. J., Iost, R. M., Crespilho, F. N., & Petrilli, H. M. (2014). Electronic structure of self-assembled monolayers modified with ferrocene on a gold surface: evidence of electron tunneling. The Journal of Physical Chemistry C, 118(40), 23111-23116. [60] Park, M., Song, Y., Kim, K. J., Oh, S. J., Ahn, J. K., Park, H., ... & Kwon, S. J. (2020). Electrochemical immunosensor for human IgE using ferrocene self-assembled monolayers modified ITO electrode. Biosensors, 10(4), 38. [61] Li, Y., Afrasiabi, R., Fathi, F., Wang, N., Xiang, C., Love, R., ... & Kraatz, H. B. (2014). Impedance based detection of pathogenic E. coli O157: H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosensors and Bioelectronics, 58, 193-199. [62] Please refer to the APA Web site. https://iopscience.iop.org/article/10.1149/MA2018-02/56/2010 [63] Please refer to the APA Web site. https://sci-hub.se/10.1080/00032710600610915 [64] Please refer to the APA Web site. https://www.sciencedirect.com/topics/nursing-and-health-professions/differential-pulse-voltammetry [65] Lai, Z. X., Wu, C. C., & Huang, N. T. (2022). A Microfluidic Platform with an Embedded Miniaturized Electrochemical Sensor for On-Chip Plasma Extraction Followed by In Situ High-Sensitivity C-Reactive Protein (hs-CRP) Detection. Biosensors, 12(12), 1163. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92658 | - |
| dc.description.abstract | 心血管疾病在全球的高死亡率和醫療成本使其成為全球主要健康問題。為了在早期階段預防心血管疾病,需要高靈敏度和多功能生物感測器,以提高診斷的準確性並了解疾病狀態。然而,目前的心血管疾病診斷方法存在操作繁瑣、儀器龐大、成本高昂、靈敏度有限以及訊號讀出時間長的問題。為了解決這些問題,我們提出了一整合高靈敏度的雙重電化學感測器之微流體系統,可在原位即時監測稀釋四倍之血清樣本中兩種高風險心血管疾病特定生物標記: C反應蛋白(CRP)及心肌肌鈣蛋白(cTnI),並結合輔助開關幫助轉換訊號輸出及輸入,使微流道系統降低人為更換晶片量測導致之錯誤及所需時間,可達成30分鐘內同時檢測出0.01 -100 ng/mL CRP以及0.1 -1000 pg/mL cTnI,此檢測範圍已包含臨床hs-CRP及hs-cTnI所需之靈敏度及動態範圍。上述的結果證明此微流體系統具有應用於定點照護(Point-of-care)的能力,並且可在未來使用微流道進行全血處理並準確量測出血液中CRP及cTnI濃度。 | zh_TW |
| dc.description.abstract | The high mortality rate and healthcare costs associated with cardiovascular diseases make them a major global health concern. To prevent cardiovascular diseases at an early stage, highly sensitive and multifunctional biosensors are needed to improve diagnostic accuracy and understand disease status. However, current diagnostic methods for cardiovascular diseases suffer from cumbersome operation, bulky instrumentation, high costs, limited sensitivity, and long signal readout times. To address the above issues, we propose a highly sensitive dual electrochemical sensor combined with a microfluidic platform. This microfluidic platform can simultaneously monitor two high-risk cardiovascular disease-specific biomarkers (CRP and cTnI) in 450 μL of four-fold diluted serum samples. Additionally, an auxiliary switch is incorporated to perform electrochemical output and input conversion, reducing human errors and operation time associated with manual chip replacement in the microfluidic system. This setup enables the detection of CRP and cTnI in serum within 30 minutes using the embedded sensors in a microfluidic channel. The detection range includes clinical hs-CRP and hs-cTnI, successfully detecting of 0.01 to 111.11 ng/mL of CRP and 0.1 to 1111.1 pg/mL of cTnI. These results demonstrate the potential application of this microfluidic platform for point-of-care diagnostics, and it can be further utilized for whole blood processing and accurate measurement of CRP and cTnI concentrations in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-30T16:07:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-05-30T16:07:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 #
致謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Introduction of Cardiovascular Disease (CVD) 1 1.2 Biomarkers for Cardiovascular Disease Detection 3 1.3 Technologies for CVD Detection 7 1.4 Ferrocene-Functionalized Electrochemical Detection 12 1.5 Research Motivation 14 Chapter 2 Theory 15 2.1 Comparison of Electrochemical Detection Methods 15 2.1.1 Cyclic Voltammetry (CV) 15 2.1.2 Differential Pulse Voltammetry (DPV) 16 2.1.3 Electrochemical Impedance Spectroscopy (EIS) 17 Chapter 3 Materials and Methods 20 3.1 Electrochemical Measurements 20 3.1.1 Preparation of Detection Buffer for EIS and DPV 20 3.1.2 Electrochemical Measurement Parameters and Analysis 21 3.2 Geometry of EC Sensors 21 3.3 Surface Electrode Preparation and Modification 23 3.3.1 Storage of Chemicals for Surface Modification 23 3.3.2 Surface Pre-Cleaning of Sensor 24 3.3.3 Surface Modification Procedures of EC Sensor 24 3.4 Biomarker Detection and Clinical Sample Preparation 29 3.4.1 Detection of Biomarkers Spiked in 1x PBS and Serum 29 3.5 PMMA Microfluidic System 30 3.5.1 Proposed System Setup of the Microfluidic System 30 3.5.2 Operation of the Microfluidic System 32 Chapter 4 Results and Discussions 34 4.1 EC Sensor Performance 34 4.1.1 Verification of Surface Modification on WE Surface 34 4.1.2 Detection Capability of CRP 37 4.1.3 Detection Capability of Immunoglobulin (IgG) 43 4.1.4 Detection Capability of Cardiac-Troponin I (cTnI) 44 4.1.5 Specificity Test 46 4.2 Microfluidic Platform Performance 48 4.2.1 Microfluidic Device Design and Optimization 48 4.2.2 Flow Rate Optimization 50 4.2.3 CRP and cTnI Sensor Performance 53 4.2.4 Clinical Detection 57 Chapter 5 Conclusion and Discussion 60 Chapter 6 Future Work 61 Reference 63 Appendix 67 | - |
| dc.language.iso | en | - |
| dc.subject | 電化學量測 | zh_TW |
| dc.subject | 微流體系統 | zh_TW |
| dc.subject | 心肌肌鈣蛋白 | zh_TW |
| dc.subject | C反應蛋白 | zh_TW |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | Cardiovascular Disease | en |
| dc.subject | C-Reactive Protein | en |
| dc.subject | Cardiac-Troponin I | en |
| dc.subject | Electrochemical Detection | en |
| dc.subject | Microfluidic Platform | en |
| dc.title | 利用微流體系統結合電化學阻抗頻譜進行雙心血管疾病標誌物檢測 | zh_TW |
| dc.title | A Microfluidic Platform integrating Electrochemical Sensors for in-situ Dual Cardiac Vascular Disease Biomarker Detection | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林宗宏;謝博全;盧彥文 | zh_TW |
| dc.contributor.oralexamcommittee | Zong-Hong Lin;Po-Chuan Hsieh;Yen-Wen Lu | en |
| dc.subject.keyword | 微流體系統,電化學量測,心血管疾病,C反應蛋白,心肌肌鈣蛋白, | zh_TW |
| dc.subject.keyword | Microfluidic Platform,Electrochemical Detection,Cardiovascular Disease,C-Reactive Protein,Cardiac-Troponin I, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202400861 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-05-22 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
