請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9263
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賈景山 | |
dc.contributor.author | Wan-Ling Lai | en |
dc.contributor.author | 賴宛伶 | zh_TW |
dc.date.accessioned | 2021-05-20T20:15:05Z | - |
dc.date.available | 2014-09-15 | |
dc.date.available | 2021-05-20T20:15:05Z | - |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-15 | |
dc.identifier.citation | Ayyouba, M., Deknuydta, F., Raimbauda, I., Dousseta, C., Levequea, L., Bioleya, G. & Valmoria, D. (2009). Human memory FOXP3_ Tregs secrete IL-17 ex vivo and constitutively express the TH17 lineage-specific transcription factor RORγt. Proc Natl Acad Sci U S A 106: 8635–8640.
Berhanu, A., Huang, J., Watkins, S. C., Okada, H. & Storkus, W. J. (2007). Treatment-Enhanced CD4+Foxp3+ Glucocorticoid-Induced TNF Receptor Family RelatedHigh Regulatory Tumor-Infiltrating T Cells Limit the Effectiveness of Cytokine-Based Immunotherapy. J Immunol 178: 3400-3408. Beriou, G., Costantino, C. M., Ashley, C. W., Yang, L., Kuchroo, V. K., Baecher-Allan, C. & Hafler, D. A. (2009). IL-17 producing human peripheral regulatory T cells retain suppressive function. Blood 30: 4240-4249. Bettelli, E., Korn, T., Oukka M. & Kuchroo V. K. (2008). Induction and effector functions of TH17 cells. Nature Rev 453: 1051-1057. Casares, N., Arribillaga, L., Sarobe, P., Dotor, J., Ascensio´n Lopez-Diaz de Cerio, Melero, I., Prieto, J., Borra´s-Cuesta, F. & Lasarte, J. J. (2003). CD4+/CD25+ regulatory cells inhibit activation of tumour-primed CD4+ T cells with IFN-γ-dependent antiangiogenic activity, as well as long-lasting tumour immunity elicited by peptide vaccination. J Immunol 171: 5931–5939. Dave, B. J., Trivedi, A. H. & Adhvaryu, S. G. (1992). Role of areca nut consumption in the cause of oral cancers. A cytogenetic assessment. Cancer 70: 1017-1023. Dieckmann D, Plottner H, Berchtold S, Berger T & Schuler G (2001). Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J Exp Med 193: 1303–1310. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3: 991-998. Dunn, G. P., Old, L. J. & Schreiber, R. D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21: 137-148. van Elsas, A., Sutmuller, R. P., Hurwitz, A. A., Ziskin, J., Villasenor, J., Medema, J. P., Overwijk, W. W., Restifo, N. P., Melief, C. J., Offringa, R. & Allison, J. P. (2001). Elucidating the autoimmune and antitumour effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J Exp Med 194: 481–489. Gallimore, A. & Godkin, A. (2007). Regulatory T cells and tumour immunity – observations in mice and men. Immunology 123: 157–163. Shevach, E. M. (2009). Mechanisms of Foxp3+ T Regulatory Cell-Mediated Suppression. Immunity 30: 636-645. Golgher, D., Jones, E., Powrie, F., Elliott, T. & Gallimore, A. (2002). Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumour rejection antigens. Eur J Immunol 32: 3267–3275. Hoffmann, T. K., Dworacki, G., Tsukihiro, T., Meidenbauer, N., Gooding, W., Johnson, J. T. & Whiteside, T. L. (2002b). Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 8: 2553-2562. Hori, S., Nomura, T. & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057-1061. Hooper, S. J., Crean, S. J., Lewis, M. A. O., Spratt, D. A., Wade W. G. & Wilson, M. J. (2006). Viable Bacteria Present within Oral Squamous Cell Carcinoma Tissue. J Clin Micro 44: 1719–1725. Houghton A. N. & Guevara-Patiño, J. A. (2004). Immune recognition of self in immunity against cancer. J Clin Invest 114: 468-471. Hutloff, A., Dittrich, A. M., Beier, K. C., Eljaschewitsch, B., Kraft, R., Anagnostopoulos, I. & Kroczek, R. A. (1999). ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397: 263-266. Ito, T., Hanabuchi, S., Wang, Y. H., Park, W. R., Arima, K., Bover, L., Qin, X. F., Gilliet, M. & Liu, Y. J. (2008). Two Functional Subsets of FOXP3+ Regulatory T Cells in Human Thymus and Periphery. Immunity 28: 870–880. Jewett, A., Cacalano, N. A., Teruel, A., Romero, M., Rashedi, M., Wang, M. & Nakamura, H. (2006). Inhibition of nuclear factor kappa B (NFkappaB) activity in oral tumor cells prevents depletion of NK cells and increases their functional activation. Cancer Immunol Immunother 55: 1052-1063. Jones, E., Dahm-Vicker, M., Simon, A. K., Green, A., Powrie, F., Cerundolo, V. & Gallimore, A. (2002). Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun 2: 1-12. Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J & Enk AH (2001). Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J Exp Med 193: 1285–1294. Ko, Y. C., Chiang, T. A., Chang, S. J. & Hsieh, S. F. (1992). Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. J Oral Pathol Med 21: 261-264. Ko, K., Yamazaki, S., Nakamura, K., Nishioka, T., Hirota, K., Yamaguchi, T., Shimizu, J., Nomura, T., Chiba, T. & Sakaguchi, S. (2005). Treatment of advanced tumours with agonistic anti-GITR mAb and its effects on tumor infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med 202: 885–891. Kryczek, I., Wei, S., Zou, L., Altuwaijri, S., Szeliga, W., Kolls, J., Chang A. & Zou, W. (2007). Cutting Edge: Th17 and Regulatory T Cell Dynamics and the Regulation by IL-2 in the Tumor Microenvironment. J Immunol 178: 6730–6733. Laad, A., Kode, J., Chavan, S., Rao, R., Fakih, A. R. & Chiplunkar, S. (1996). Limiting dilution analysis of proliferating and cytotoxic lymphocytes in the peripheral blood and tumours of oral cancer patients. Eur J Cancer 32B: 337-342. La Vecchia, C., Tavani, A., Franceschi, S., Levi, F., Corrao, G. & Negri, E. (1997). Epidemiology and prevention of oral cancer. Oral Oncol 33: 302-312. Lo, W. L., Kao, S. Y., Chi, L. Y., Wong, Y. K. & Chang, R. C. S. (2003). Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival. J Oral Maxillofac Surg 61: 751-758. Miller, A. M., Lundberg, K., Özenc, V., Banham, A. H., Hellström, M., Egevad, L. & Pisa, P. (2006). CD4+CD25high T Cells Are Enriched in the Tumor and Peripheral Blood of Prostate Cancer Patients. J Immunol 177: 7398-7405. Miyahara, Y., Odunsi, K., Chen, W., Peng, G., Matsuzaki, J. & Wang R. F. (2008). Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci U S A 40: 15505-15510. Nagai, H., Horikawa, T., Hara, I., Fukunaga, A., Oniki, S., Oka, M., Nishigori, C. & Ichihashi, M. (2004). In vivo elimination of CD25+ regulatory T cells leads to tumour rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp Dermatol 13: 613–620. Nakamura, K., A. Kitani, & W. Strober. (2001). Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J Exp Med 194: 629-644. Old, L. J. & Boyse, E. A. (1964). Immunology of experimental tumors. Annu Rev Med 15: 167-86. Onizuka, S., Tawara, I., Shimizu, J., Sakaguchi, S., Fujita, T. & Nakayama, E. (1999). Tumour rejection by in vivo administration of anti-CD25 (interleukin-2 receptor monoclonal antibody. Cancer Res 59: 3128–3133. Prasad, S. J., Farrand, K. J., Matthews, S. A., Chang, J. H., McHugh, R. S. & Ronchese, F. (2005). Dendritic cells loaded with stressed tumour cells elicit long-lasting protective tumour immunity in mice depleted of CD4+CD25+ regulatory T cells. J Immunol 174: 90–98. Reichert, T. E., Strauss, L., Wagner, E. M., Gooding, W. & Whiteside, T. L. (2002). Signaling abnormalities, apoptosis, and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res 8: 3137-3145. Sakaguchi, S. (2004). Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22: 531-562. Shevach, E. M. (2000). Regulatory T cells in autoimmunity. Annu Rev Immunol 18: 423–449. Shirname, L. P., Menon, M. M., Nair, J. & Bhide, S. V. (1983). Correlation of mutagenicity and tumorigenicity of betel quid and its ingredients. Nutr Cancer 5: 87-91. Shirname, L. P., Menon, M. M. & Bhide, S. V. (1984). Mutagenicity of betel quid and its ingredients using mammalian test systems. Carcinogenesis 5: 501-503. Shimizu, J., Yamazaki, S. & Sakaguchi, S. (1999). Induction of tumour immunity by removing CD25+CD4+ T cells: a common basis between tumour immunity and autoimmunity. J Immunol 163: 5211–5218. Steitz, J., Bruck, J., Lenz, J., Knop, J. & Tuting, T. (2001). Depletion of CD25+CD4+ T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon α-induced, CD8+T-cell-dependent immune defense of B16 melanoma. Cancer Res 61: 8643–8646. Strauss, L., Bergmann, C., Szczepanski, M., Gooding, W., Johnson, J. T. & Whiteside, T. L. (2007). A Unique Subset of CD4+CD25highFoxp3+ T Cells Secreting Interleukin-10 and Transforming Growth Factor-β1 Mediates suppression in the Tumor Microenvironment. Clin Cancer Res 13: 4345-4354. Strauss, L., Bergmann, C., Szczepanski, M. J., Lang, S., Kirkwood, J. M. & Whiteside, T. L. (2008). Expression of ICOS on Human Melanoma-Infiltrating CD4+CD25highFoxp3+ T Regulatory Cells: Implications and Impact on Tumor-Mediated Immune Suppression. J Immunol 180: 2967-2980. Sutmuller, R.P., van Duivenvoorde, L. M., van Elsas, A., Schumacher, T. N., Wildenberg, M. E., Allison, J. P., Toes, R. E., Offringa, R. & Melief, C. J. (2001). Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+regulatory T cells in antitumour therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194: 823–832. Taams, L. S., Smith, J., Rustin, M. H., Salmon, M., Poulter, L. W. & Akbar, A. N. (2001). Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol 31: 1122–1131. Takezaki, T., Hirose, K., Inoue, M., Hamajima, N., Kuroishi, T., Nakamura, S., Koshikawa, T., Matsuura, H. & Tajima, K. (1996). Tobacco, alcohol and dietary factors associated with the risk of oral cancer among Japanese. Jpn J Cancer Res 87: 555-562. Tanaka, H., Tanaka, J., Kjaergaard, J. & Shu, S. (2002). Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumourdraining lymph nodes. J Immunother 25: 207–217. Voo, K. S., Wang, Y. H., Santori, F.R., Boggiano, C., Wang, Y. H., Arima, K., Bover, L., Hanabuchi, S., Khalili, J., Marinova, E., Zheng, B., Littman D. R. & Liu. Y. J. (2009). Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A. 106:4793-4798. Walker, M. R., Kasprowicz, D. J., Gersuk, V. H., Benard, A., Van Landeghen, M., Buckner, J. H. & Ziegler, S. F. (2003). Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest 112: 1437-1443. Yu, P., Lee, Y., Liu, W., Krausz, T., Chong, A., Schreiber, H. & Fu, Y. X. (2005). Intratumour depletion of CD4+ cells unmasks tumour immunogenicity leading to the rejection of late-stage tumours. J Exp Med 201: 779–791. Zou, W. (2006). Regulatory T cells, tumour immunity and immunotherapy. Nature Rev 6: 295-307. Zhou, L., Chong, M. M. W. & Littman, D. R. (2009). Plasticity of CD4+ T Cell Lineage Differentiation. Immunity 30: 646-655. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9263 | - |
dc.description.abstract | 口腔鱗狀上皮細胞癌(OSCC)在全世界屬於排名第六名的癌症,其治療後存活率仍然相當低。由調節性T細胞造成的免疫抑制被認為對口腔鱗狀上皮細胞癌的產生扮演重要角色,在近期研究中發現CD4+CD25highFoxp3+調節性T細胞可被區分成兩群表現型不同的細胞,分別為ICOS+Foxp3+調節性T細胞以及ICOS-Foxp3+調節性T細胞, ICOS+Foxp3+調節性T細胞被認為屬於表現IL-10以及少量mTGF-β,而ICOS-Foxp3+調節性T細胞只表現mTGF-β。在實驗室先前研究中已知口腔鱗狀上皮細胞癌的病患其腫瘤內浸潤淋巴細胞中CD4+CD25highFoxp3+調節性T細胞所佔的比例比病患血液中高出許多,此外先前研究也發現到病患浸潤腫瘤內調節性T細胞可依CD25、Foxp3表現量的差異在細分為不同亞群的調節性T細胞,並且表現出不同程度的細胞激素,在本研究中將探討口腔鱗狀上皮細胞癌腫瘤內浸潤淋巴細胞中的調節性T細胞是否也可利用ICOS表現差異來區分成不同表現型的調節性T細胞。除此之外,近期研究中,Th17 細胞在腫瘤中扮演的角色也廣泛的被探討當中,許多研究確實也發現Th17細胞與腫瘤生長息息相關,更有研究指出腫瘤中Th17細胞與調節性T細有重要的相互關係,然而究竟Th17細胞對腫瘤生長扮演甚麼角色以及與調節性T細胞之間的相互關係為何至今仍不清楚,本篇研究中發現腫瘤浸潤淋巴細胞中存在大量Th17細胞以及IL-17+Foxp3+細胞,這與腫瘤微環境中存在高量的IL-1β、IL-6、TGF-β等誘導Th17細胞產生的細胞激素結果一致。此外,研究中也發現不同於血液中研究的結過,在腫瘤內IL-17+Foxp3+細胞與Th17細胞的分佈具有非常高度相關性,而Th17細胞與調節性T細胞的分佈則形成負相關,這說明了確實Th17細胞與調節性T細胞間確實有著重要的相關性。為了進一步證實腫瘤細胞對於Th17細胞的產生有直接相關性,我們利用體外共同培養實驗證實了的確腫瘤細胞能誘導IL-17+Foxp3+細胞的產生。由於Th17細胞起出的研究被認為是與病原菌的清除相關,而口腔鱗狀上皮細胞癌已知時常會伴隨著細菌感染的發生,研究中也觀察到病患腫瘤組織中確實存在著細菌16S RNA,因此在口腔鱗狀上皮細胞癌腫瘤內發現的Th17細胞與細菌感染是否也具有相關性,在研究中也將進一步探討。 | zh_TW |
dc.description.abstract | Oral squamous-cell carcinoma (OSCC) was the sixth most common cancer worldwide with low survival rates after therapy. Immunosuppression mediated by CD4+CD25highFoxp3+ regulatory T (Treg) cells was a characteristic feature of OSCC. Recent studies have defined two subsets of FOXP3+ natural Treg cells by the expression of the costimulatory molecule ICOS and IL-10 or TGF-b. Our previous study revealed that proportion of CD4+CD25highFoxp3+ Treg cells in TIL were significantly enriched relative to that found in PBMC from OSCC patients. Moreover, there were different subsets of regulatory T cells infiltrated in OSCC. The specific aim was to identify and characterize the different subsets of Tregs in TIL based on ICOS expression. In addition, association of Tregs with the presence of Th17 cells was also investigated to confirm whether there was synergistic or antagonistic relationship between these cells in TIL of OSCC. Despite the important role of Th17 cells in the pathogenesis of many autoimmune diseases, their prevalence and the mechanisms by which they are generated and regulated in cancer remain unclear. A recent study found that the tumor-associated Th17 cells and Treg cells were synchronically increased following tumor development. The kinetic distribution of Treg cells and Th17 cells suggested their close relationship in the tumor. In this study, we reported that the high percentage of CD4+IL-17+ cells and IL-17+Foxp3+ cells in the tumor site, compared with the low percentage of CD4+IL-17+ cells and IL-17+Foxp3+ cells in PBMC from healthy donor and cancer patient. These finding consisted with the high level of IL-1β、IL-6、TGF-β presented in the tumor microenvironment. Moreover, this study also found the prevalence of IL-17+Foxp3+ cells and Th17 cells were high positive correlation, and the prevalence of Th17 cells and Foxp3 cells were high negative correlation in the tumor site. To further demonstrate the role of tumor cells in the induction of IL-17+Foxp3+ cells, the in vitro coculture system were performed. The results show coculture of PBMC with tumor cells could generate high percentage of Th17 cells and IL-17+Foxp3+ cells. It has been reported that viable bacteria presented within oral squamous cell carcinoma tissue. The correlation between Th17 cells generation and bacteria infection in OSCC needs further investigation. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:15:05Z (GMT). No. of bitstreams: 1 ntu-98-R96445115-1.pdf: 1420719 bytes, checksum: aa3aaccf39106497335c9a1dbc5a3e58 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 誌謝……………………………………………………………………i
中文摘要………………………………………………………………ii 英文摘要………………………………………………………………iii 目錄……………………………………………………………………iv 圖表目錄………………………………………………………………vi 第一章 緒論………………………………………………………… 1 第一節 研究背景…………………………………………………………1 一、口腔癌………………………………………………………………1 二、口腔鱗狀上皮細胞癌部位免疫抑制作用…………………………2 三、 調節性T細胞.................................................................................... 3 四、 誘導性輔助刺激分子....................................................................... 5 五、 CD4+ T細胞譜系分化的可塑性...................................................... 5 六、 輔助型T細胞亞群─Th17.............................................................. 6 第二節 研究動機與目的………………………………………………….… 8 第二章 研究材料與方法……………………………………………………...... 10 第一節 人類周邊血液單核細胞收集與分離………..........…………….…. 10 第二節 口腔鱗狀上皮細胞癌病患腫瘤浸潤淋巴細胞分離純化................ 10 第三節 人類周邊血液CD4+ T細胞分離.................................................... 10 第四節 細胞表面染色.................................................................................... 11 第五節 細胞內染色........................................................................................ 11 第六節 腫瘤組織之RNA萃取...................................................................... 11 第七節 同步定量(real-time)聚合酶連鎖反應............................................... 12 第八節 PBMC與口腔癌細胞株體外培養.................................................... 12 第九節 細胞激素測定.................................................................................... 12 第十節 統計分析............................................................................................ 13 第三章 結果.......................................................................................................... 14 第一節 分析CD4+CD25+之調節性T細胞之ICOS表現.............................. 14 第二節 分析CD4+CD25+之調節性T細胞之mTGF-β表現......................... 14 第三節 分析浸潤口腔鱗狀上皮細胞癌組織及周邊血液之CD4+CD25+調節性T細胞其Foxp3與ICOS表現情形............................................... 15 第四節 統計病患CD4+CD25+之調節性T細胞之ICOS表現...................... 15 第五節 分析腫瘤內浸潤以及周邊血液單核球之Th17細胞..................... 15 第六節 分析病患周邊血液單核細胞中IL-17+Foxp3+細胞含量................ 16 第七節 探討浸潤腫瘤內Th17細胞、調節性T細胞、IL-17+Foxp3+細胞間分佈的相關性....................................................................................... 17 第八節 分析腫瘤微環境中細胞激素表現之情形....................................... 17 第九節 PBMC與口腔癌細胞株進行體外培養實驗................................... 18 第十節 分析腫瘤微環境中細菌存在情形.................................................. 18 第四章 討論........................................................................................................ 20 第五章 參考文獻................................................................................................ 24 圖表目錄 圖一、分析浸潤腫瘤內、轉移淋巴結和周邊血液之CD4+CD25+調節性T細 胞其ICOS表現................................................................................... 31 圖二、分別探討腫瘤內浸潤淋巴球CD4+CD25high、CD4+CD25low和 CD4+CD25intermediate細胞亞群其ICOS表現量....................................... 32 圖三、分析浸潤腫瘤內、轉移淋巴結和周邊血液之CD4+CD25+調節性T細胞其 mTGF-β表現...................................................................................... 33 圖四、分析浸潤腫瘤內及周邊血液之CD4+CD25+調節性T細胞其Foxp3與ICOS 表現情形............................................................................................. 34 圖五、統計浸潤腫瘤內、轉移淋巴結和周邊血液之CD4+CD25+調節性T細 胞其ICOS表現......................................................................................... 35 圖六、比較健康個體、病患周邊血液單核細胞以及浸潤腫瘤內淋巴細胞中 Th17 細胞含量................................................................................. 36 圖七、比較健康個體、病患周邊血液單核細胞以及浸潤腫瘤內淋巴細胞中 IL-17+Foxp3+細胞含量..................................................................... 37 圖八、探討浸潤腫瘤內淋巴細胞中Foxp3+調節性T細胞與Th17細胞分佈相關性 ............................................................................................................. 38 圖九、探討口腔癌病患周邊血液中Foxp3+調節性T細胞與Th17細胞分佈相關性 ............................................................................................................ 39 圖十、分析病患腫瘤微環境中細胞激素或轉錄因子存在的情形................. 40 圖十一、分析病患腫瘤微環境與非腫瘤微環境中細胞激素或轉錄因子存在的情形 ........................................................................................................ 41 圖十二、利用PBMC與口腔癌細胞株進行體外培養,以誘導出Th17細胞、 IL-17+Foxp3+細胞產生...................................................................... 42 圖十三、利用CD4+ T細胞與口腔癌細胞株進行體外培養,以誘導出Th17細 胞、IL-17+Foxp3+細胞產生................................................................. 43 圖十四、分析病患腫瘤微環境中細菌存在情形................................................. 44 表一、本研究中分析之口腔鱗狀上皮細胞癌病患的臨床病理相關數據,包括年 齡、性別、腫瘤起源處、以及病理分期........................................ 45 附圖一、由環境周圍的細胞激素決定CD4 T細胞的分化與轉化........... 46 | |
dc.language.iso | zh-TW | |
dc.title | 分析人類口腔鱗狀上皮細胞癌浸潤之調節性T細胞與Th17細胞間相互關係 | zh_TW |
dc.title | Characterization of tumor infiltrating regulatory T cells and the interplay with Th17 cells in human oral squamous cell carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許秉寧,李建國 | |
dc.subject.keyword | 口腔鱗狀上皮細胞癌,調節性T細胞,Th17細胞,腫瘤浸潤淋巴細胞, | zh_TW |
dc.subject.keyword | oral squamous-cell carcinoma,regulatory T cells,Th17 cells,tumor infiltraing lymphocytes, | en |
dc.relation.page | 46 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-07-15 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 1.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。