Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92634
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹承礎zh_TW
dc.contributor.advisorSeng-Cho Chouen
dc.contributor.author黃靖涵zh_TW
dc.contributor.authorChing-Han Huangen
dc.date.accessioned2024-05-23T16:04:54Z-
dc.date.available2024-05-24-
dc.date.copyright2024-05-23-
dc.date.issued2024-
dc.date.submitted2024-05-10-
dc.identifier.citationAhuja, S. and Kumar, J. (2022). Conceptualizations of user autonomy within the normative evaluation of dark patterns. Ethics and Information Technology, 24(4):52.
Ayaburi, E. W. and Treku, D. N. (2020). Effect of penitence on social media trust and privacy concerns: The case of Facebook. International Journal of Information Management, 50:171–181.
Bate, B. (2018). How Dark UX Patterns Target The Most Vulnerable | WDD. https://www.webdesignerdepot.com/2018/01/how-dark-ux-patterns-target-the-mostvulnerable/.
Bongard-Blanchy, K., Rossi, A., Rivas, S., Doublet, S., Koenig, V., and Lenzini, G. (2021). ”I am Definitely Manipulated, Even When I am Aware of it. It’s Ridiculous!” - Dark Patterns from the End-User Perspective. In Designing Interactive Systems Conference 2021, DIS ’21, pages 763–776. Association for Computing Machinery.
Bösch, C., Erb, B., Kargl, F., Kopp, H., and Pfattheicher, S. (2016). Tales from the Dark Side: Privacy Dark Strategies and Privacy Dark Patterns. Proceedings on Privacy Enhancing Technologies, 2016(4):237–254.
Bright, L. F., Lim, H. S., and Logan, K. (2021). “Should I Post or Ghost?”: Examining how privacy concerns impact social media engagement in US consumers. Psychology & Marketing, 38(10):1712–1722.
Brignull, H. (2010a). Dark Patterns: Dirty tricks designers use to make people do stuff. https://www.90percentofeverything.com/2010/07/08/dark-patterns-dirty-tricksdesigners- use-to-make-people-do-stuff/.
Brignull, H. (2010b). Deceptive Design - user interfaces crafted to trick you. https://www.deceptive.design/.
Brignull, H. (2021). Bringing Dark Patterns to Light. https://harrybr.medium.com/bringing-dark-patterns-to-light-d86f24224ebf.
Casaló, L., Flavián, C., and Guinalíu, M. (2008). The role of perceived usability, reputation, satisfaction and consumer familiarity on the website loyalty formation process.
Computers in Human Behavior, 24(2):325–345. Casaló, L. V., Flavián, C., and Ibáñez-Sánchez, S. (2017). Understanding Consumer Interaction on Instagram: The Role of Satisfaction, Hedonism, and Content Characteristics. Cyberpsychology, Behavior, and Social Networking, 20(6):369–375.
Castmo, M. and Persson, R. (2018). The Alliance of Digital Nudging & Persuasive Design: The Complementary Nature of the Design Strategies. PhD thesis, Lund University.
Chaudhary, A., Saroha, J., Monteiro, K., Forbes, A. G., and Parnami, A. (2022). “Are You Still Watching?”: Exploring Unintended User Behaviors and Dark Patterns on Video Streaming Platforms. In Designing Interactive Systems Conference, pages 776–791. ACM.
Chen, J., Sun, J., Feng, S., Xing, Z., Lu, Q., Xu, X., and Chen, C. (2023). Unveiling the Tricks: Automated Detection of Dark Patterns in Mobile Applications. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, UIST ’23, pages 1–20. Association for Computing Machinery.
Conti, G. and Sobiesk, E. (2010). Malicious interface design: Exploiting the user. In Proceedings of the 19th International Conference on World Wide Web - WWW ’10, page 271. ACM Press.
DataReportal (2023). Digital 2023: Global Overview Report. https://datareportal.com/reports/digital-2023-global-overview-report.
Di Geronimo, L., Braz, L., Fregnan, E., Palomba, F., and Bacchelli, A. (2020). UI Dark Patterns and Where to Find Them: A Study on Mobile Applications and User Perception. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, pages 1–14. Association for Computing Machinery.
Dinner, I., Johnson, E. J., Goldstein, D. G., and Liu, K. (2011). Partitioning default effects: Why people choose not to choose. Journal of Experimental Psychology: Applied, 17(4):332–341.
European Data Protection Board (2023). Guidelines 03/2022 on Deceptive design patterns in social media platform interfaces: How to recognise and avoid them.
Fang, Y., Qureshi, I., Sun, H., McCole, P., Ramsey, E., and Lim, K. H. (2014). Trust, Satisfaction, and Online Repurchase Intention: The Moderating Role of Perceived Effectiveness of E-Commerce Institutional Mechanisms. MIS Quarterly, 38(2):407–A9.
Fogg, B. J. (2003). Introduction. In Persuasive Technology, Interactive Technologies, pages 1–13. Morgan Kaufmann.
Fornell, C. and Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1):39–50.
Giese, J. L. and Cote, J. A. (2002). Defining Consumer Satisfaction. PhD thesis, Washington State University.
Gole, G. . T.-T., Burns, S., Caplan, M., Fai, M., Hii, A., McGregor, S., and Sutton, L. (2022). The new EU Dark Pattern laws: Changes to the Digital Services Act. https://www.lexology.com/library/detail.aspx?g=4340915c-b302-4d73-b042-7cfff85c12f1.
Gray, C. M., Chen, J., Chivukula, S. S., and Qu, L. (2021). End User Accounts of Dark Patterns as Felt Manipulation. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2):1–25.
Gray, C. M., Kou, Y., Battles, B., Hoggatt, J., and Toombs, A. L. (2018). The Dark (Patterns) Side of UX Design. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 1–14. Association for Computing Machinery.
Gray, C. M., Santos, C., and Bielova, N. (2023). Towards a Preliminary Ontology of Dark Patterns Knowledge. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–9. ACM.
Gunawan, J., Pradeep, A., Choffnes, D., Hartzog, W., and Wilson, C. (2021). A Comparative Study of Dark Patterns Across Web and Mobile Modalities. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2):1–29.
Guo, J., Wenqian, Z., and Xia, T. (2023). Impact of Shopping Website Design on Customer Satisfaction and Loyalty: The Mediating Role of Usability and the Moderating Role of Trust. Sustainability, 15:6347
Habib, H., Pearman, S., Young, E., Saxena, I., Zhang, R., and Cranor, L. F. (2022). Identifying User Needs for Advertising Controls on Facebook. Proceedings of the ACM on Human-Computer Interaction, 6(CSCW1):1–42.
Hallsworth, M., List, J., Metcalfe, R., and Vlaev, I. (2014). The Behavioralist As Tax Collector: Using Natural Field Experiments to Enhance Tax Compliance. Technical Report w20007, National Bureau of Economic Research.
Hansen, J. M., Saridakis, G., and Benson, V. (2018). Risk, trust, and the interaction of perceived ease of use and behavioral control in predicting consumers’ use of social media for transactions. Computers in Human Behavior, 80:197–206.
Hart, S. G. and Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Advances in Psychology, volume 52 of Human Mental Workload, pages 139–183. North-Holland.
Hausner, P. and Gertz, M. (2021). Dark Patterns in the Interaction with Cookie Banners.
Hayes, A. F. (2017). Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach, volume 51. Guilford publications.
Hinds, P. J. (1998). User Control and Its Many Facets: A Study of Perceived Control in Human-Computer Interaction. Hewlett Packard Laboratories California.
Hu, P. J.-H., Hu, H.-f., and Fang, X. (2017). Examining the Mediating Roles of Cognitive Load and Performance Outcomes in User Satisfaction with a Website: A Field Quasi-Experiment. MIS Quarterly, 41(3):975–A11.
Huang, K. and Isaac, M. (2022). Instagram rolls back some product changes after user backlash. The New York Times.
Ikeda, S. (2022). Google and Facebook Hit With Fines Over ”Dark Patterns”, Allegedly Misleading Users Into Cookie Consent. https://www.cpomagazine.com/data-protection/google-and-facebook-hit-with-fines-over-dark-patterns-allegedlymisleading-users-into-cookie-consent/.
ISO (2018). ISO 9241-11:2018(en), Ergonomics of human-system interaction — Part 11: Usability: Definitions and concepts.
Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux.
Kaplan, A. M. and Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1):59–68.
Kim, K. K., Kim, W. G., and Lee, M. (2023). Impact of dark patterns on consumers’ perceived fairness and attitude: Moderating effects of types of dark patterns, social proof, and moral identity. Tourism Management, 98:104763.
Kim, W. G., Pillai, S. G., Haldorai, K., and Ahmad, W. (2021). Dark patterns used by online travel agency websites. Annals of Tourism Research, 88:103055.
Kirakowski, J. (1996). The software usability measurement inventory: Background and usage. Usability evaluation in industry, pages 169–178.
KOL Radar (2023). 2023 台灣百大影響力網紅數據洞察報告書. https://www.kolradar.com/reports/2023-top100-kol.
Krause, H.-V., Große Deters, F., Baumann, A., and Krasnova, H. (2022). Active social media use and its impact on well-being — an experimental study on the effects of posting pictures on Instagram. Journal of Computer-Mediated Communication, 28(1):zmac037.
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4:863.
Laskowski, K. (2022). Dark patterns in social media interfaces. https://www.dentons.com/en/insights/articles/2022/june/15/dark-patterns-in-social-media-interfaces.
Liang, T.-P., Lai, H.-J., and Ku, Y.-C. (2006). Personalized Content Recommendation and User Satisfaction: Theoretical Synthesis and Empirical Findings. Journal of Management Information Systems, 23(3):45–70.
Luguri, J. and Strahilevitz, L. J. (2021). Shining a Light on Dark Patterns. Journal of Legal Analysis, 13(1):43–109.
M. Bhoot, A., A. Shinde, M., and P. Mishra, W. (2021). Towards the Identification of Dark Patterns: An Analysis Based on End-User Reactions. In IndiaHCI ’20: Proceedings of the 11th Indian Conference on Human-Computer Interaction, IndiaHCI 2020, pages 24–33. Association for Computing Machinery.
Macefield, R. (2009). How To Specify the Participant Group Size for Usability Studies: A Practitioner’s Guide. Journal of usability studies, 5(1).
MacKenzie, S. B., Podsakoff, P. M., and Podsakoff, N. P. (2011). Construct Measurement and Validation Procedures in MIS and Behavioral Research: Integrating New and Existing Techniques. MIS Quarterly, 35(2):293–334.
Maier, M. and Harr, R. (2020). Dark Design Patterns: An End-User Perspective. Human Technology, 16(2):170–199.
Mansur, S. M. H., Salma, S., Awofisayo, D., and Moran, K. (2023). AidUI: Toward Automated Recognition of Dark Patterns in User Interfaces. In Proceedings of the 45th International Conference on Software Engineering, ICSE ’23, pages 1958–1970. IEEE Press.
Mathur, A., Acar, G., Friedman, M. J., Lucherini, E., Mayer, J., Chetty, M., and Narayanan, A. (2019). Dark Patterns at Scale: Findings from a Crawl of 11K Shopping Websites. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW):1–32.
Mathur, A., Kshirsagar, M., and Mayer, J. (2021). What Makes a Dark Pattern... Dark?: Design Attributes, Normative Considerations, and Measurement Methods. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–18. ACM.
Maxwell Iskiev (2023). The Fastest Growing Social Media Platforms of 2023 [New Data]. https://blog.hubspot.com/marketing/fastest-growing-social-media-platforms.
Mayer, R. C., Davis, J. H., and Schoorman, F. D. (1995). An Integrative Model of Organizational Trust. The Academy of Management Review, 20(3):709–734.
Mildner, T. and Savino, G.-L. (2021). Ethical User Interfaces: Exploring the Effects of Dark Patterns on Facebook. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–7. ACM.
Mildner, T., Savino, G.-L., Doyle, P. R., Cowan, B. R., and Malaka, R. (2023). About Engaging and Governing Strategies: A Thematic Analysis of Dark Patterns in Social Networking Services. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–15.
Monge Roffarello, A. and De Russis, L. (2022). Towards Understanding the Dark Patterns That Steal Our Attention. In CHI Conference on Human Factors in Computing Systems Extended Abstracts, pages 1–7. ACM.
Mosteller, J. and Poddar, A. (2017). To Share and Protect: Using Regulatory Focus Theory to Examine the Privacy Paradox of Consumers’ Social Media Engagement and Online Privacy Protection Behaviors. Journal of Interactive Marketing, 39(1):27–38.
Narayanan, A. (2023). Understanding Social Media Recommendation Algorithms. Technical Report 23-01, Knight First Amendment Institute.
Newall, P. W. S. (2022). What is sludge? Comparing Sunstein’s definition to others’. Behavioural Public Policy, pages 1–7.
Newell, S. J., Goldsmith, R. E., and Banzhaf, E. J. (1998). The Effect of Misleading Environmental Claims on Consumer Perceptions of Advertisements. Journal of Marketing Theory and Practice, 6(2):48–60.
Nielsen, J. (2000). Why You Only Need to Test with 5 Users. https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/.
Nielsen, J. (2020). 10 Usability Heuristics for User Interface Design. https://www.nngroup.com/articles/ten-usability-heuristics/.
Nouwens, M., Liccardi, I., Veale, M., Karger, D., and Kagal, L. (2020). Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–13. ACM.
Perez, S. (2022). Google exec suggests Instagram and TikTok are eating into Google’s core products, Search and Maps. https://techcrunch.com/2022/07/12/google-exec-suggestsinstagram-and-tiktok-are-eating-into-googles-core-products-search-and-maps/.
Picoult, J. (2020). The Dark Side Of Customer Experience. https://www.forbes.com/sites/jonpicoult/2020/11/18/the-dark-side-of-customer-experience/.
Rochester, L. B. (2020). H.R.8975 - 116th Congress (2019-2020): DETOUR Act. https://www.congress.gov/bill/116th-congress/house-bill/8975.
Schaffner, B., Lingareddy, N. A., and Chetty, M. (2022). Understanding Account Deletion and Relevant Dark Patterns on Social Media. Proceedings of the ACM on Human-Computer Interaction, 6(CSCW2):1–43.
Sembada, A. Y. and Koay, K. Y. (2021). How perceived behavioral control affects trust to purchase in social media stores. Journal of Business Research, 130:574–582.
SocialPilot (n.d.). What is a Newsfeed? How Does It Actually Work? https://www.socialpilot.co/social-media-terms/newsfeed.
Soe, T. H., Nordberg, O. E., Guribye, F., and Slavkovik, M. (2020). Circumvention by design - dark patterns in cookie consent for online news outlets. In Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society, pages 1–12. ACM.
Soe, T. H., Santos, C. T., and Slavkovik, M. (2022). Automated detection of dark patterns in cookie banners: How to do it poorly and why it is hard to do it any other way. arXiv preprint arXiv:2204.11836.
Soman, D., Cowen, D., Kannan, N., and Feng, B. (2019). Seeing Sludge: Towards a Dashboard to Help Organizations Recognize Impedance to End-User Decisions and Action. Research Report Series Behaviourally Informed Organizations Partnership.
Song, Y., Gui, L., Wang, H., and Yang, Y. (2023). Determinants of Continuous Usage Intention in Community Group Buying Platform in China: Based on the Information System Success Model and the Expanded Technology Acceptance Model. Behavioral Sciences, 13(11):941.
Sunstein, C. (2022). Sludge: What Stops Us from Getting Things Done and What to Do about It. MIT Press.
Sweller, J., van Merrienboer, J. J. G., and Paas, F. G. W. C. (1998). Cognitive Architecture and Instructional Design. Educational Psychology Review, 10(3):251–296.
Tams, S., Thatcher, J. B., and Grover, V. (2018). Concentration, Competence, Confidence, and Capture: An Experimental Study of Age, Interruption-based Technostress, and Task Performance. Journal of the Association for Information Systems, 19:857–908.
Thaler, R. and Sunstein, C. (2008). Nudge: Improving Decisions about Health, Wealth, and Happiness. Penguin Publishing Group.
Thats Not Rocket Science (2023). The Role of Dark Patterns in Shaping User Behavior. https://bootcamp.uxdesign.cc/the-role-of-dark-patterns-in-shaping-user-behaviorec5a00b9a3a2.
Utz, C., Degeling, M., Fahl, S., Schaub, F., and Holz, T. (2019). (Un)informed Consent: Studying GDPR Consent Notices in the Field. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages 973–990. ACM.
van Nimwegen, C., Bergman, K., and Akdag, A. (2022). Shedding light on assessing Dark Patterns: Introducing the System Darkness Scale (SDS). In 35th International BCS Human-Computer Interaction Conference, pages 1–10. BCS Learning & Development.
Voigt, C., Schlögl, S., and Groth, A. (2021). Dark Patterns in Online Shopping: Of Sneaky Tricks, Perceived Annoyance and Respective Brand Trust. In HCI in Business, Government and Organizations, volume 12783, pages 143–155. Springer International Publishing.
Wallston, K. A., Wallston, B. S., Smith, S., and Dobbins, C. J. (1987). Perceived control and health. Current Psychology, 6(1):5–25.
Wang, Y.-S. (2008). Assessing e-commerce systems success: A respecification and validation of the DeLone and McLean model of IS success. Information Systems Journal, 18(5):529–557.
Weinmann, M., Schneider, C., and vom Brocke, J. (2016). Digital Nudging. Business & Information Systems Engineering, 58(6):433–436.
Wikipedia (2023). Dark pattern. https://en.wikipedia.org/w/index.php?title=Dark_pattern&oldid=1184491144.
Xu, C., Peak, D., and Prybutok, V. (2015). A customer value, satisfaction, and loyalty perspective of mobile application recommendations. Decision Support Systems, 79:171–183.
Xu, H. (2007). The Effects of Self-Construal and Perceived Control on Privacy Concerns. In ICIS 2007 Proceedings - Twenty Eighth International Conference on Information Systems, page 125.
Zac, A., Huang, Y.-C., von Moltke, A., Decker, C., and Ezrachi, A. (2023). Dark Patterns and Online Consumer Vulnerability. Available at SSRN 4547964.
Zagal, J. P., Björk, S., and Lewis, C. (2013). Dark patterns in the design of games. In Foundations of Digital Games 2013.
Zhang, Y., Gaggiano, J. D., Yongsatianchot, N., Suhaimi, N. M., Kim, M., Sun, Y., Griffin, J., and Parker, A. G. (2023). What Do We Mean When We Talk about Trust in Social Media? A Systematic Review. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–22.
Zhu, C. (2021). Dark patterns — a new frontier in privacy regulation. Reuters.
Zhu, X., Cao, Q., and Liu, C. (2022). Mechanism of Platform Interaction on Social Media Users’ Intention to Disclose Privacy: A Case Study of Tiktok APP. Information, 13(10):461.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92634-
dc.description.abstract欺騙性設計 (Deceptive design) 又稱為暗黑模式 (Dark patterns),為一種使用者介面設計策略,旨在誤導使用者做出不符合其最佳利益的決策。儘管暗黑模式在數位環境中十分普遍,但是關於它在社群媒體平台上對使用者感知的影響仍缺乏充分理解。
本研究採用線上調查和受試者間實驗設計,結合虛擬網站以調查暗黑模式的影響。研究結果表明,暗黑模式顯著降低了使用者對網站的信任、感知控制和滿意度。此外,認知負荷對暗黑模式與感知欺騙性之間的關係沒有調節作用。從實驗網站獲取的用戶行為數據分析顯示,暗黑模式降低了使用者對他們所作決策的認知程度。人口統計變數對於感知欺騙性的影響不顯著,表明暗黑模式對不同人群有普遍性影響。
這項研究強調了暗黑模式對社群媒體平台使用者體驗的負面影響,並提供實務建議和未來研究方向,旨在促進一個以使用者為中心且更加透明的數位環境。
zh_TW
dc.description.abstractDeceptive design, known as dark patterns, is a user interface design tactic aimed at misleading users into making decisions that do not align with their best interests. Despite the prevalence of dark patterns in digital environments, there is still a gap in understanding their impact on user perception within social media platforms.
This study employed online surveys and a between-subjects experimental design, utilizing a virtual website to investigate the impact of dark patterns. The findings suggest that dark patterns significantly decrease in users’ trust, perceived control, and satisfaction. Additionally, the study finds no moderating effect of cognitive load on the relationship between dark patterns and perceived deception. Analysis of user interactions collected from the experimental website suggested that dark patterns reduce people’s awareness of the decisions they made. The non-significant effect of demographic variables on perceived deception indicates a generalized effect of dark patterns across populations.
This empirical study highlights the negative impact of dark patterns on the user experience within social media platforms and provides practical suggestions and directions for future research, aiming to promote a more transparent and user-centered digital environment.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-23T16:04:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-05-23T16:04:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Literature Review 6
2.1 Influencing User Behavior 6
2.2 Existing Research on Dark Patterns 8
2.3 Dark Patterns in Social Media 14
2.4 Summary 21
Chapter 3 Methodology 23
3.1 Hypotheses 23
3.2 Experimental Design 28
3.3 Recruitment and Data Collection 34
3.4 Data Analysis Strategy 35
3.5 Pretest 35
Chapter 4 Results 37
4.1 Participant Demographics 37
4.2 Manipulation Check 41
4.3 Measurement Model 42
4.4 Hypothesis Testing 43
4.5 User Behavior Analysis 45
4.6 Impact of Control Variables 50
Chapter 5 Discussion 53
5.1 Research Implications 53
5.2 Practical Implications 57
5.3 Limitations and Future Research Directions 58
Chapter 6 Conclusion 59
References 60
-
dc.language.isoen-
dc.subject社群媒體平台zh_TW
dc.subject使用者滿意度zh_TW
dc.subject使用者體驗zh_TW
dc.subject信任zh_TW
dc.subject欺騙性設計zh_TW
dc.subject暗黑模式zh_TW
dc.subject感知控制zh_TW
dc.subjectuser satisfactionen
dc.subjectdark patternsen
dc.subjectdeceptive designen
dc.subjecttrusten
dc.subjectperceived controlen
dc.subjectuser experienceen
dc.subjectsocial media platformsen
dc.title社群媒體中暗黑模式對信任、感知控制及使用者滿意度之影響zh_TW
dc.titleImpact of Dark Patterns in Social Media: Trust, Perceived Control, and User Satisfactionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建錦;周子元zh_TW
dc.contributor.oralexamcommitteeChien-Chin Chen;Dawn Chouen
dc.subject.keyword暗黑模式,欺騙性設計,信任,感知控制,使用者滿意度,使用者體驗,社群媒體平台,zh_TW
dc.subject.keyworddark patterns,deceptive design,trust,perceived control,user satisfaction,user experience,social media platforms,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202400948-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-05-11-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2024-05-10-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
13.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved