Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92631
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王振男zh_TW
dc.contributor.advisorJenn-Nan Wangen
dc.contributor.author蕭羽晨zh_TW
dc.contributor.authorYU-CHEN XIAOen
dc.date.accessioned2024-05-15T16:06:31Z-
dc.date.available2024-05-16-
dc.date.copyright2024-05-15-
dc.date.issued2024-
dc.date.submitted2024-05-13-
dc.identifier.citationA. Doucet, S. Godsill, and C. Andrieu. On sequential monte carlo sampling methods for bayesian filtering. Statistics and computing, 10:197–208, 2000
M. Katzfuss, J. R. Stroud, and C. K. Wikle. Understanding the ensemble kalman filter. The American Statistician, 70(4):350–357, 2016.
S. Särkkä and L. Svensson. Bayesian filtering and smoothing, volume 17. Cambridge university press, 2023.
D. Simon and T. L. Chia. Kalman filtering with state equality constraints. IEEE transactions on Aerospace and Electronic Systems, 38(1):128–136, 2002.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92631-
dc.description.abstract在動態系統中,參數估計是一直在研究的問題。假設我們知曉一些資訊,可以將參數估計得更準確嗎? 卡爾曼濾波器是一種解答。其背後的想法涉及了偏微分,統計方法,還有貝式法則下的後驗均值等。
本文中針對各種情況介紹了五種濾波器: 若模型是線性,卡爾曼濾波器是最優解;對低階非線性模型使用的擴展卡爾曼濾波器和無跡卡爾曼濾波器;針對高度非線性模型的粒子濾波器;解決極高維的集群卡爾曼濾波器。這五種濾波器的詳細推導都寫在各章中。
最後,在第七章,我們透過對牛頓系統,高度非線性系統,以及電阻抗斷層掃描反問題的數值模擬展現這些濾波器的成效。
zh_TW
dc.description.abstractIn dynamic systems, parameter estimation is a persistent research challenge. Can we achieve more accurate parameter estimation if we have some prior information? The Kalman filter provides an answer to this question. Its underlying principles involve par tial differential, statistical techniques, and Bayesian inference, including posterior mean estimation.
This paper introduces five types of filters for various scenarios: the Kalman filter is op timal for linear models; the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are suitable for models with low-order nonlinearity; the Particle Filter (PF) is ap plicable to highly nonlinear models; and the Ensemble Kalman Filter (EnKF) is effective for addressing extremely high-dimensional systems. The derivation of these five filters is presented in detail in respective chapters.
In the final chapter, Chapter 7, the effectiveness of these filters is demonstrated through numerical simulations of Newtonian systems, highly nonlinear systems, and Electrical Impedance Tomography (EIT) inverse problem.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-15T16:06:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-05-15T16:06:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements iii
摘要 v
Abstract vii
Contents ix
Chapter 1 Introduction 1
Chapter 2 Kalman filter 3
2.1 Derivation of Kalman filter 3
2.2 Algorithm of Kalman filter 6
2.3 Discussing of the Kalman filter 7
Chapter 3 Extended Kalman filter 9
3.1 Derivation of extended Kalman filter 9
3.2 Algorithm of extended Kalman filter 13
3.1 Discussing of the extended Kalman filter 13
Chapter 4 Unscented Kalman filter 15
4.1 Derivation of Unscented Kalman filter 15
4.2 Algorithm of Unscented Kalman filter 20
4.1 Discussing of the Unscented Kalman filter 22
Chapter 5 Particle filter 23
5.1 Derivation of Particle filter 23
5.2 Algorithm of Particle filter 24
5.3 Important sampling 25
5.4 Algorithm of sequential important sampling 27
5.5 Derivation of optimal important distribution 28
5.6 Rao-Blackwellized Particle Filter 30
5.7 Discussing of Particle filter 32
Chapter 6 Ensemble Kalman filter 33
6.1 Derivation of Ensemble Kalman filter 33
6.2 Algorithm of Ensemble Kalman filter 34
6.3 Initial Ensemble 35
6.4 Covariance inflation 35
6.5 Discussing of Ensemble Kalman filter 35
Chapter 7 Numerical Simulation 37
7.1 Newtonian systems 37
7.2 Using Particle filters in highly nonlinear equations 38
7.3 Ensemble Kalman filter in Electrode Impedance Tomography (EIT) Inverse Problem 41
References 45
-
dc.language.isoen-
dc.subject卡爾曼濾波器zh_TW
dc.subject擴展卡爾曼濾波器zh_TW
dc.subject無跡卡爾曼濾波器zh_TW
dc.subject粒子濾波器zh_TW
dc.subject集群卡爾曼濾波器zh_TW
dc.subject模型預測zh_TW
dc.subject貝式估計zh_TW
dc.subject參數估計zh_TW
dc.subjectBayesian estimationen
dc.subjectKalman filteren
dc.subjectmodel predictionen
dc.subjectExtended Kalman filteren
dc.subjectUnscented Kalman filteren
dc.subjectParticle filteren
dc.subjectEnsemble Kalman filteren
dc.subjectparameter estimationen
dc.title卡爾曼濾波器方法及其應用zh_TW
dc.titleKalman filter method and its applicationsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee千野由喜;林景隆zh_TW
dc.contributor.oralexamcommitteeYuki Chino;Ching-Lung Linen
dc.subject.keyword卡爾曼濾波器,擴展卡爾曼濾波器,無跡卡爾曼濾波器,粒子濾波器,集群卡爾曼濾波器,模型預測,貝式估計,參數估計,zh_TW
dc.subject.keywordKalman filter,Extended Kalman filter,Unscented Kalman filter,Particle filter,Ensemble Kalman filter,model prediction,Bayesian estimation,parameter estimation,en
dc.relation.page45-
dc.identifier.doi10.6342/NTU202400950-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-05-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
761.45 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved