請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9262
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賈景山 | |
dc.contributor.author | Yu-Chih Ou | en |
dc.contributor.author | 歐育志 | zh_TW |
dc.date.accessioned | 2021-05-20T20:15:03Z | - |
dc.date.available | 2014-09-15 | |
dc.date.available | 2021-05-20T20:15:03Z | - |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-15 | |
dc.identifier.citation | 1. Azuma, M., D. Ito, H. Yagita, K. Okumura, J. H. Phillips, L. L. Lanier, and C. Somoza. 1993. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366:76-79.
2. Azuma, T., S. Yao, G. Zhu, A. S. Flies, S. J. Flies, and L. Chen. 2008. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111:3635-3643. 3. Baecher-Allan, C., J. A. Brown, G. J. Freeman, and D. A. Hafler. 2001. CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167:1245-1253. 4. Bennett, C. L., J. Christie, F. Ramsdell, M. E. Brunkow, P. J. Ferguson, L. Whitesell, T. E. Kelly, F. T. Saulsbury, P. F. Chance, and H. D. Ochs. 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20-21. 5. Bhatia, S., A. D. Louie, R. Bhatia, M. R. O'Donnell, H. Fung, A. Kashyap, A. Krishnan, A. Molina, A. Nademanee, J. C. Niland, P. A. Parker, D. S. Snyder, R. Spielberger, A. Stein, and S. J. Forman. 2001. Solid cancers after bone marrow transplantation. J Clin Oncol 19:464-471. 6. Bluestone, J. A., and A. K. Abbas. 2003. Natural versus adaptive regulatory T cells. Nat Rev Immunol 3:253-257. 7. Butte, M. J., M. E. Keir, T. B. Phamduy, A. H. Sharpe, and G. J. Freeman. 2007. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27:111-122. 8. Chapoval, A. I., J. Ni, J. S. Lau, R. A. Wilcox, D. B. Flies, D. Liu, H. Dong, G. L. Sica, G. Zhu, K. Tamada, and L. Chen. 2001. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol 2:269-274. 9. Curiel, T. J. 2007. Tregs and rethinking cancer immunotherapy. J Clin Invest 117:1167-1174. 10. Curiel, T. J., G. Coukos, L. Zou, X. Alvarez, P. Cheng, P. Mottram, M. Evdemon-Hogan, J. R. Conejo-Garcia, L. Zhang, M. Burow, Y. Zhu, S. Wei, I. Kryczek, B. Daniel, A. Gordon, L. Myers, A. Lackner, M. L. Disis, K. L. Knutson, L. Chen, and W. Zou. 2004. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942-949. 11. Curiel, T. J., S. Wei, H. Dong, X. Alvarez, P. Cheng, P. Mottram, R. Krzysiek, K. L. Knutson, B. Daniel, M. C. Zimmermann, O. David, M. Burow, A. Gordon, N. Dhurandhar, L. Myers, R. Berggren, A. Hemminki, R. D. Alvarez, D. Emilie, D. T. Curiel, L. Chen, and W. Zou. 2003. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562-567. 12. Dave, B. J., A. H. Trivedi, and S. G. Adhvaryu. 1992. Role of areca nut consumption in the cause of oral cancers. A cytogenetic assessment. Cancer 70:1017-1023. 13. Dong, H., S. E. Strome, E. L. Matteson, K. G. Moder, D. B. Flies, G. Zhu, H. Tamura, C. L. Driscoll, and L. Chen. 2003. Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J Clin Invest 111:363-370. 14. Dong, H., S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen. 2002. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793-800. 15. Dong, H., G. Zhu, K. Tamada, and L. Chen. 1999. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365-1369. 16. Freeman, G. J., J. G. Gribben, V. A. Boussiotis, J. W. Ng, V. A. Restivo, Jr., L. A. Lombard, G. S. Gray, and L. M. Nadler. 1993. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262:909-911. 17. Freeman, G. J., A. J. Long, Y. Iwai, K. Bourque, T. Chernova, H. Nishimura, L. J. Fitz, N. Malenkovich, T. Okazaki, M. C. Byrne, H. F. Horton, L. Fouser, L. Carter, V. Ling, M. R. Bowman, B. M. Carreno, M. Collins, C. R. Wood, and T. Honjo. 2000. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027-1034. 18. Gavin, M. A., J. P. Rasmussen, J. D. Fontenot, V. Vasta, V. C. Manganiello, J. A. Beavo, and A. Y. Rudensky. 2007. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445:771-775. 19. Geng, L., D. Huang, J. Liu, Y. Qian, J. Deng, D. Li, Z. Hu, J. Zhang, G. Jiang, and S. Zheng. 2008. B7-H1 up-regulated expression in human pancreatic carcinoma tissue associates with tumor progression. J Cancer Res Clin Oncol 134:1021-1027. 20. Ghebeh, H., E. Barhoush, A. Tulbah, N. Elkum, T. Al-Tweigeri, and S. Dermime. 2008. FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: Implication for immunotherapy. BMC Cancer 8:57. 21. Ghebeh, H., S. Mohammed, A. Al-Omair, A. Qattan, C. Lehe, G. Al-Qudaihi, N. Elkum, M. Alshabanah, S. Bin Amer, A. Tulbah, D. Ajarim, T. Al-Tweigeri, and S. Dermime. 2006. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8:190-198. 22. Hamanishi, J., M. Mandai, M. Iwasaki, T. Okazaki, Y. Tanaka, K. Yamaguchi, T. Higuchi, H. Yagi, K. Takakura, N. Minato, T. Honjo, and S. Fujii. 2007. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 104:3360-3365. 23. Hernandez, G., L. Arriba, C. Jimenez, J. V. Bagan, B. Rivera, M. Lucas, and E. Moreno. 2003. Rapid progression from oral leukoplakia to carcinoma in an immunosuppressed liver transplant recipient. Oral Oncol 39:87-90. 24. Hoffmann, T. K., A. D. Donnenberg, S. D. Finkelstein, V. S. Donnenberg, U. Friebe-Hoffmann, E. N. Myers, E. Appella, A. B. DeLeo, and T. L. Whiteside. 2002a. Frequencies of tetramer+ T cells specific for the wild-type sequence p53(264-272) peptide in the circulation of patients with head and neck cancer. Cancer Res 62:3521-3529. 25. Hoffmann, T. K., G. Dworacki, T. Tsukihiro, N. Meidenbauer, W. Gooding, J. T. Johnson, and T. L. Whiteside. 2002b. Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 8:2553-2562. 26. Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057-1061. 27. Hunter, K. D., E. K. Parkinson, and P. R. Harrison. 2005. Profiling early head and neck cancer. Nat Rev Cancer 5:127-135. 28. Ichihara, F., K. Kono, A. Takahashi, H. Kawaida, H. Sugai, and H. Fujii. 2003. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9:4404-4408. 29. Ishida, Y., Y. Agata, K. Shibahara, and T. Honjo. 1992. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887-3895. 30. Ito, T., S. Hanabuchi, Y. H. Wang, W. R. Park, K. Arima, L. Bover, F. X. Qin, M. Gilliet, and Y. J. Liu. 2008. Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28:870-880. 31. Jenkins, M. K., and R. H. Schwartz. 1987. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 165:302-319. 32. Jewett, A., N. A. Cacalano, A. Teruel, M. Romero, M. Rashedi, M. Wang, and H. Nakamura. 2006. Inhibition of nuclear factor kappa B (NFkappaB) activity in oral tumor cells prevents depletion of NK cells and increases their functional activation. Cancer Immunol Immunother 55:1052-1063. 33. Kim, R., M. Emi, and K. Tanabe. 2007. Cancer immunoediting from immune surveillance to immune escape. Immunology 121:1-14. 34. Kitazawa, Y., M. Fujino, Q. Wang, H. Kimura, M. Azuma, M. Kubo, R. Abe, and X. K. Li. 2007. Involvement of the programmed death-1/programmed death-1 ligand pathway in CD4+CD25+ regulatory T-cell activity to suppress alloimmune responses. Transplantation 83:774-782. 35. Konishi, J., K. Yamazaki, M. Azuma, I. Kinoshita, H. Dosaka-Akita, and M. Nishimura. 2004. B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 10:5094-5100. 36. Kryczek, I., S. Wei, W. Gong, X. Shu, W. Szeliga, L. Vatan, L. Chen, G. Wang, and W. Zou. 2008. Cutting edge: IFN-gamma enables APC to promote memory Th17 and abate Th1 cell development. J Immunol 181:5842-5846. 37. Kryczek, I., S. Wei, L. Zou, G. Zhu, P. Mottram, H. Xu, L. Chen, and W. Zou. 2006a. Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J Immunol 177:40-44. 38. Kryczek, I., L. Zou, P. Rodriguez, G. Zhu, S. Wei, P. Mottram, M. Brumlik, P. Cheng, T. Curiel, L. Myers, A. Lackner, X. Alvarez, A. Ochoa, L. Chen, and W. Zou. 2006b. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203:871-881. 39. La Vecchia, C., A. Tavani, S. Franceschi, F. Levi, G. Corrao, and E. Negri. 1997. Epidemiology and prevention of oral cancer. Oral Oncol 33:302-312. 40. Laad, A., J. Kode, S. Chavan, R. Rao, A. R. Fakih, and S. Chiplunkar. 1996. Limiting dilution analysis of proliferating and cytotoxic lymphocytes in the peripheral blood and tumours of oral cancer patients. Eur J Cancer B Oral Oncol 32B:337-342. 41. Latchman, Y., C. R. Wood, T. Chernova, D. Chaudhary, M. Borde, I. Chernova, Y. Iwai, A. J. Long, J. A. Brown, R. Nunes, E. A. Greenfield, K. Bourque, V. A. Boussiotis, L. L. Carter, B. M. Carreno, N. Malenkovich, H. Nishimura, T. Okazaki, T. Honjo, A. H. Sharpe, and G. J. Freeman. 2001. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261-268. 42. Lee, C. H., Y. C. Ko, H. L. Huang, Y. Y. Chao, C. C. Tsai, T. Y. Shieh, and L. M. Lin. 2003. The precancer risk of betel quid chewing, tobacco use and alcohol consumption in oral leukoplakia and oral submucous fibrosis in southern Taiwan. Br J Cancer 88:366-372. 43. Lin, W., D. Haribhai, L. M. Relland, N. Truong, M. R. Carlson, C. B. Williams, and T. A. Chatila. 2007. Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 8:359-368. 44. Linsley, P. S., W. Brady, M. Urnes, L. S. Grosmaire, N. K. Damle, and J. A. Ledbetter. 1991. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174:561-569. 45. Liyanage, U. K., T. T. Moore, H. G. Joo, Y. Tanaka, V. Herrmann, G. Doherty, J. A. Drebin, S. M. Strasberg, T. J. Eberlein, P. S. Goedegebuure, and D. C. Linehan. 2002. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756-2761. 46. Loos, M., N. A. Giese, J. Kleeff, T. Giese, M. M. Gaida, F. Bergmann, M. Laschinger, W. B. M, and H. Friess. 2008. Clinical significance and regulation of the costimulatory molecule B7-H1 in pancreatic cancer. Cancer Lett 268:98-109. 47. Maynard, C. L., L. E. Harrington, K. M. Janowski, J. R. Oliver, C. L. Zindl, A. Y. Rudensky, and C. T. Weaver. 2007. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat Immunol 8:931-941. 48. Nakanishi, J., Y. Wada, K. Matsumoto, M. Azuma, K. Kikuchi, and S. Ueda. 2007. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother 56:1173-1182. 49. Nishimura, H., N. Minato, T. Nakano, and T. Honjo. 1998. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int Immunol 10:1563-1572. 50. Nomi, T., M. Sho, T. Akahori, K. Hamada, A. Kubo, H. Kanehiro, S. Nakamura, K. Enomoto, H. Yagita, M. Azuma, and Y. Nakajima. 2007. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151-2157. 51. Reichert, T. E., L. Strauss, E. M. Wagner, W. Gooding, and T. L. Whiteside. 2002. Signaling abnormalities, apoptosis, and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res 8:3137-3145. 52. Roncarolo, M. G., S. Gregori, M. Battaglia, R. Bacchetta, K. Fleischhauer, and M. K. Levings. 2006. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28-50. 53. Sakaguchi, S. 2004. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531-562. 54. Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh, and M. Toda. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151-1164. 55. Schantz, S. P., E. J. Shillitoe, B. Brown, and B. Campbell. 1986. Natural killer cell activity and head and neck cancer: a clinical assessment. J Natl Cancer Inst 77:869-875. 56. Scully, C., J. K. Field, and H. Tanzawa. 2000. Genetic aberrations in oral or head and neck squamous cell carcinoma (SCCHN): 1. Carcinogen metabolism, DNA repair and cell cycle control. Oral Oncol 36:256-263. 57. Seo, S. K., H. M. Seo, H. Y. Jeong, I. W. Choi, Y. M. Park, H. Yagita, L. Chen, and I. H. Choi. 2006. Co-inhibitory role of T-cell-associated B7-H1 and B7-DC in the T-cell immune response. Immunol Lett 102:222-228. 58. Shevach, E. M. 2009. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30:636-645. 59. Shirname, L. P., M. M. Menon, and S. V. Bhide. 1984. Mutagenicity of betel quid and its ingredients using mammalian test systems. Carcinogenesis 5:501-503. 60. Shirname, L. P., M. M. Menon, J. Nair, and S. V. Bhide. 1983. Correlation of mutagenicity and tumorigenicity of betel quid and its ingredients. Nutr Cancer 5:87-91. 61. Simon, I., S. Zhuo, L. Corral, E. P. Diamandis, M. J. Sarno, R. L. Wolfert, and N. W. Kim. 2006. B7-h4 is a novel membrane-bound protein and a candidate serum and tissue biomarker for ovarian cancer. Cancer Res 66:1570-1575. 62. Strauss, L., C. Bergmann, W. Gooding, J. T. Johnson, and T. L. Whiteside. 2007a. The frequency and suppressor function of CD4+CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6301-6311. 63. Strauss, L., C. Bergmann, M. Szczepanski, W. Gooding, J. T. Johnson, and T. L. Whiteside. 2007b. A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13:4345-4354. 64. Strauss, L., C. Bergmann, and T. L. Whiteside. 2009. Human circulating CD4+CD25highFoxp3+ regulatory T cells kill autologous CD8+ but not CD4+ responder cells by Fas-mediated apoptosis. J Immunol 182:1469-1480. 65. Swallow, M. M., J. J. Wallin, and W. C. Sha. 1999. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity 11:423-432. 66. Talay, O., C. H. Shen, L. Chen, and J. Chen. 2009. B7-H1 (PD-L1) on T cells is required for T-cell-mediated conditioning of dendritic cell maturation. Proc Natl Acad Sci U S A 106:2741-2746. 67. Thompson, R. H., M. D. Gillett, J. C. Cheville, C. M. Lohse, H. Dong, W. S. Webster, L. Chen, H. Zincke, M. L. Blute, B. C. Leibovich, and E. D. Kwon. 2005. Costimulatory molecule B7-H1 in primary and metastatic clear cell renal cell carcinoma. Cancer 104:2084-2091. 68. Tseng, S. Y., M. Otsuji, K. Gorski, X. Huang, J. E. Slansky, S. I. Pai, A. Shalabi, T. Shin, D. M. Pardoll, and H. Tsuchiya. 2001. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 193:839-846. 69. Tsushima, F., K. Tanaka, N. Otsuki, P. Youngnak, H. Iwai, K. Omura, and M. Azuma. 2006. Predominant expression of B7-H1 and its immunoregulatory roles in oral squamous cell carcinoma. Oral Oncol 42:268-274. 70. Vignali, D. A., L. W. Collison, and C. J. Workman. 2008. How regulatory T cells work. Nat Rev Immunol 8:523-532. 71. Walker, M. R., D. J. Kasprowicz, V. H. Gersuk, A. Benard, M. Van Landeghen, J. H. Buckner, and S. F. Ziegler. 2003. Induction of Foxp3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest 112:1437-1443. 72. Wan, Y. Y., and R. A. Flavell. 2007. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445:766-770. 73. Weiner, H. L. 2001. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 182:207-214. 74. Williams, L. M., and A. Y. Rudensky. 2007. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 8:277-284. 75. Woo, E. Y., C. S. Chu, T. J. Goletz, K. Schlienger, H. Yeh, G. Coukos, S. C. Rubin, L. R. Kaiser, and C. H. June. 2001. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766-4772. 76. Woo, E. Y., H. Yeh, C. S. Chu, K. Schlienger, R. G. Carroll, J. L. Riley, L. R. Kaiser, and C. H. June. 2002. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168:4272-4276. 77. Wu, C., Y. Zhu, J. Jiang, J. Zhao, X. G. Zhang, and N. Xu. 2006. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 108:19-24. 78. Yang, Z. Z., A. J. Novak, M. J. Stenson, T. E. Witzig, and S. M. Ansell. 2006. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 107:3639-3646. 79. Zang, X., and J. P. Allison. 2007. The B7 family and cancer therapy: costimulation and coinhibition. Clin Cancer Res 13:5271-5279. 80. Zhou, P., X. Zheng, H. Zhang, Y. Liu, and P. Zheng. 2009. B7 blockade alters the balance between regulatory T cells and tumor-reactive T cells for immunotherapy of cancer. Clin Cancer Res 15:960-970. 81. Zou, W. 2006. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295-307. 82. Zou, W., and L. Chen. 2008. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8:467-477. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9262 | - |
dc.description.abstract | 在口腔中超過95%的惡性腫瘤為口腔鱗狀上皮細胞癌,並且為台灣六大常見侵襲癌症死因之ㄧ。人類產生在不同器官或組織的癌症,其疾病起因除了基因毒性和致癌基因突變外,免疫編輯(immune-editing)也被視為一個重要的因素,目前已經有研究指出調節性T細胞(Tregs)和表現抑制性B7分子的細胞對於腫瘤微環境的免疫抑制以及腫瘤生長都有貢獻。在本論文中發現口腔癌腫瘤組織抑制性B7-H1分子和調節性T細胞的表現相關性,接著分析口腔癌病人表現抑制性B7-H1分子的腫瘤浸潤調節性T細胞。研究發現腫瘤組織CD4+CD25+Foxp3+調節性T細胞有88.08%表現B7-H1,比起病人PBMC(64.71%)(p= 0.001)和正常人PBMC (73.78%) (p=0.04)都高出許多,並且發現腫瘤組織B7-H1+Foxp3+和Foxp3+細胞之百分比在TIL呈現中度相關(r=0.61),而在CD4+ T細胞內則是呈現高度相關(r=0.75)。TIL內CD4+ CD25+Foxp3-活化T細胞之B7-H1接受體PD-1(programmed death-1)的平均表現螢光表現強度大約是PBMC的六倍高,CD4+CD25-Foxp3-未活化T細胞在TIL大約是PBMC的五倍高,然而CD4+CD25+Foxp3+調節性T在TIL大約只有PBMC的二倍高,並且發現B7-H1+Foxp3+表現百分比和PD-1表現強度在腫瘤組織CD4+T 細胞(r=0.6)具有中度相關性。此外在組織免疫染色也發現,口腔癌腫瘤組織中有Foxp3+ B7-H1+、Foxp3+ B7-H1-和PD-1+的浸潤T細胞。因此本論文發現有表現共同抑制性B7-H1分子的調節性T細胞亞群,浸潤於口腔鱗狀上皮細胞癌中,並且可能是藉由和PD-1的結合而具有免疫調節的功能。 | zh_TW |
dc.description.abstract | Oral squamous cell carcinoma(OSCC) accounts for over 90% of the oral malignant neoplasms, ranks as the sixth major cause of cancer mortality rate in Taiwan and the incidence rate is raising. In addition to mutation of oncogene and gene toxicity, the cancer immune-editing is one of the important factors in human cancer currently.
The regulatory T cell and high levels of expression of coinhibitory B7 molecules are the mediators of immunosuppression in tumor microenviriment. Therefore, we investigated the relationship of B7-H1 and regulatory T cells in human oral squamous cell carcinoma.The results indicate that, in TIL, proportion of distinct CD25+ Foxp3+ cells in the CD4+ subset (88.08%) were enriched relative to that found in PBMC (64.71 %) from OSCC patients(p= 0.001)and PBMC(73.78%) from healthy donor (p=0.04).The linear correction analysis indicated that Foxp3+ and B7-H1+Foxp3+ Tregs were positively correlated in TIL(R=0.61) and CD4+ T cell(R=0.75). The PD-1 (the receptor of B7-H1) average expression on CD4+CD25-Foxp3- and CD4+CD25+ Foxp3- in TIL is five- or six-fold to PBMC , but it is only two fold in CD4+CD25+ Foxp3+ regulatory T cell. The linear analysis indicated that PD-1 average expression and proportion of B7-H1+Foxp3+ Tregs on CD4+T cell were positively correlated (R=0.60).Furthermore, we also observe the B7-H1+ Foxp3+Tregs and PD-1+ T cell in the immunohistochemistry. Therefore, B7-H1+Tregs and PD-1+ T cell infiltrated in tumor may play a immunoregulatory role in oral squamous cell carcinoma. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:15:03Z (GMT). No. of bitstreams: 1 ntu-98-R96450009-1.pdf: 1625833 bytes, checksum: cc72b09889d3cc4dda798e77909269b9 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………….………………1
致謝…………………………………………………………………….……………2 中文摘要………………………………………………………………..……………3 英文摘要…………………….………………………………………….……………4 目錄……………..……………………………………………………………………5 第一章、 緒論 第一節、研究背景 ㄧ、口腔鱗狀上皮細胞癌……………………………………….……………..9 二、口腔癌免疫抑制作用……………………………………………….……..11 三、調節性T細胞(regulatory T cells) ……………………………….……….12 四、抑制性B7分子(inhibitory B7 molecules) …………………….…………..15 第二節、研究動機與目的……………………………………………….……...20 第二章、 實驗分法與材料 第一節、檢體的收集及來源………………………………………….…………21 第二節、人類口腔鱗狀上皮細胞癌組織內淋巴球的分離與純化………….…22 第三節、人類周邊血液單核球的分離與純化……………………….…………22 第四節、細胞表面染色…………………………………………….……………23 第五節、細胞內染色…………………………………………………….………23 第六節、腫瘤組織和正常組織之RNA萃取…………………….………………24 第七節、即時定量聚合酶連鎖反應(real-time PCR)………………….……..24 第八節、口腔癌組織及正常人組織的包埋和冷凍切片…………….…………24 第九節、組織免疫染色…………………………………….……………………25 第十節、反應性T細胞及調節性T細胞篩選分離方法及細胞增生和抑制試驗 ….……………………………………….……………………………….25 第十一節、周邊血液單核球與口腔鱗狀癌細胞株體外共同培養方法….….26 第三章、 結果 第一節、口腔鱗狀細胞癌病患分離出之腫瘤內浸潤CD4+CD25+淋巴球,其 B7-H1共同抑制分子的細胞表現百分比和表現強度…………...……27 第二節、口腔鱗狀細胞癌病患分離出之腫瘤內浸潤CD4+T細胞,B7-H1和Foxp3、CD25之表現有相關性……………………….….………...…27 第三節、口腔鱗狀細胞癌病患分離出之腫瘤內浸潤CD4+Foxp3+調節性T細胞 表現較高比例且較高量的B7-H1,且B7-H1+Foxp3+細胞和Foxp3+細胞有相關性……………………………………………...…….…….…28 第四節、口腔鱗狀細胞癌病患分離出之腫瘤內浸潤CD4+CD25+Foxp3+調節性T細胞表現較高比例且較高量的B7-H1………………….……..……29 第五節、口腔鱗狀細胞癌腫瘤組織CD4+CD25+Foxp3-和CD4+CD25-Foxp3-T細胞表現較高量的PD-1,且CD25+Foxp3+B7-H1+ T細胞和Foxp3-PD-1+ T細胞有相關性……………………………..................30 第六節、口腔鱗狀細胞癌細胞株SAS誘導CD4+CD25+細胞之B7-H1表現 .……………………………………………....31 第七節、口腔鱗狀細胞癌病患分離出之腫瘤內浸潤B7-H1+CD4+CD25+ Foxp3+細胞表現較高比例且較高量的ICOS……….……….……....31 第八節、腫瘤組織表現較高量B7-H1、Foxp3、IL-10、IFN-γ、CD4、PD-1、 B7-DC和B7-H4之RNA,且Foxp3和B7-H1有相關性…….………....32 第九節、口腔鱗狀細胞癌病患分離出調節性T細胞具有抑制細胞增生的功 能….……………………...…………....……....................................…..32 第四章、 討論………………………………….…………………………..….…….34 第五章、 參考文獻……………………………………………..………..…….……38 第六章、 圖表 圖一、PBMC和TIL CD4+CD25+T細胞之B7-H1共同抑制分子細胞群體表現 百分比和平均細胞螢光表現強度……………………………...………..50 圖二、統計PBMC和TIL的CD4+CD25+T細胞之B7-H1共同抑制分子細胞 群體表現百分比和平均細胞螢光表現強度……………………… …....51 圖三、TIL CD4+CD25high、intermediate、low、negative T細胞之B7-H1共同 抑制分子細胞群體表現百分比和平均細胞螢光表現強度….…………52 圖四、PBMC和TIL CD4+Foxp3+ T細胞之B7-H1共同抑制分子細胞群體表 現百分比和平均細胞螢光表現強度……………………………….……53 圖五、統計PBMC和TIL CD4+Foxp3+ T細胞的B7-H1共同抑制分子細胞群 體表現百分比和平均細胞螢光表現強度…………………….…………54 圖六、腫瘤組織Foxp3+B7-H1+T細胞和Foxp3+T細胞的相關性……………55 圖七、PBMC和TIL的 CD4+CD25+Foxp3+、CD4+CD25+Foxp3-、 CD4+CD25-Foxp3- T細胞之B7-H1共同抑制分子細胞群體表現百分比 和平均細胞螢光表現強度…………………………………………….…..56 圖八、統計PBMC和TIL的 CD4+CD25+Foxp3+、CD4+CD25+Foxp3-、 CD4+CD25-Foxp3- T細胞之B7-H1共同抑制分子細胞群體表現百分比 和平均細胞螢光表現強度……………………………………………..….57 圖九、PBMC和TIL的CD4+CD25+Foxp3+、CD4+CD25+Foxp3-、 CD4+CD25-Foxp3- T細胞之PD-1共同抑制分子的細胞螢光表現強 度…………………………………………………………...………...…….58 圖十、腫瘤組織Foxp3+B7-H1+T細胞和PD-1 T細胞的相關性……….......…59 圖十一、口腔鱗狀細胞癌腫瘤組織經組織切片和免疫染色所見到的CD4+CD25+ Foxp3+B7-H1+調節性T細胞和PD-1浸潤細胞...............…60 圖十二、口腔鱗狀細胞癌細胞株SAS誘導CD4+CD25+T細胞之B7-H1表現……………………………………………………….…………….………61 圖十三、口腔鱗狀細胞癌病患分離出之腫瘤內浸潤CD4+Foxp3+細胞的B7-H1 和ICOS表現相關性…………………………………………….……..62 圖十四、在腫瘤組織RNA level B7-H1和相關分子的表現量以及其相關性 ……………………………………………………………….…………..63 圖十五、口腔鱗狀細胞癌病患之PBMC CD4+CD25hi細胞的細胞增生抑制試 驗……………………….……………………………………………..…64 附圖一、調節性T細胞免疫抑制機制…………………………………….…….65 附圖二、B7分子的表現和功能…………………………………….…….……...65 | |
dc.language.iso | zh-TW | |
dc.title | 探討口腔鱗狀上皮細胞癌中表現
B7-H1和PD-1之浸潤T淋巴球 | zh_TW |
dc.title | Identification of B7-H1 and PD-1 expressing T cells
infiltrated in human oral squamous cell carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許秉寧,李建國 | |
dc.subject.keyword | 抑制性B7-H1分子,調節性T細胞,口腔鱗狀細胞癌,計畫性死亡-1, | zh_TW |
dc.subject.keyword | B7-H1,regulatory T cells,oral squamous cell carcinoma,PD-1, | en |
dc.relation.page | 65 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-07-15 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
顯示於系所單位: | 口腔生物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 1.59 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。