Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92628
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋zh_TW
dc.contributor.advisorJian-Jang Huangen
dc.contributor.author朱昱全zh_TW
dc.contributor.authorYu-Chuan Chuen
dc.date.accessioned2024-05-15T16:05:28Z-
dc.date.available2024-05-16-
dc.date.copyright2024-05-15-
dc.date.issued2024-
dc.date.submitted2024-05-13-
dc.identifier.citation[1] T. J. Flack, B. N. Pushpakaran, and S. B. Bayne, "GaN Technology for Power Electronic Applications: A Review," Journal of Electronic Materials, vol. 45, no. 6, pp. 2673-2682, Jun 2016, doi: 10.1007/s11664-016-4435-3.
[2] S. J. Pearton and F. Ren, "GaN electronics," Advanced Materials, vol. 12, no. 21, pp. 1571-+, Nov 2000, doi: https://doi.org/10.1002/1521-4095(200011)12:21<1571::AID-ADMA1571>3.0.CO;2-T.
[3] J. Ma and E. Matioli, "Slanted Tri-Gates for High-Voltage GaN Power Devices," Ieee Electron Device Letters, vol. 38, no. 9, pp. 1305-1308, Sep 2017, doi: 10.1109/Led.2017.2731799.
[4] N. Tipirneni, A. Koudymov, V. Adivaraban, J. Yang, G. Simin, and M. A. Khan, "The 1.6-kV AlGaN/GaN HFETs," Ieee Electron Device Letters, vol. 27, no. 9, pp. 716-718, Sep 2006, doi: 10.1109/Led.2006.881084.
[5] S.-Y. Ho, C.-H. Lee, A.-J. Tzou, H.-C. Kuo, Y.-R. Wu, and J. Huang, "Suppression of Current Collapse in Enhancement Mode GaN-Based HEMTs Using an AlGaN/GaN/AlGaN Double Heterostructure," IEEE Transactions on Electron Devices, vol. 64, no. 4, pp. 1505-1510, April 2017, doi: 10.1109/ted.2017.2657683.
[6] J.-X. Yang, D.-J. Lin, Y.-R. Wu, and J.-J. Huang, "Deep Source Metal Trenches in GaN-On-Si HEMTs for Relieving Current Collapse," IEEE Journal of the Electron Devices Society, vol. 9, pp. 557-563, May 2021, doi: 10.1109/jeds.2021.3078522.
[7] L. Y. Su, F. Lee, and J. J. Huang, "Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer," Ieee Transactions on Electron Devices, vol. 61, no. 2, pp. 460-465, Feb 2014, doi: 10.1109/Ted.2013.2294337.
[8] D. M. Keum, H. K. Sung, and H. Kim, "Degradation Characteristics of Normally-Off p-AlGaN Gate AlGaN/GaN HEMTs With 5 MeV Proton Irradiation," Ieee Transactions on Nuclear Science, vol. 64, no. 1, pp. 258-262, Jan 2017, doi: 10.1109/Tns.2016.2612227.
[9] Z. Liu, X. Huang, F. C. Lee, and Q. Li, "Simulation model development and verification for high voltage GaN HEMT in cascode structure," in 2013 IEEE Energy Conversion Congress and Exposition, 15-19 Sept. 2013 2013, pp. 3579-3586, doi: 10.1109/ECCE.2013.6647172.
[10] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, "Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications," Ieee Transactions on Electron Devices, vol. 53, no. 2, pp. 356-362, Feb 2006, doi: 10.1109/Ted.2005.862708.
[11] T. Kachi, "GaN power device for automotive applications," in 2014 Asia-Pacific Microwave Conference, 4-7 Nov. 2014 2014, pp. 923-925, doi: 10.1117/12.2002248.
[12] J. H. Lee, C. Park, K. S. Im, and J. H. Lee, "AlGaN/GaN-Based Lateral-Type Schottky Barrier Diode With Very Low Reverse Recovery Charge at High Temperature," Ieee Transactions on Electron Devices, vol. 60, no. 10, pp. 3032-3039, Oct 2013, doi: 10.1109/Ted.2013.2273271.
[13] T. Oka, "Recent development of vertical GaN power devices," Japanese Journal of Applied Physics, vol. 58, no. SB, p. SB0805, Apr 1 2019, doi: ARTN SB080510.7567/1347-4065/ab02e7.
[14] K. Motoki, T. Okahisa, R. Hirota, S. Nakahata, K. Uematsu, and N. Matsumoto, "Dislocation reduction in GaN crystal by advanced-DEEP," Journal of Crystal Growth, vol. 305, no. 2, pp. 377-383, 2007/07/15/ 2007, doi: https://doi.org/10.1016/j.jcrysgro.2007.03.038.
[15] T. Yoshida, Y. Oshima, T. Eri, K. Ikeda, S. Yamamoto, K. Watanabe, M. Shibata, and T. Mishima, "Fabrication of 3-in GaN substrates by hydride vapor phase epitaxy using void-assisted separation method," Journal of Crystal Growth, vol. 310, no. 1, pp. 5-7, 2008/01/04/ 2008, doi: https://doi.org/10.1016/j.jcrysgro.2007.10.014.
[16] T. Paskova, D. A. Hanser, and K. R. Evans, "GaN Substrates for III-Nitride Devices," Proceedings of the IEEE, vol. 98, no. 7, pp. 1324-1338, 2010, doi: 10.1109/JPROC.2009.2030699.
[17] K. Kojima, Y. Tsukada, E. Furukawa, M. Saito, Y. Mikawa, S. Kubo, H. Ikeda, K. Fujito, A. Uedono, and S. F. Chichibu, "Low-resistivity m-plane freestanding GaN substrate with very low point-defect concentrations grown by hydride vapor phase epitaxy on a GaN seed crystal synthesized by the ammonothermal method," Applied Physics Express, vol. 8, no. 9, p. 095501, 2015/08/06 2015, doi: 10.7567/APEX.8.095501.
[18] H. Fujikura, T. Konno, T. Suzuki, T. Kitamura, T. Fujimoto, and T. Yoshida, "Macrodefect-free, large, and thick GaN bulk crystals for high-quality 2–6 in. GaN substrates by hydride vapor phase epitaxy with hardness control," Japanese Journal of Applied Physics, vol. 57, no. 6, p. 065502, 2018/05/08 2018, doi: 10.7567/JJAP.57.065502.
[19] I. Ben-Yaacov, Y. K. Seck, U. K. Mishra, and S. P. DenBaars, "AlGaN/GaN current aperture vertical electron transistors with regrown channels," Journal of Applied Physics, vol. 95, no. 4, pp. 2073-2078, Feb 2004, doi: 10.1063/1.1641520.
[20] D. Ji, A. Agarwal, H. Li, W. Li, S. Keller, and S. Chowdhury, "880 V/ 2.7 mΩ⋅cm2 MIS Gate Trench CAVET on Bulk GaN Substrates," IEEE Electron Device Letters, vol. 39, no. 6, pp. 863-865, June 2018, doi: 10.1109/led.2018.2828844.
[21] M. Kanechika, M. Sugimoto, N. Soejima, H. Ueda, O. Ishiguro, M. Kodama, E. Hnyashi, K. Itoh, T. Uesugi, and T. Kachi, "A vertical insulated gate AlGaN/GaN heterojunction field-effect transistor," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 46, no. 20-24, pp. L503-L505, Jun 2007, doi: 10.1143/Jjap.46.L503.
[22] J. Dong and S. Chowdhury, "Design of 1.2 kV Power Switches With Low RON Using GaN-Based Vertical JFET," IEEE Transactions on Electron Devices, vol. 62, no. 8, pp. 2571-2578, August 2015, doi: 10.1109/ted.2015.2446954.
[23] I. C. Kizilyalli and O. Aktas, "Characterization of vertical GaN p-n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures," Semiconductor Science and Technology, vol. 30, no. 12, p. 124001, Dec 2015, doi: Artn 12400110.1088/0268-1242/30/12/124001.
[24] R. A. Khadar, C. Liu, R. Soleimanzadeh, and E. Matioli, "Fully Vertical GaN-on-Si power MOSFETs," Ieee Electron Device Letters, vol. 40, no. 3, pp. 443-446, Mar 2019, doi: 10.1109/Led.2019.2894177.
[25] R. Li, Y. Cao, M. Chen, and R. Chu, "600 V/ $1.7~\\Omega$ Normally-Off GaN Vertical Trench Metal–Oxide–Semiconductor Field-Effect Transistor," IEEE Electron Device Letters, vol. 37, no. 11, pp. 1466-1469, 2016, doi: 10.1109/LED.2016.2614515.
[26] C. Liu, R. A. Khadar, and E. Matioli, "GaN-on-Si quasi-vertical power MOSFETs," IEEE Electron Device Letters, vol. 39, no. 1, pp. 71-74, 2017.
[27] H. Otake, K. Chikamatsu, A. Yamaguchi, T. Fujishima, and H. Ohta, "Vertical GaN-based trench gate metal oxide semiconductor field-effect transistors on GaN bulk substrates," Applied Physics Express, vol. 1, no. 1, p. 011105, Jan 2008, doi: Artn 01110510.1143/Apex.1.011105.
[28] H. Otake, S. Egami, H. Ohta, Y. Nanishi, and H. Takasu, "GaN-based trench gate metal oxide semiconductor field effect transistors with over 100 cm/(V s) channel mobility," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 46, no. 25-28, pp. L599-L601, Jul 2007, doi: 10.1143/Jjap.46.L599.
[29] M. Kodama, M. Sugimoto, E. Hayashi, N. Soejima, O. Ishiguro, M. Kanechika, K. Itoh, H. Ueda, T. Uesugi, and T. Kachi, "GaN-Based trench gate metal oxide semiconductor field-effect transistor fabricated with novel wet etching," Applied Physics Express, vol. 1, no. 2, p. 021104, Feb 2008, doi: Artn 02110410.1143/Apex.1.021104.
[30] C. Gupta, S. H. Chan, Y. Enatsu, A. Agarwal, S. Keller, and U. K. Mishra, "OG-FET: An In-Situ ${O}$ xide, ${G}$ aN Interlayer-Based Vertical Trench MOSFET," IEEE Electron Device Letters, vol. 37, no. 12, pp. 1601-1604, 2016, doi: 10.1109/LED.2016.2616508.
[31] C. Gupta, C. Lund, S. H. Chan, A. Agarwal, J. Liu, Y. Enatsu, S. Keller, and U. K. Mishra, "In Situ Oxide, GaN Interlayer-Based Vertical Trench MOSFET (OG-FET) on Bulk GaN substrates," IEEE Electron Device Letters, vol. 38, no. 3, pp. 353-355, 2017, doi: 10.1109/LED.2017.2649599.
[32] D. Ji, C. Gupta, A. Agarwal, S. H. Chan, C. Lund, W. Li, M. A. Laurent, S. Keller, U. K. Mishra, and S. Chowdhury, "First report of scaling a normally-off in-situ oxide, GaN interlayer based vertical trench MOSFET (OG-FET)," in 2017 75th Annual Device Research Conference (DRC), 25-28 June 2017 2017, pp. 1-2, doi: 10.1109/DRC.2017.7999442.
[33] D. Ji, C. Gupta, S. H. Chan, A. Agarwal, W. Li, S. Keller, U. K. Mishra, and S. Chowdhury, "Demonstrating >1.4 kV OG-FET performance with a novel double field-plated geometry and the successful scaling of large-area devices," in 2017 IEEE International Electron Devices Meeting (IEDM), 2-6 Dec. 2017 2017, pp. 9.4.1-9.4.4, doi: 10.1109/IEDM.2017.8268359.
[34] T. Oka, Y. Ueno, T. Ina, and K. Hasegawa, "Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV," Applied Physics Express, vol. 7, no. 2, p. 021002, 2014/01/28 2014, doi: 10.7567/APEX.7.021002.
[35] T. Oka, T. Ina, Y. Ueno, and J. Nishii, "1.8 mΩ·cm2 vertical GaN-based trench metal–oxide–semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation," Applied Physics Express, vol. 8, no. 5, p. 054101, 2015/04/14 2015, doi: 10.7567/APEX.8.054101.
[36] T. Oka, T. Ina, Y. Ueno, and J. Nishii, "Over 10 a operation with switching characteristics of 1.2 kV-class vertical GaN trench MOSFETs on a bulk GaN substrate," in 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 12-16 June 2016 2016, pp. 459-462, doi: 10.1109/ISPSD.2016.7520877.
[37] D. C. Look, G. C. Farlow, P. J. Drevinsky, D. F. Bliss, and J. R. Sizelove, "On the nitrogen vacancy in GaN," Applied Physics Letters, vol. 83, no. 17, pp. 3525-3527, 2003, doi: 10.1063/1.1623009.
[38] S. Nakamura, N. Iwasa, M. S. Masayuki Senoh, and T. M. Takashi Mukai, "Hole Compensation Mechanism of P-Type GaN Films," Japanese Journal of Applied Physics, vol. 31, no. 5R, p. 1258, 1992/05/01 1992, doi: 10.1143/JJAP.31.1258.
[39] X. A. Cao, S. J. Pearton, G. T. Dang, A. P. Zhang, F. Ren, and J. M. V. Hove, "GaN n- and p-type Schottky diodes: Effect of dry etch damage," IEEE Transactions on Electron Devices, vol. 47, no. 7, pp. 1320-1324, 2000, doi: 10.1109/16.848271.
[40] R. Zhu, H. Jiang, C. W. Tang, and K. M. Lau, "Effects of p-GaN Body Doping Concentration on the ON-State Performance of Vertical GaN Trench MOSFETs," IEEE Electron Device Letters, vol. 42, no. 7, pp. 970-973, 2021, doi: 10.1109/LED.2021.3080260.
[41] C. Liu, R. A. Khadar, and E. Matioli, "GaN-on-Si Quasi-Vertical Power MOSFETs," IEEE Electron Device Letters, vol. 39, no. 1, pp. 71-74, 2018, doi: 10.1109/LED.2017.2779445.
[42] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, "GaN: Processing, defects, and devices," Journal of Applied Physics, vol. 86, no. 1, pp. 1-78, Jul 1999, doi: 10.1063/1.371145.
[43] Z. Q. Fang, D. C. Look, X. L. Wang, J. Han, F. A. Khan, and I. Adesida, "Plasma-etching-enhanced deep centers in -GaN grown by metalorganic chemical-vapor deposition," Applied Physics Letters, vol. 82, no. 10, pp. 1562-1564, Mar 2003, doi: 10.1063/1.1560562.
[44] V. N. Bessolov, E. V. Konenkova, S. A. Kukushkin, A. V. Osipov, and S. N. Rodin, "Semipolar Gallium Nitride on Silicon: Technology and Properties," Reviews on Advanced Materials Science, vol. 38, no. 1, pp. 75-93, Aug 2014. [Online]. Available: <Go to ISI>://WOS:000340982900008.
[45] M. T. Hardy, D. F. Feezell, S. P. DenBaars, and S. Nakamura, "Group III-nitride lasers: a materials perspective," Materials Today, vol. 14, no. 9, pp. 408-415, Sep 2011, doi: Doi 10.1016/S1369-7021(11)70185-7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92628-
dc.description.abstract垂直式溝槽閘極金氧半場效電晶體是現今氮化鎵基板上主流的垂直型電晶體之一。為了製造此結構中關鍵的閘極溝槽,通常使用電漿耦合式離子蝕刻機進行乾式蝕刻。然而在乾式蝕刻過程中,閘極溝槽的側壁可能會受損,導致電晶體性能下降。許多研究試圖改進這一步驟,以增強電晶體特性。例如:在沉積閘極氧化層之前沉積一層薄的氮化矽層,或在乾式蝕刻後進行濕式蝕刻,以去除側壁表面的受損材料。然而目前尚無研究討論使用不同濕式蝕刻溶液對電晶體特性的影響。
在這項研究中,我們使用相同的磊晶層和製程,製作了半垂直式溝槽閘極金氧半場效電晶體,但採用了不同的濕式蝕刻溶液。使用氫氧化四甲基銨濕蝕刻的電晶體具有更高的電流密度,而使用磷酸濕蝕刻的電晶體則具有更高的閾值電壓。我們分析了使用氫氧化四甲基銨和磷酸進行濕式蝕刻所造成的差異,並提供這些差異的解釋和證據。本研究旨在為垂直式溝槽閘極金氧半場效電晶體的進展提供更多的見解。
zh_TW
dc.description.abstractVertical trench gate MOSFETs are one of the mainstream vertical transistors on GaN substrate nowadays. To fabricate gate trench, Inductively Coupled Plasma-Reactive Ion Etching (ICP-RIE) is commonly used for dry etching. However, during the dry etching process, the sidewalls of the gate trench can be damaged, leading to degradation in device performance. Therefore, numerous studies have attempted to improve this step in the process to enhance device characteristics. For example, depositing a thin layer of Silicon Nitride before depositing the gate oxide, or performing wet etching with TMAH after dry etching to remove damaged material from the sidewall surface. However, there has been no research discussing the effects of using different wet etching solutions on device characteristics.
In this work, we fabricated quasi-vertical trench gate MOSFETs using the same epitaxial layer and process but employing different wet etching solutions. The TMAH device has higher current density, while H3PO4 device has higher threshold voltage. We analyze the differences caused by wet etching with TMAH and phosphoric acid and provide explanations and evidences for these differences. This study aims to provide more insight into the advancement of Vertical trench gate MOSFETs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-15T16:05:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-05-15T16:05:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURE vii
LIST OF TABLE ix
Chapter 1 Introduction 1
1.1 Background and overview 1
1.2 Motivation and Purpose 8
1.3 Thesis Outline 10
Chapter 2 First Round Fabrication and Result 12
2.1 Design of Trench Gate MOSFET Structure and Layout 12
2.2 Process Flow of Device Fabrication 15
2.3 Result and Trouble Shooting 17
Chapter 3 Second Round Device Fabrication 20
3.1 Design of Hexagonal Trench Gate MOSFET Structure and Layout 20
3.2 Process Flow of Device Fabrication 23
Chapter 4 Results and Discussion 25
4.1 DC Characteristics Analysis 25
4.2 Impact of Wet Etching on the Channel 28
Chapter 5 Conclusion and Future Work 35
5.1 Conclusion 35
5.2 Future work 37
References 38
-
dc.language.isoen-
dc.subject閾值電壓zh_TW
dc.subject磷酸zh_TW
dc.subject電流密度zh_TW
dc.subject垂直式溝槽閘極金氧半場效電晶體zh_TW
dc.subject氮化鎵zh_TW
dc.subject氫氧化四甲基銨zh_TW
dc.subjectthreshold voltageen
dc.subjectGaNen
dc.subjectvertical trench gate MOSFETsen
dc.subjectTMAHen
dc.subjectH3PO4en
dc.subjectcurrent densityen
dc.title基於氮化鎵基板之半垂直式溝槽閘極金氧半場效電晶體製程開發與特性分析zh_TW
dc.titleFabrication and Characterization of Gallium Nitride-Based Quasi-Vertical Trench Gate Metal-Oxide-Semiconductor Field-Effect Transistorsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳敏璋;賴韋志;吳育任;吳肇欣zh_TW
dc.contributor.oralexamcommitteeMiin-Jang Chen;Wei-Chi Lai;Yuh-Renn Wu;Chao-Hsin Wuen
dc.subject.keyword氮化鎵,垂直式溝槽閘極金氧半場效電晶體,氫氧化四甲基銨,磷酸,電流密度,閾值電壓,zh_TW
dc.subject.keywordGaN,vertical trench gate MOSFETs,TMAH,H3PO4,current density,threshold voltage,en
dc.relation.page42-
dc.identifier.doi10.6342/NTU202400965-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-05-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2029-05-13-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved