Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92604
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政鴻zh_TW
dc.contributor.advisorCheng-Hung Wuen
dc.contributor.author張斌zh_TW
dc.contributor.authorBin Zhangen
dc.date.accessioned2024-05-08T16:05:49Z-
dc.date.available2024-05-09-
dc.date.copyright2024-05-08-
dc.date.issued2024-
dc.date.submitted2024-05-01-
dc.identifier.citationAarab, S., Barkany, A. E., and Khalfi, A. E. (2017). The integration of maintenance plans and production scheduling taking account of outsourcing: a literature review. International Journal of Productivity and Quality Management, 21(1):1–22.

Ahmad, R. and Kamaruddin, S. (2012). An overview of time-based and condition-based maintenance in industrial application. Computers & industrial engineering, 63(1):135–149.

Aivaliotis, P., Arkouli, Z., Georgoulias, K., and Makris, S. (2021). Degradation curves integration in physics-based models: Towards the predictive maintenance of industrial robots. Robotics and computer-integrated manufacturing, 71:102177.

Alaswad, S. and Xiang, Y. (2017). A review on condition-based maintenance optimization models for stochastically deteriorating system. Reliability engineering & system safety, 157:54–63.

An, Y., Chen, X., Hu, J., Zhang, L., Li, Y., and Jiang, J. (2022). Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection. Reliability Engineering & System Safety, 220:108269.

Andradóttir, S., Ayhan, H., and Down, D. G. (2007). Compensating for failures with flexible servers. Operations Research, 55(4):753–768.

Aramon Bajestani, M., Banjevic, D., and Beck, J. C. (2014). Integrated maintenance planning and production scheduling with markovian deteriorating machine conditions. International Journal of Production Research, 52(24):7377–7400.

Arunraj, N. and Maiti, J. (2007). Risk-based maintenance—techniques and applications. Journal of hazardous materials, 142(3):653–661.

Balas, E. (1965). An additive algorithm for solving linear programs with zero-one vari ables. Operations Research, 13(4):517–546.

Basri, E. I., Razak, I. H. A., Ab-Samat, H., and Kamaruddin, S. (2017). Preventive maintenance (pm) planning: a review. Journal of quality in maintenance engineering, 23(2):114–143.

Bernier, V. and Frein, Y. (2004). Local scheduling problems submitted to global fifo processing constraints. International journal of production research, 42(8):1483–1503.

Bitar, A., Dauzère-Pérès, S., and Yugma, C. (2021). Unrelated parallel machine schedul ing with new criteria: Complexity and models. Computers & Operations Research, 132:105291.

Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of Life reviews, 2(4):353–373.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM computing surveys (CSUR), 35(3):268–308.

Bouazza, W., Sallez, Y., and Trentesaux, D. (2021). Dynamic scheduling of manufacturing systems: a product-driven approach using hyper-heuristics. International Journal of Computer Integrated Manufacturing, 34(6):641–665.

Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L., Maheswaran, M., Reuther, A. I., Robertson, J. P., Theys, M. D., Yao, B., Hensgen, D., et al. (2001). A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous dis tributed computing systems. Journal of Parallel and Distributed computing, 61(6):810–837.

Browning, T. R. (2001). Applying the design structure matrix to system decomposition and integration problems: a review and new directions. IEEE Transactions on Engineering management, 48(3):292–306.

Buyukkoc, C., Varaiya, P., and Walrand, J. (1985). The cµ rule revisited. Advances in applied probability, 17(1):237–238.

Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. d. P., Basto, J. P., and Alcalá, S. G. (2019). A systematic literature review of machine learning methods applied to predic tive maintenance. Computers & Industrial Engineering, 137:106024.

Chan, F., Chan, H., Lau, H., and Ip, R. (2003). Analysis of dynamic dispatching rules for a flexible manufacturing system. Journal of Materials Processing Technology, 138(1-3):325–331.

Chen*, J., Chen, C.-W., Tai, C.-Y., and Tyan, J. (2004). Dynamic state-dependent dispatch ing for wafer fabrication. International Journal of Production Research, 42(21):4547–4562.

Cherkaoui, H., Huynh, K. T., and Grall, A. (2018). Quantitative assessments of perfor mance and robustness of maintenance policies for stochastically deteriorating produc tion systems. International Journal of Production Research, 56(3):1089–1108.

Cowling, P. and Johansson, M. (2002). Using real time information for effective dynamic scheduling. European journal of operational research, 139(2):230–244.

Dai, J. J. (1998). Stability of fluid and stochastic processing networks. University of Aarhus. Centre for Mathematical Physics and Stochastics.

De Jonge, B. and Scarf, P. A. (2020). A review on maintenance optimization. European journal of operational research, 285(3):805–824.

Du Kim, H. and Kim, J. S. (2004). An online scheduling algorithm for grid computing systems. In Grid and Cooperative Computing: Second International Workshop, GCC 2003, Shanghai, China, December 7-10, 2003, Revised Papers, Part II 2, pages 34–39. Springer.

Duffuaa, S. O., Raouf, A., Duffuaa, S. O., and Raouf, A. (2015). Preventive maintenance, concepts, modeling, and analysis. Planning and Control of Maintenance Systems: Modelling and Analysis, pages 57–94.

e Santos, A. S. and Madureira, A. M. (2014). Ordered minimum completion time heuris tic for unrelated parallel-machines problems. In 2014 9th Iberian Conference on Information Systems and Technologies (CISTI), pages 1–6. IEEE.

Edis, E. B., Oguz, C., and Ozkarahan, I. (2013). Parallel machine scheduling with ad ditional resources: Notation, classification, models and solution methods. European Journal of Operational Research, 230(3):449–463.

Fazel Zarandi, M. H., Sadat Asl, A. A., Sotudian, S., and Castillo, O. (2020). A state of the art review of intelligent scheduling. Artificial Intelligence Review, 53:501–593.

Feldmann, A., Sgall, J., and Teng, S.-H. (1994). Dynamic scheduling on parallel machines. Theoretical Computer Science, 130(1):49–72.

Geurtsen, M., Didden, J. B., Adan, J., Atan, Z., and Adan, I. (2023). Production, mainte nance and resource scheduling: A review. European Journal of Operational Research, 305(2):501–529.

Glover, F. and Greenberg, H. J. (1989). New approaches for heuristic search: A bilat eral linkage with artificial intelligence. European Journal of Operational Research, 39(2):119–130.

Hadidi, L. A., Al-Turki, U. M., and Rahim, A. (2012). Integrated models in production planning and scheduling, maintenance and quality: a review. International Journal of Industrial and Systems Engineering, 10(1):21–50.

Huang, J., Down, D. G., Lewis, M. E., and Wu, C.-H. (2022). Dynamically scheduling and maintaining a flexible server. Naval Research Logistics (NRL), 69(2):223–240.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pages 448–456. pmlr.

Iravani, S. M. and Kolfal, B. (2005). When does the cµ rule apply to finite-population queueing systems? Operations Research Letters, 33(3):301–304.

Izakian, H., Abraham, A., and Snasel, V. (2009). Comparison of heuristics for scheduling independent tasks on heterogeneous distributed environments. In 2009 international joint conference on computational sciences and optimization, volume 1, pages 8–12. IEEE.

Jardine, A. K., Lin, D., and Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 20(7):1483–1510.

Kamien, M. I. and Schwartz, N. L. (1971). Optimal maintenance and sale age for a ma chine subject to failure. Management Science, 17(8):B–495.

Kao, Y.-T., Dauzère-Pérès, S., Blue, J., and Chang, S.-C. (2018). Impact of integrating equipment health in production scheduling for semiconductor fabrication. Computers & Industrial Engineering, 120:450–459.

Kashan, A. H. and Karimi, B. (2009). A discrete particle swarm optimization algorithm for scheduling parallel machines. Computers & Industrial Engineering, 56(1):216–223.

Kaufman, D. L. and Lewis, M. E. (2007). Machine maintenance with workload consider ations. Naval Research Logistics (NRL), 54(7):750–766.

Kim, D.-Y., Park, J.-W., Baek, S., Park, K.-B., Kim, H.-R., Park, J.-I., Kim, H.-S., Kim, B.-B., Oh, H.-Y., Namgung, K., et al. (2020a). A modular factory testbed for the rapid reconfiguration of manufacturing systems. Journal of Intelligent Manufacturing, 31:661–680.

Kim, H., Lim, D.-E., and Lee, S. (2020b). Deep learning-based dynamic scheduling for semiconductor manufacturing with high uncertainty of automated material handling system capability. IEEE Transactions on Semiconductor Manufacturing, 33(1):13–22.

Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598):671–680.

Kumar, S., Manjrekar, V., Singh, V., and Lad, B. K. (2020). Integrated yet distributed op erations planning approach: A next generation manufacturing planning system. Journal of Manufacturing Systems, 54:103–122.

Lee, Y. H., Bhaskaran, K., and Pinedo, M. (1997). A heuristic to minimize the total weighted tardiness with sequence-dependent setups. IIE transactions, 29(1):45–52.

Leung, J. Y. (2004). Handbook of scheduling: algorithms, models, and performance analysis. CRC press.

Lin, C.-W., Lin, Y.-K., and Hsieh, H.-T. (2013). Ant colony optimization for unrelated parallel machine scheduling. The International Journal of Advanced Manufacturing Technology, 67:35–45.

Lippman, S. A. (1975). Applying a new device in the optimization of exponential queuing systems. Operations research, 23(4):687–710.

Lopes, M. J. P. and de Carvalho, J. V. (2007). A branch-and-price algorithm for scheduling parallel machines with sequence dependent setup times. European journal of operational research, 176(3):1508–1527.

Luh, P. B., Hoitomt, D. J., Max, E., and Pattipati, K. R. (1989). Schedule generation and reconfiguration for parallel machines. In 1989 IEEE International Conference on Robotics and Automation, pages 528–529. IEEE Computer Society.

Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., and Freund, R. F. (1999). Dynamic mapping of a class of independent tasks onto heterogeneous computing systems. Journal of parallel and distributed computing, 59(2):107–131.

Mannor, S., Peleg, D., and Rubinstein, R. (2005). The cross entropy method for classifi cation. In Proceedings of the 22nd international conference on Machine learning, pages 561–568.

Mobley, R. K. (2002). An introduction to predictive maintenance. Elsevier.

Mokotoff, E. (2004). An exact algorithm for the identical parallel machine scheduling problem. European Journal of Operational Research, 152(3):758–769.

Morton, T. E. and Pentico, D. W. (1993). Heuristic scheduling systems: with applications to production systems and project management, volume 3. John Wiley & Sons.

Morton, T. E. and Rachamadugu, R. M. V. (1982). Myopic heuristics for the single machine weighted tardiness problem. Department of Computer Science, Carnegie Mellon University.

Moubray, J. (2001). Reliability-centered maintenance. Industrial Press Inc.

Munir, E. U., Li, J., Shi, S., Zou, Z., and Yang, D. (2008). Maxstd: A task scheduling heuristic for heterogeneous computing environment. Information Technology Journal,7(4):679–683.

Ouelhadj, D. and Petrovic, S. (2009). A survey of dynamic scheduling in manufacturing systems. Journal of scheduling, 12:417–431.

Patwardhan, A., Verma, A. K., and Kumar, U. (2016). A survey on predictive maintenance through big data. In Current Trends in Reliability, Availability, Maintainability and Safety: An Industry Perspective, pages 437–445. Springer.

Pfund, M., Fowler, J. W., Gadkari, A., and Chen, Y. (2008). Scheduling jobs on parallel machines with setup times and ready times. Computers & Industrial Engineering, 54(4):764–782.

Pierreval, H. and Mebarki, N. (1997). Dynamic scheduling selection of dispatching rules for manufacturing system. International Journal of Production Research, 35(6):1575–1591.

Pinedo, M. (1983). Stochastic scheduling with release dates and due dates. Operations Research, 31(3):559–572.

Pinedo, M. L. (2012). Scheduling, volume 29. Springer.

Pintelon, L. M. and Gelders, L. (1992). Maintenance management decision making. European journal of operational research, 58(3):301–317.

Pratikakis, N. E., Realff, M. J., and Lee, J. H. (2010). Strategic capacity decision-making in a stochastic manufacturing environment using real-time approximate dynamic pro gramming. Naval Research Logistics (NRL), 57(3):211–224.

Priore, P., Gomez, A., Pino, R., and Rosillo, R. (2014). Dynamic scheduling of manufac turing systems using machine learning: An updated review. Ai Edam, 28(1):83–97.

Rafsanjani, M. K. and Bardsiri, A. K. (2012). A new heuristic approach for schedul ing independent tasks on heterogeneous computing systems. International Journal of Machine Learning and Computing, 2(4):371.

Rajendran, C. and Holthaus, O. (1999). A comparative study of dispatching rules in dy namic flowshops and jobshops. European journal of operational research, 116(1):156–170.

Rasmussen, R. V. and Trick, M. A. (2008). Round robin scheduling–a survey. European Journal of Operational Research, 188(3):617–636.

Renke, L., Piplani, R., and Toro, C. (2021). A review of dynamic scheduling: Context, techniques and prospects. Implementing Industry 4.0: The Model Factory as the Key Enabler for the Future of Manufacturing, pages 229–258.

Ross, S. M. (2014). Introduction to probability models. Academic press.

Serfozo, R. F. (1979). An equivalence between continuous and discrete time markov decision processes. Operations Research, 27(3):616–620.

Sheut, C. and Krajewski, L. (1994). A decision model for corrective maintenance man agement. The International Journal of Production Research, 32(6):1365–1382.

Shiue, Y.-R., Lee, K.-C., and Su, C.-T. (2018). Real-time scheduling for a smart fac tory using a reinforcement learning approach. Computers & Industrial Engineering, 125:604–614.

Shuai, H., Fang, J., Ai, X., Tang, Y., Wen, J., and He, H. (2018). Stochastic optimization of economic dispatch for microgrid based on approximate dynamic programming. IEEE Transactions on Smart Grid, 10(3):2440–2452.

Siderska, J. et al. (2016). Application of tecnomatix plant simulation for modeling pro duction and logistics processes. Business, Management and Education, 14(1):64–73.

Sivakumar, A. I. and Gupta, A. K. (2006). Online multiobjective pareto optimal dynamic scheduling of semiconductor back-end using conjunctive simulated scheduling. IEEE Transactions on Electronics Packaging Manufacturing, 29(2):99–109.

Sloan, T. W. and Shanthikumar, J. G. (2000). Combined production and maintenance scheduling for a multiple-product, single-machine production system. Production and Operations Management, 9(4):379–399.

Sun, B., Zeng, S., Kang, R., and Pecht, M. G. (2012). Benefits and challenges of system prognostics. IEEE Transactions on reliability, 61(2):323–335.

Toledo, C. F. M., França, P. M., Morabito, R., and Kimms, A. (2009). Multi-population genetic algorithm to solve the synchronized and integrated two-level lot sizing and scheduling problem. International Journal of Production Research, 47(11):3097–3119.

Tseng, L.-Y., Chin, Y.-H., and Wang, S.-C. (2009). A minimized makespan scheduler with multiple factors for grid computing systems. Expert Systems with Applications, 36(8):11118–11130.

Ðurasević, M. and Jakobović, D. (2018). A survey of dispatching rules for the dynamic unrelated machines environment. Expert systems with applications, 113:555–569.

Vallada, E. and Ruiz, R. (2011). A genetic algorithm for the unrelated parallel ma chine scheduling problem with sequence dependent setup times. European Journal of Operational Research, 211(3):612–622.

Van Mieghem, J. A. (1995). Dynamic scheduling with convex delay costs: The general ized c| mu rule. The Annals of Applied Probability, pages 809–833.

Vepsalainen, A. P. and Morton, T. E. (1987). Priority rules for job shops with weighted tardiness costs. Management science, 33(8):1035–1047.

Villalonga, A., Negri, E., Biscardo, G., Castano, F., Haber, R. E., Fumagalli, L., and Macchi, M. (2021). A decision-making framework for dynamic scheduling of cyber-physical production systems based on digital twins. Annual Reviews in Control, 51:357–373.

Wan, G. and Wang, Q. (2017). Two-tier healthcare service systems and cost of waiting for patients. Applied Stochastic Models in Business and Industry, 33(2):167–183.

Wang, C., Ju, P., Lei, S., Wang, Z., Wu, F., and Hou, Y. (2019). Markov decision process based resilience enhancement for distribution systems: An approximate dynamic pro gramming approach. IEEE Transactions on Smart Grid, 11(3):2498–2510.

Wang, D., Tan, D., and Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft computing, 22:387–408.

Wang, G. and Cheng, T. E. (2000). Parallel machine scheduling with batch delivery costs. International Journal of Production Economics, 68(2):177–183.

Wang, H. (2003). A survey of maintenance policies of deteriorating systems. Quality control and applied statistics, 48(1):103–106.

Wei, S., Nourelfath, M., and Nahas, N. (2023). Analysis of a production line subject to degradation and preventive maintenance. Reliability Engineering & System Safety, 230:108906.

Wireman, T. (2004). Total productive maintenance. Industrial Press Inc.

Wu, C.-H., Down, D. G., and Lewis, M. E. (2008). Heuristics for allocation of recon figurable resources in a serial line with reliability considerations. Iie Transactions, 40(6):595–611.

Wu, C.-H., Yao, Y.-C., Dauzère-Pérès, S., and Yu, C.-J. (2020a). Dynamic dispatching and preventive maintenance for parallel machines with dispatching-dependent deterio ration. Computers & Operations Research, 113:104779.

Wu, C.-H., Zhou, F.-Y., Tsai, C.-K., Yu, C.-J., and Dauzère-Pérès, S. (2020b). A deep learning approach for the dynamic dispatching of unreliable machines in re-entrant pro duction systems. International Journal of Production Research, 58(9):2822–2840.

Wu, S. (2011). Preventive maintenance models: A review. Replacement models with minimal repair, pages 129–140.

Xhafa, F., Barolli, L., and Durresi, A. (2007). Batch mode scheduling in grid systems. International Journal of Web and Grid Services, 3(1):19–37.

Yao, J. and Liu, L. (2009). Optimization analysis of supply chain scheduling in mass customization. International Journal of Production Economics, 117(1):197–211.

Yao, X., Almatooq, N., Askin, R. G., and Gruber, G. (2022). Capacity planning and production scheduling integration: improving operational efficiency via detailed mod elling. International Journal of Production Research, 60(24):7239–7261.

Yao, X., Xie, X., Fu, M. C., and Marcus, S. I. (2005). Optimal joint preventive mainte nance and production policies. Naval Research Logistics (NRL), 52(7):668–681.

Yu, L., Shih, H. M., Pfund, M., Carlyle, W. M., and Fowler, J. W. (2002). Scheduling of unrelated parallel machines: an application to pwb manufacturing. IIE transactions, 34:921–931.

Zhang, B. and Wu, C.-H. (2023). Joint dynamic dispatching and preventive mainte nance for unrelated parallel machines with equipment health considerations. IEEE Transactions on Semiconductor Manufacturing.

Ɖurasević, M. and Jakobović, D. (2023). Heuristic and metaheuristic methods for the par allel unrelated machines scheduling problem: a survey. Artificial Intelligence Review, 56(4):3181–3289.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92604-
dc.description.abstract科技的迅猛進步使得製造業的競爭愈加激烈。為了保持產業領先優勢,製造商在努力滿足個人化需求的同時,還需有效壓縮生產成本以保持強勁獲利,這構成了雙重挑戰。這種微妙的平衡要求製造商具備迅速開發和實施高效的生產規劃(production planning,PP) 方法,以達到最佳且可行的工作分配。此外,製造商務必綜合考慮設備的保養策略,以提高設備性能。

製造環境天然呈現動態特性。需求變動、訂單更改或取消和機台故障及其他不確定事件將使最初的生產計劃不符合生產需要或是無法使用。因此,務必基於現實狀態的變動及時調整生產計劃。然而,由於求解的複雜性,求解動態控製策略是相當困難的,尤其是複雜製造系統。

為了解決求解的挑戰,本研究引入了多智能體決策融合(multi-agent decision fusion,MADF)框架來獲取多工作多機台系統的動態策略。此外,將 MADF 框架與深度神經網路(deep neural network,DNN)相結合,實現即時生成策略來解決頻繁重新排程或更新生產計劃的挑戰。

第 3 章利用馬可夫決策過程(MDP)製定了生產計畫(PP)模型和生產計畫與預防保養(production planning and preventive maintenance,PPPM)模型。求解PP 或 PPPM 問題的複雜度關於機台數量和工作類型數量指數增長。此外,也研究了求解 PP 問題價值疊代算法的單調性。

第 4 章介紹了 MADF 框架以降低求解複雜度並產生整個系統的策略。在MADF 框架中,透過工作分配(job allocation,JA)模型將原問題轉變為多個單機問題。機台健康狀態的平穩分佈可以通過 JA 模型推導出來。在 PP 問題中,系統將處於不穩定狀態一旦實際總到達率超過 JA 模型產生的最大達到率。整個系統的生產控制策略可以由每個被分解機台的最優策略產生。這些最優策略通過有兩個工作的單機系統的最優解進行多數表決(majority vote,MV)來產生分解後單機系統的策略。所有的獨立生產由機台智能體透過即時調度規則進行協調,以提升系統效率。MADF 求解複雜度的增長與機台數量呈線性增長,與工作類型數量呈二次增長。

第 5 章建立深度神經網絡模型。該模型在由一機台和兩個工作的系統的最優解所建構的訓練空間上進行訓練。MADF 和 DNN 的結合(MADF-DNN)實現了即時產生大規模系統的生產決策。

第 6 章通過數值實驗針對 PPPM 問題驗證本研究方法的有效性,並與文獻中常用策略進行比較。對於兩個工作兩個機台系統,就平均完工時間而言,PPPM與 MADF 之間的平均差距在 6% 以內。與求解 PPPM 相比,求解時間平均降低了70.93%。在重負載生產系統,具有十個機台和十個工作類型且無法解決的大型系統中,與其他策略相比,MADF 在平均完工時間和生產量方面都具備顯著優勢。MADF 框架將平均完工時間縮短了 90% 以上。與不考慮機台之間的協調相比,MADF 框架將平均完工時間縮短了 26.89%。
zh_TW
dc.description.abstractThe rapid advancement of technology has brought about fierce market competition for manufacturing firms. In pursuit of industry leadership, manufacturers are confronted with the dual challenge of meeting customized demand while simultaneously reducing production costs to maintain a robust profit. This delicate balance requires the urgent development and implementation of efficient production planning (PP) methodologies, enabling optimal capacity planning. Additionally, manufacturers must prioritize comprehensive maintenance planning strategies to improve equipment performance.

The manufacturing environment is inherently dynamic. Uncertainties, such as fluctu ations in demand, order cancellations, and machine failures will render the initial produc tion planning impracticable or unworkable. Consequently, updating production planning is required in accordance with changes in the actual situation. However, efficiently gener ating the optimal dynamic control policies is difficult due to the computational complexity, especially in large-scale manufacturing systems.

To address the computational challenge, this dissertation proposes a multi-agent de cision fusion (MADF) framework to obtain the dynamic policies in multiple-machine and multiple-job systems. Furthermore, the MADF framework is combined with deep neural network (DNN) to address the challenges of frequent rescheduling or updating of planning by instantly generating policies.

Chapter 3 formulates the PP model and the joint production planning and preventive maintenance (PPPM) model by Markov decision processes (MDP). The computational complexity in addressing PP or PPPM problems experiences exponential growth as the numbers of machines or job types increase. Additionally, the monotonicity properties of the value iteration algorithm in solving PP problems are investigated.

Chapter 4 introduces the MADF framework to reduce the computational complexity and generate policies for the entire system. A large-scale problem is decomposed into sev eral single-machine problems through a job allocation (JA) model. The JA model enables derivation of the stationary distribution of machine health. In PP problems, instability occurs if the actual total arrival rate exceeds the maximal total arrival rate generated by the JA model. The policies of the entire system can be generated by the optimal poli cies of each decomposed machine. These optimal policies are formed through majority vote (MV) among optimal solutions for systems with two jobs. Independent productions are coordinated through a real-time dispatching rule by machine agents to enhance sys tem efficiency. The computational complexity of solving dynamic control problems with MADF grows linearly with machine numbers and quadratically with job-type numbers.

Chapter 5 constructs a DNN model, which is trained on the knowledge space built by optimal policies of systems with one machine and two jobs. The combination of MADF and DNN (MADF-DNN) can instantly generate the policies to a large-scale system.

Chapter 6 evaluates the effectiveness of the proposed MADF framework in PPPM problems through comparisons with other commonly used policies from literatures. For two-job and two-machine systems, the average cycle time has a variance within the range of 6% when comparing PPPM with MADF. The MADF framework can achieve an re duction on computation time 70.93% on average compared to solving PPPM policy. In heavily loaded production systems with ten machines and ten job types, which are unsolv able, MADF shows significant superiority over alternative policies in both average cycle time and throughput. The MADF framework reduces average cycle time by over 90% on average. Compared with no coordination, the MADF framework reduces average cycle time by 26.89% on average.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-08T16:05:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-05-08T16:05:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements iii
Abstract v
摘要 ix
Table of Contents xi
List of Figures xv
List of Tables xvii
Chapter 1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 2 Literature Review 9
2.1 Scheduling for parallel machines . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Optimization methods . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Dispatching rules . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Meta-heuristic algorithms . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Maintenance policies . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Corrective maintenance . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Preventive maintenance . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Condition-based maintenance . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Predictive maintenance . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Joint scheduling and maintenance . . . . . . . . . . . . . . . . . . . 19
Chapter 3 Production planning (PP) model and joint production planning and preventive maintenance (PPPM) model 21
3.1 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Production planning (PP) model for unrelated parallel machines . . . 24
3.3 Production planning and preventive maintenance (PPPM) model for unrelated parallel machines . . . . . . . . . . . . . . . . . . . . . . . 37
Chapter 4 A multi-agent decision fusion (MADF) framework for dynamic model 43
4.1 Job allocation (JA) model . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Analysis of JA model . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Dynamic models after decomposition . . . . . . . . . . . . . . . . . 58
4.3.1 Optimal policies of single-machine systems . . . . . . . . . . . . . 59
4.3.2 Single-machine production planning problem after decomposition . 61
4.3.3 Single-machine production planning and preventive maintenance after decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Majority vote (MV) and machine coordination (MC) . . . . . . . . . 68
4.4.1 Majority vote for single machine . . . . . . . . . . . . . . . . . . 68
4.4.2 Machine coordination . . . . . . . . . . . . . . . . . . . . . . . . 70
Chapter 5 Deep neural network model for two-job and one-machine system(2J1M) PPPM problems 73
5.1 The training dataset for DNN . . . . . . . . . . . . . . . . . . . . . 74
5.2 Training for DNN model . . . . . . . . . . . . . . . . . . . . . . . . 76
Chapter 6 Numerical experiment on MADF for PPPM problems 83
6.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Simulation results and analysis . . . . . . . . . . . . . . . . . . . . . 86
6.2.1 Experiment 1: 3J1M . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.2 Experiment 2: 2J2M . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.3 Experiment 3: 10J10M . . . . . . . . . . . . . . . . . . . . . . . 91
Chapter 7 Conclusions and Further Research 95
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
References 99
Appendix — Experimental design and detailed experiment results 113
A.1 Experimental design of 20 sets of parameters (3J1M) . . . . . . . . . 113
A.2 Computation time and accuracy of MV (3J1M) . . . . . . . . . . . . 114
A.3 Average normalized cycle time and throughput, and pairwise t-test comparisons between the optimal policies and MV (3J1M) . . . . . . 115
A.4 Experimental design of 24 sets of parameters (2J2M) . . . . . . . . . 116
A.5 Normalized average cycle time and pairwise t-test comparison among different policies (2J2M) . . . . . . . . . . . . . . . . . . . . . . . . 117
A.6 Normalized throughput and pairwise t-test comparison among different policies (2J2M) . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.7 Computation time of MADF (2J2M) . . . . . . . . . . . . . . . . . . 119
A.8 Experimental design of 10 sets of parameters (10J10M) . . . . . . . . 120
A.9 Normalized average cycle time and pairwise t-test comparison among different policies (10J10M) . . . . . . . . . . . . . . . . . . . . . . . 130
A.10 Normalized throughput and pairwise t-test comparison among different policies (10J10M) . . . . . . . . . . . . . . . . . . . . . . . . . 131
-
dc.language.isoen-
dc.title應用於動態生產及預防保養規劃的多智能體決策融合框架zh_TW
dc.titleA multi-agent decision fusion framework for dynamic production and preventive maintenance planningen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee洪一薰;黃奎隆;藍俊宏;陳文智zh_TW
dc.contributor.oralexamcommitteeI-Hsuan Hong;Kwei-Long Huang ;Jakey Blue;Wen-Chih Chenen
dc.subject.keyword生產計劃,預防保養,工作分配,決策融合,求解複雜度,深度神經網絡,zh_TW
dc.subject.keywordProduction Planning,Preventive Maintenance,Job Allocation,Decision Fusion,Computational Complexity,Deep Neural Network,en
dc.relation.page131-
dc.identifier.doi10.6342/NTU202400901-
dc.rights.note未授權-
dc.date.accepted2024-05-01-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
1.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved