Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92598
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃宇廷zh_TW
dc.contributor.advisorYu-Tin Huangen
dc.contributor.author郭家愷zh_TW
dc.contributor.authorChia-Kai Kuoen
dc.date.accessioned2024-05-02T16:07:58Z-
dc.date.available2024-05-03-
dc.date.copyright2024-05-01-
dc.date.issued2024-
dc.date.submitted2024-04-17-
dc.identifier.citation[1] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena. N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. JHEP, 10:091, 2008.
[2] L. F. Alday and J. Maldacena. Comments on gluon scattering amplitudes via AdS/CFT. JHEP, 11:068, 2007.
[3] N. Arkani-Hamed, Y. Bai, and T. Lam. Positive Geometries and Canonical Forms. JHEP, 11:039, 2017.
[4] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov, and J. Trnka. Grassmannian Geometry of Scattering Amplitudes. Cambridge University Press, 4 2016.
[5] N. Arkani-Hamed, J. Henn, and J. Trnka. Nonperturbative negative geometries: amplitudes at strong coupling and the amplituhedron. JHEP, 03:108, 2022.
[6] N. Arkani-Hamed and J. Trnka. Into the Amplituhedron. JHEP, 12:182, 2014.
[7] N. Arkani-Hamed and J. Trnka. The Amplituhedron. JHEP, 10:030, 2014.
[8] T. Bargheer, N. Beisert, F. Loebbert, and T. McLoughlin. Conformal Anomaly for Amplitudes in N = 6 Superconformal Chern-Simons Theory. J. Phys. A, 45:475402, 2012.
[9] T. Bargheer, F. Loebbert, and C. Meneghelli. Symmetries of Tree-level Scattering Amplitudes in N=6 Superconformal Chern-Simons Theory. Phys. Rev. D, 82:045016, 2010.
[10] B. Basso and A. V. Belitsky. ABJM flux-tube and scattering amplitudes. JHEP, 09:116, 2019.
[11] Z. Bern, L. J. Dixon, and V. A. Smirnov. Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond. Phys. Rev. D, 72:085001, 2005.
[12] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio. One Loop Amplitudes In ABJM. JHEP, 07:029, 2012.
[13] J. L. Bourjaily, E. Herrmann, and J. Trnka. Prescriptive Unitarity. JHEP, 06:059, 2017.
[14] A. Brandhuber, G. Travaglini, and C. Wen. A note on amplitudes in N=6 superconformal Chern-Simons theory. JHEP, 07:160, 2012.
[15] A. Brandhuber, G. Travaglini, and C. Wen. All one-loop amplitudes in N=6 superconformal Chern-Simons theory. JHEP, 10:145, 2012.
[16] F. Cachazo, S. He, and E. Y. Yuan. Scattering in Three Dimensions from Rational Maps. JHEP, 10:141, 2013.
[17] S. Caron-Huot, L. J. Dixon, F. Dulat, M. von Hippel, A. J. McLeod, and G. Papathanasiou. Six-Gluon amplitudes in planar N = 4 super-Yang-Mills theory at six and seven loops. JHEP, 08:016, 2019.
[18] S. Caron-Huot, L. J. Dixon, F. Dulat, M. Von Hippel, A. J. McLeod, and G. Papathanasiou. The Cosmic Galois Group and Extended Steinmann Relations for Planar N = 4 SYM Amplitudes. JHEP, 09:061, 2019.
[19] S. Caron-Huot, L. J. Dixon, A. McLeod, and M. von Hippel. Bootstrapping a Five-Loop Amplitude Using Steinmann Relations. Phys. Rev. Lett., 117(24):241601, 2016.
[20] S. Caron-Huot and Y.-t. Huang. The two-loop six-point amplitude in ABJM theory. JHEP, 03:075, 2013.
[21] S. Caron-Huot and K. J. Larsen. Uniqueness of two-loop master contours. JHEP, 10:026, 2012.
[22] W.-M. Chen and Y.-t. Huang. Dualities for Loop Amplitudes of N=6 Chern-Simons Matter Theory. JHEP, 11:057, 2011.
[23] D. Damgaard, L. Ferro, T. Lukowski, and M. Parisi. The Momentum Amplituhedron. JHEP, 08:042, 2019.
[24] L. J. Dixon, J. Drummond, T. Harrington, A. J. McLeod, G. Papathanasiou, and M. Spradlin. Heptagons from the Steinmann Cluster Bootstrap. JHEP, 02:137, 2017.
[25] L. J. Dixon, J. M. Drummond, C. Duhr, and J. Pennington. The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory. JHEP, 06:116, 2014.
[26] L. J. Dixon, J. M. Drummond, and J. M. Henn. Bootstrapping the three-loop hexagon. JHEP, 11:023, 2011.
[27] L. J. Dixon, J. M. Drummond, and J. M. Henn. Analytic result for the two-loop six-point NMHV amplitude in N=4 super Yang-Mills theory. JHEP, 01:024, 2012.
[28] L. J. Dixon, J. M. Drummond, M. von Hippel, and J. Pennington. Hexagon functions and the three-loop remainder function. JHEP, 12:049, 2013.
[29] L. J. Dixon and Y.-T. Liu. Lifting Heptagon Symbols to Functions. JHEP, 10:031, 2020.
[30] L. J. Dixon and M. von Hippel. Bootstrapping an NMHV amplitude through three loops. JHEP, 10:065, 2014.
[31] L. J. Dixon, M. von Hippel, and A. J. McLeod. The four-loop six-gluon NMHV ratio function. JHEP, 01:053, 2016.
[32] J. Drummond, J. Foster, O. Gürdoğan, and G. Papathanasiou. Cluster adjacency and the four-loop NMHV heptagon. JHEP, 03:087, 2019.
[33] J. M. Drummond, G. Papathanasiou, and M. Spradlin. A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon. JHEP, 03:072, 2015.
[34] H. Elvang, Y.-t. Huang, C. Keeler, T. Lam, T. M. Olson, S. B. Roland, and D. E. Speyer. Grassmannians for scattering amplitudes in 4d N = 4 SYM and 3d ABJM. JHEP, 12:181, 2014.
[35] D. Gaiotto, J. Maldacena, A. Sever, and P. Vieira. Bootstrapping Null Polygon Wilson Loops. JHEP, 03:092, 2011.
[36] D. Gang, Y.-t. Huang, E. Koh, S. Lee, and A. E. Lipstein. Tree-level Recursion Relation and Dual Superconformal Symmetry of the ABJM Theory. JHEP, 03:116, 2011.
[37] J. Golden and A. J. McLeod. The two-loop remainder function for eight and nine particles. JHEP, 06:142, 2021.
[38] S. He, Y.-t. Huang, and C.-K. Kuo. The ABJM Amplituhedron. 6 2023.
[39] S. He, Y.-t. Huang, C.-K. Kuo, and Z. Li. The two-loop eight-point amplitude in ABJM theory. JHEP, 02:065, 2023.
[40] S. He, C.-K. Kuo, Z. Li, and Y.-Q. Zhang. All-Loop Four-Point Aharony-Bergman-Jafferis-Maldacena Amplitudes from Dimensional Reduction of the Amplituhedron. Phys. Rev. Lett., 129(22):221604, 2022.
[41] S. He, C.-K. Kuo, Z. Li, and Y.-Q. Zhang. Emergent unitarity, all-loop cuts and integrations from the ABJM amplituhedron. JHEP, 07:212, 2023.
[42] S. He, Z. Li, and Q. Yang. Comments on all-loop constraints for scattering amplitudes and Feynman integrals. JHEP, 01:073, 2022. [Erratum: JHEP 05, 076 (2022)].
[43] S. He, Z. Li, and C. Zhang. The symbol and alphabet of two-loop NMHV amplitudes from Qbar equations. 9 2020.
[44] S. He, Z. Li, and C. Zhang. Two-loop Octagons, Algebraic Letters and Qbar Equations. Phys. Rev. D, 101(6):061701, 2020.
[45] A. Hodges. Eliminating spurious poles from gauge-theoretic amplitudes. JHEP, 05:135, 2013.
[46] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee, and J. Park. N=5,6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds. JHEP, 09:002, 2008.
[47] Y.-t. Huang. Non-Chiral S-Matrix of N=4 Super Yang-Mills. 2011.
[48] Y.-t. Huang and S. Lee. A new integral formula for supersymmetric scattering amplitudes in three dimensions. Phys. Rev. Lett., 109:191601, 2012.
[49] Y.-t. Huang and A. E. Lipstein. Dual Superconformal Symmetry of N=6 Chern-Simons Theory. JHEP, 11:076, 2010.
[50] Y.-T. Huang and C. Wen. ABJM amplitudes and the positive orthogonal grassmannian. JHEP, 02:104, 2014.
[51] Y.-t. Huang, C. Wen, and D. Xie. The Positive orthogonal Grassmannian and loop amplitudes of ABJM. J. Phys., A47(47):474008, 2014.
[52] S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S. R. Wadia, and S. Yokoyama. Unitarity, Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with fundamental matter. JHEP, 04:129, 2015.
[53] S. Lee. Yangian Invariant Scattering Amplitudes in Supersymmetric Chern-Simons Theory. Phys. Rev. Lett., 105:151603, 2010.
[54] Z. Li and C. Zhang. The three-loop MHV octagon from Q equations. JHEP, 12:113, 2021.
[55] A. Yelleshpur Srikant. Emergent unitarity from the amplituhedron. JHEP, 01:069, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92598-
dc.description.abstract在本篇論文中,我們討論如何計算高點ABJM圈振幅的方法,並引入了正幾何的架構到這個理論。

在第一部分中,我們以八點振幅為例,計算一圈、兩圈振幅,所使用的方法可以直接推廣到更高點的圈振幅。我們首先利用廣義么正性和發散限制條件,確定了該理論的一圈和兩圈被積函數。隨後,我們計算這些被積函數積分後的結果,得到完整的一圈和兩圈八點振幅。

在第二部分中,我們引進並研究了與ABJM振幅和它的正幾何。我們先在動量空間定義他的樹正幾何,接著在動量扭空間將樹正幾何推廣到圈正幾何。我們引進新的正幾何與$\\cal{N}=$4 超對稱楊-米爾斯理論的正幾何有非常簡單的關係:對所有相鄰扭量加上辛條件,並將所有扭量括號由正號改成負號。
zh_TW
dc.description.abstractIn this thesis, we discuss methods for calculating the higher-point ABJM loop amplitudes and introduce the positive geometry framework into this theory.

In the first part, we take the eight-point amplitude as an example and calculate the one-loop and two-loop amplitudes. The methods used can be directly extended to higher-point loop amplitudes. We first determine the one-loop and two-loop integrands of the theory using generalized unitarity and IR constraints. Then, we compute these integrands to derive complete one- and two-loop eight-point amplitudes.

In the second part, we introduce the positive geometry associated with ABJM amplitudes. We first define its tree-level geometry in momentum space and then extend it to loop-level in momentum twistor space. The new positive geometry has a very simple relationship with one of $\\cal{N}=$4 super Yang-Mills theory: imposing symplectic conditions on all adjacent twistors and changing the sign of all twistor brackets from positive to negative.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-02T16:07:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-05-02T16:07:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
I Introduction 1
II Scattering Amplitudes in ABJM Theory 7
Chapter 1 Tree Amplitudes and Loop Integrands in ABJM 9
1.1 Tree-level amplitudes . . . . . . . . . . . . . . . . 9
1.2 The one-loop eight-point integrand . . . . . . . . . 16
1.2.1 Maximal cuts constraint . . . . . . . . . . . . . 17
1.2.2 The complete one-loop eight-point integrand . . . .18
1.3 The two-loop eight-point integrand . . . . . . . . . 21
1.3.1 Generalized unitarity and IR constraint . . . . . 24
1.3.2 The complete two-loop eight-point integrand . . . .36
Chapter 2 The Integrated Loop Amplitudes in ABJM 41
2.1 The one-loop eight-point amplitudes . . . . . . . . .41
2.2 The two-loop eight-point amplitude . . . . . . . . . 43
2.2.1 The computation of two-loop integrals . . . . . . 44
2.2.2 The integrated result . . . . . . . . . . . . .. . 61
2.2.3 Consistency checks and analytic structure . . . . .65
III Positive Geometry in ABJM Theory 73
Chapter 3 Geometry of Tree Amplitudes 75
3.1 Momentum space geometry: orthogonal momentum amplituhedron .76
3.1.1 Definition: maps from OG+ . . . . . . . . . . . . . . . 76
3.1.2 Reduced SUSY amplitudes as canonical form . . . . . . . . 79
3.2 Twistor-string map and the pushforward . . . . . . . . . . 82
Chapter 4 Geometry of Loop Integrands 95
4.1 Momentum twistor geometry: ABJM amplituhedron . . . . . . . 96
4.1.1 Positive kinematic . . . . . . . . . . . . . . . . . . . .96
4.1.2 Definition of loop geometry . . . . . . . . . . . . . . 100
4.2 Loop integrands from positive geometry . . . . . . . . . . 107
4.2.1 Chambers and one-loop integrands . . . . . . . . . . . . 107
4.2.2 Higher loops and bipartite negative geometries . . . . . 125
4.3 Beyond positive solutions and parity action . . . . . . . .134
References 145
-
dc.language.isoen-
dc.subject圈振幅zh_TW
dc.subjectABJM 理論zh_TW
dc.subject正幾何zh_TW
dc.subjectPositive Geometryen
dc.subjectABJM Theoryen
dc.subjectLoop Amplitudesen
dc.titleABJM 圈振幅及其正幾何zh_TW
dc.titleLoop Amplitudes of ABJM and Its Positive Geometryen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.coadvisor何頌zh_TW
dc.contributor.coadvisorSong Heen
dc.contributor.oralexamcommittee川合光;沈家賢;丹尼爾包曼;詹傳宗;賀培銘zh_TW
dc.contributor.oralexamcommitteeHikaru Kawai;Chia-Hsien Shen;Daniel Baumann;Chuan-Tsung Chan;Pei-Ming Hoen
dc.subject.keywordABJM 理論,圈振幅,正幾何,zh_TW
dc.subject.keywordABJM Theory,Loop Amplitudes,Positive Geometry,en
dc.relation.page150-
dc.identifier.doi10.6342/NTU202400860-
dc.rights.note未授權-
dc.date.accepted2024-04-17-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
1.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved