請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92598完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃宇廷 | zh_TW |
| dc.contributor.advisor | Yu-Tin Huang | en |
| dc.contributor.author | 郭家愷 | zh_TW |
| dc.contributor.author | Chia-Kai Kuo | en |
| dc.date.accessioned | 2024-05-02T16:07:58Z | - |
| dc.date.available | 2024-05-03 | - |
| dc.date.copyright | 2024-05-01 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-04-17 | - |
| dc.identifier.citation | [1] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena. N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. JHEP, 10:091, 2008.
[2] L. F. Alday and J. Maldacena. Comments on gluon scattering amplitudes via AdS/CFT. JHEP, 11:068, 2007. [3] N. Arkani-Hamed, Y. Bai, and T. Lam. Positive Geometries and Canonical Forms. JHEP, 11:039, 2017. [4] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov, and J. Trnka. Grassmannian Geometry of Scattering Amplitudes. Cambridge University Press, 4 2016. [5] N. Arkani-Hamed, J. Henn, and J. Trnka. Nonperturbative negative geometries: amplitudes at strong coupling and the amplituhedron. JHEP, 03:108, 2022. [6] N. Arkani-Hamed and J. Trnka. Into the Amplituhedron. JHEP, 12:182, 2014. [7] N. Arkani-Hamed and J. Trnka. The Amplituhedron. JHEP, 10:030, 2014. [8] T. Bargheer, N. Beisert, F. Loebbert, and T. McLoughlin. Conformal Anomaly for Amplitudes in N = 6 Superconformal Chern-Simons Theory. J. Phys. A, 45:475402, 2012. [9] T. Bargheer, F. Loebbert, and C. Meneghelli. Symmetries of Tree-level Scattering Amplitudes in N=6 Superconformal Chern-Simons Theory. Phys. Rev. D, 82:045016, 2010. [10] B. Basso and A. V. Belitsky. ABJM flux-tube and scattering amplitudes. JHEP, 09:116, 2019. [11] Z. Bern, L. J. Dixon, and V. A. Smirnov. Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond. Phys. Rev. D, 72:085001, 2005. [12] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio. One Loop Amplitudes In ABJM. JHEP, 07:029, 2012. [13] J. L. Bourjaily, E. Herrmann, and J. Trnka. Prescriptive Unitarity. JHEP, 06:059, 2017. [14] A. Brandhuber, G. Travaglini, and C. Wen. A note on amplitudes in N=6 superconformal Chern-Simons theory. JHEP, 07:160, 2012. [15] A. Brandhuber, G. Travaglini, and C. Wen. All one-loop amplitudes in N=6 superconformal Chern-Simons theory. JHEP, 10:145, 2012. [16] F. Cachazo, S. He, and E. Y. Yuan. Scattering in Three Dimensions from Rational Maps. JHEP, 10:141, 2013. [17] S. Caron-Huot, L. J. Dixon, F. Dulat, M. von Hippel, A. J. McLeod, and G. Papathanasiou. Six-Gluon amplitudes in planar N = 4 super-Yang-Mills theory at six and seven loops. JHEP, 08:016, 2019. [18] S. Caron-Huot, L. J. Dixon, F. Dulat, M. Von Hippel, A. J. McLeod, and G. Papathanasiou. The Cosmic Galois Group and Extended Steinmann Relations for Planar N = 4 SYM Amplitudes. JHEP, 09:061, 2019. [19] S. Caron-Huot, L. J. Dixon, A. McLeod, and M. von Hippel. Bootstrapping a Five-Loop Amplitude Using Steinmann Relations. Phys. Rev. Lett., 117(24):241601, 2016. [20] S. Caron-Huot and Y.-t. Huang. The two-loop six-point amplitude in ABJM theory. JHEP, 03:075, 2013. [21] S. Caron-Huot and K. J. Larsen. Uniqueness of two-loop master contours. JHEP, 10:026, 2012. [22] W.-M. Chen and Y.-t. Huang. Dualities for Loop Amplitudes of N=6 Chern-Simons Matter Theory. JHEP, 11:057, 2011. [23] D. Damgaard, L. Ferro, T. Lukowski, and M. Parisi. The Momentum Amplituhedron. JHEP, 08:042, 2019. [24] L. J. Dixon, J. Drummond, T. Harrington, A. J. McLeod, G. Papathanasiou, and M. Spradlin. Heptagons from the Steinmann Cluster Bootstrap. JHEP, 02:137, 2017. [25] L. J. Dixon, J. M. Drummond, C. Duhr, and J. Pennington. The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory. JHEP, 06:116, 2014. [26] L. J. Dixon, J. M. Drummond, and J. M. Henn. Bootstrapping the three-loop hexagon. JHEP, 11:023, 2011. [27] L. J. Dixon, J. M. Drummond, and J. M. Henn. Analytic result for the two-loop six-point NMHV amplitude in N=4 super Yang-Mills theory. JHEP, 01:024, 2012. [28] L. J. Dixon, J. M. Drummond, M. von Hippel, and J. Pennington. Hexagon functions and the three-loop remainder function. JHEP, 12:049, 2013. [29] L. J. Dixon and Y.-T. Liu. Lifting Heptagon Symbols to Functions. JHEP, 10:031, 2020. [30] L. J. Dixon and M. von Hippel. Bootstrapping an NMHV amplitude through three loops. JHEP, 10:065, 2014. [31] L. J. Dixon, M. von Hippel, and A. J. McLeod. The four-loop six-gluon NMHV ratio function. JHEP, 01:053, 2016. [32] J. Drummond, J. Foster, O. Gürdoğan, and G. Papathanasiou. Cluster adjacency and the four-loop NMHV heptagon. JHEP, 03:087, 2019. [33] J. M. Drummond, G. Papathanasiou, and M. Spradlin. A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon. JHEP, 03:072, 2015. [34] H. Elvang, Y.-t. Huang, C. Keeler, T. Lam, T. M. Olson, S. B. Roland, and D. E. Speyer. Grassmannians for scattering amplitudes in 4d N = 4 SYM and 3d ABJM. JHEP, 12:181, 2014. [35] D. Gaiotto, J. Maldacena, A. Sever, and P. Vieira. Bootstrapping Null Polygon Wilson Loops. JHEP, 03:092, 2011. [36] D. Gang, Y.-t. Huang, E. Koh, S. Lee, and A. E. Lipstein. Tree-level Recursion Relation and Dual Superconformal Symmetry of the ABJM Theory. JHEP, 03:116, 2011. [37] J. Golden and A. J. McLeod. The two-loop remainder function for eight and nine particles. JHEP, 06:142, 2021. [38] S. He, Y.-t. Huang, and C.-K. Kuo. The ABJM Amplituhedron. 6 2023. [39] S. He, Y.-t. Huang, C.-K. Kuo, and Z. Li. The two-loop eight-point amplitude in ABJM theory. JHEP, 02:065, 2023. [40] S. He, C.-K. Kuo, Z. Li, and Y.-Q. Zhang. All-Loop Four-Point Aharony-Bergman-Jafferis-Maldacena Amplitudes from Dimensional Reduction of the Amplituhedron. Phys. Rev. Lett., 129(22):221604, 2022. [41] S. He, C.-K. Kuo, Z. Li, and Y.-Q. Zhang. Emergent unitarity, all-loop cuts and integrations from the ABJM amplituhedron. JHEP, 07:212, 2023. [42] S. He, Z. Li, and Q. Yang. Comments on all-loop constraints for scattering amplitudes and Feynman integrals. JHEP, 01:073, 2022. [Erratum: JHEP 05, 076 (2022)]. [43] S. He, Z. Li, and C. Zhang. The symbol and alphabet of two-loop NMHV amplitudes from Qbar equations. 9 2020. [44] S. He, Z. Li, and C. Zhang. Two-loop Octagons, Algebraic Letters and Qbar Equations. Phys. Rev. D, 101(6):061701, 2020. [45] A. Hodges. Eliminating spurious poles from gauge-theoretic amplitudes. JHEP, 05:135, 2013. [46] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee, and J. Park. N=5,6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds. JHEP, 09:002, 2008. [47] Y.-t. Huang. Non-Chiral S-Matrix of N=4 Super Yang-Mills. 2011. [48] Y.-t. Huang and S. Lee. A new integral formula for supersymmetric scattering amplitudes in three dimensions. Phys. Rev. Lett., 109:191601, 2012. [49] Y.-t. Huang and A. E. Lipstein. Dual Superconformal Symmetry of N=6 Chern-Simons Theory. JHEP, 11:076, 2010. [50] Y.-T. Huang and C. Wen. ABJM amplitudes and the positive orthogonal grassmannian. JHEP, 02:104, 2014. [51] Y.-t. Huang, C. Wen, and D. Xie. The Positive orthogonal Grassmannian and loop amplitudes of ABJM. J. Phys., A47(47):474008, 2014. [52] S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S. R. Wadia, and S. Yokoyama. Unitarity, Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with fundamental matter. JHEP, 04:129, 2015. [53] S. Lee. Yangian Invariant Scattering Amplitudes in Supersymmetric Chern-Simons Theory. Phys. Rev. Lett., 105:151603, 2010. [54] Z. Li and C. Zhang. The three-loop MHV octagon from Q equations. JHEP, 12:113, 2021. [55] A. Yelleshpur Srikant. Emergent unitarity from the amplituhedron. JHEP, 01:069, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92598 | - |
| dc.description.abstract | 在本篇論文中,我們討論如何計算高點ABJM圈振幅的方法,並引入了正幾何的架構到這個理論。
在第一部分中,我們以八點振幅為例,計算一圈、兩圈振幅,所使用的方法可以直接推廣到更高點的圈振幅。我們首先利用廣義么正性和發散限制條件,確定了該理論的一圈和兩圈被積函數。隨後,我們計算這些被積函數積分後的結果,得到完整的一圈和兩圈八點振幅。 在第二部分中,我們引進並研究了與ABJM振幅和它的正幾何。我們先在動量空間定義他的樹正幾何,接著在動量扭空間將樹正幾何推廣到圈正幾何。我們引進新的正幾何與$\\cal{N}=$4 超對稱楊-米爾斯理論的正幾何有非常簡單的關係:對所有相鄰扭量加上辛條件,並將所有扭量括號由正號改成負號。 | zh_TW |
| dc.description.abstract | In this thesis, we discuss methods for calculating the higher-point ABJM loop amplitudes and introduce the positive geometry framework into this theory.
In the first part, we take the eight-point amplitude as an example and calculate the one-loop and two-loop amplitudes. The methods used can be directly extended to higher-point loop amplitudes. We first determine the one-loop and two-loop integrands of the theory using generalized unitarity and IR constraints. Then, we compute these integrands to derive complete one- and two-loop eight-point amplitudes. In the second part, we introduce the positive geometry associated with ABJM amplitudes. We first define its tree-level geometry in momentum space and then extend it to loop-level in momentum twistor space. The new positive geometry has a very simple relationship with one of $\\cal{N}=$4 super Yang-Mills theory: imposing symplectic conditions on all adjacent twistors and changing the sign of all twistor brackets from positive to negative. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-02T16:07:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-05-02T16:07:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix I Introduction 1 II Scattering Amplitudes in ABJM Theory 7 Chapter 1 Tree Amplitudes and Loop Integrands in ABJM 9 1.1 Tree-level amplitudes . . . . . . . . . . . . . . . . 9 1.2 The one-loop eight-point integrand . . . . . . . . . 16 1.2.1 Maximal cuts constraint . . . . . . . . . . . . . 17 1.2.2 The complete one-loop eight-point integrand . . . .18 1.3 The two-loop eight-point integrand . . . . . . . . . 21 1.3.1 Generalized unitarity and IR constraint . . . . . 24 1.3.2 The complete two-loop eight-point integrand . . . .36 Chapter 2 The Integrated Loop Amplitudes in ABJM 41 2.1 The one-loop eight-point amplitudes . . . . . . . . .41 2.2 The two-loop eight-point amplitude . . . . . . . . . 43 2.2.1 The computation of two-loop integrals . . . . . . 44 2.2.2 The integrated result . . . . . . . . . . . . .. . 61 2.2.3 Consistency checks and analytic structure . . . . .65 III Positive Geometry in ABJM Theory 73 Chapter 3 Geometry of Tree Amplitudes 75 3.1 Momentum space geometry: orthogonal momentum amplituhedron .76 3.1.1 Definition: maps from OG+ . . . . . . . . . . . . . . . 76 3.1.2 Reduced SUSY amplitudes as canonical form . . . . . . . . 79 3.2 Twistor-string map and the pushforward . . . . . . . . . . 82 Chapter 4 Geometry of Loop Integrands 95 4.1 Momentum twistor geometry: ABJM amplituhedron . . . . . . . 96 4.1.1 Positive kinematic . . . . . . . . . . . . . . . . . . . .96 4.1.2 Definition of loop geometry . . . . . . . . . . . . . . 100 4.2 Loop integrands from positive geometry . . . . . . . . . . 107 4.2.1 Chambers and one-loop integrands . . . . . . . . . . . . 107 4.2.2 Higher loops and bipartite negative geometries . . . . . 125 4.3 Beyond positive solutions and parity action . . . . . . . .134 References 145 | - |
| dc.language.iso | en | - |
| dc.subject | 圈振幅 | zh_TW |
| dc.subject | ABJM 理論 | zh_TW |
| dc.subject | 正幾何 | zh_TW |
| dc.subject | Positive Geometry | en |
| dc.subject | ABJM Theory | en |
| dc.subject | Loop Amplitudes | en |
| dc.title | ABJM 圈振幅及其正幾何 | zh_TW |
| dc.title | Loop Amplitudes of ABJM and Its Positive Geometry | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 何頌 | zh_TW |
| dc.contributor.coadvisor | Song He | en |
| dc.contributor.oralexamcommittee | 川合光;沈家賢;丹尼爾包曼;詹傳宗;賀培銘 | zh_TW |
| dc.contributor.oralexamcommittee | Hikaru Kawai;Chia-Hsien Shen;Daniel Baumann;Chuan-Tsung Chan;Pei-Ming Ho | en |
| dc.subject.keyword | ABJM 理論,圈振幅,正幾何, | zh_TW |
| dc.subject.keyword | ABJM Theory,Loop Amplitudes,Positive Geometry, | en |
| dc.relation.page | 150 | - |
| dc.identifier.doi | 10.6342/NTU202400860 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-04-17 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 1.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
