Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92590
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂明璋zh_TW
dc.contributor.advisorMing-Chang Luen
dc.contributor.author陳立雋zh_TW
dc.contributor.authorLi-Jiun Chenen
dc.date.accessioned2024-05-02T16:05:31Z-
dc.date.available2024-05-03-
dc.date.copyright2024-04-29-
dc.date.issued2024-
dc.date.submitted2024-04-19-
dc.identifier.citation1. Moore, G.E. Progress in digital integrated electronics. in Electron devices meeting. 1975. Washington, DC.
2. Ri, H., IEEE Standard for General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers. 2010.
3. Yang, B., P. Wang, and A. Bar-Cohen, Mini-contact enhanced thermoelectric cooling of hot spots in high power devices. IEEE Transactions on Components and Packaging Technologies, 2007. 30(3): p. 432-438.
4. Cader, T., L.J. Westra, and R.C. Eden, Spray cooling thermal management for increased device reliability. IEEE Transactions on Device and Materials Reliability, 2004. 4(4): p. 605-613.
5. Prasher, R., Thermal interface materials: historical perspective, status, and future directions. Proceedings of the IEEE, 2006. 94(8): p. 1571-1586.
6. Garimella, S.V., et al., Thermal challenges in next-generation electronic systems. IEEE Transactions on Components and Packaging Technologies, 2008. 31(4): p. 801-815.
7. Novoselov, K.S. and A. Geim, The rise of graphene. Nat. Mater, 2007. 6(3): p. 183-191.
8. Geim, A.K., Nobel Lecture: Random walk to graphene. Reviews of Modern Physics, 2011. 83(3): p. 851.
9. Novoselov, K.S., et al., A roadmap for graphene. nature, 2012. 490(7419): p. 192-200.
10. Novoselov, K., Nobel lecture: Graphene: Materials in the flatland. Reviews of modern physics, 2011. 83(3): p. 837.
11. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
12. Sun, Z., X. Chen, and H. Qiu, Experimental investigation of a novel asymmetric heat spreader with nanostructure surfaces. Experimental thermal and fluid science, 2014. 52: p. 197-204.
13. Xu, P. and Q. Li, Visualization study on the enhancement of heat transfer for the groove flat-plate heat pipe with nanoflower coated CuO layer. Applied Physics Letters, 2017. 111(14).
14. Li, J., et al., Mechanism of a microscale flat plate heat pipe with extremely high nominal thermal conductivity for cooling high-end smartphone chips. Energy conversion and management, 2019. 201: p. 112202.
15. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano letters, 2008. 8(3): p. 902-907.
16. Ghosh, S., et al., Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 2008. 92(15).
17. Xin, G., et al., Large‐area freestanding graphene paper for superior thermal management. Advanced materials, 2014. 26(26): p. 4521-4526.
18. Song, N.-J., et al., Thermally reduced graphene oxide films as flexible lateral heat spreaders. Journal of Materials Chemistry A, 2014. 2(39): p. 16563-16568.
19. Zhang, Y., et al., Improved heat spreading performance of functionalized graphene in microelectronic device application. Advanced Functional Materials, 2015. 25(28): p. 4430-4435.
20. Kumar, P., et al., Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon, 2015. 94: p. 494-500.
21. Peng, L., et al., Ultrahigh thermal conductive yet superflexible graphene films. Advanced Materials, 2017. 29(27): p. 1700589.
22. Kobayashi, T., et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 2013. 102(2).
23. Su, C.-Y., et al., Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano letters, 2011. 11(9): p. 3612-3616.
24. Paton, K.R., et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature materials, 2014. 13(6): p. 624-630.
25. Jeon, I.-Y., et al., Edge-carboxylated graphene nanosheets via ball milling. Proceedings of the National Academy of Sciences, 2012. 109(15): p. 5588-5593.
26. Hofmann, U. and A. Frenzel, The reduction of graphite oxide with hydrogen sulphide. Kolloid-Zeitschrift, 1934. 68(2): p. 149-151.
27. Park, S., et al., Hydrazine-reduction of graphite-and graphene oxide. carbon, 2011. 49(9): p. 3019-3023.
28. Xu, C., et al., Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PloS one, 2015. 10(12): p. e0144842.
29. Hou, D., et al., Facile synthesis of graphene via reduction of graphene oxide by artemisinin in ethanol. Journal of Materiomics, 2018. 4(3): p. 256-265.
30. Jiang, C., et al., A sustainable reduction route of graphene oxide by industrial waste lignin for versatile applications in energy and environment. Journal of Cleaner Production, 2020. 268: p. 122019.
31. Zhou, Y., et al., Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials, 2009. 21(13): p. 2950-2956.
32. Huang, H.-H., et al., Structural evolution of hydrothermally derived reduced graphene oxide. Scientific reports, 2018. 8(1): p. 6849.
33. Mochizuki, M. and T. Nguyen, Review of various thin heat spreader vapor chamber designs, performance, lifetime reliability and application. Frontiers in Heat and Mass Transfer (FHMT), 2019. 13.
34. Barua, A., et al., Thermal management in 3-D integrated circuits with graphene heat spreaders. Physics Procedia, 2012. 25: p. 311-316.
35. Yan, Z., et al., Graphene quilts for thermal management of high-power GaN transistors. Nature communications, 2012. 3(1): p. 827.
36. Dai, W., et al., A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS nano, 2019. 13(2): p. 1547-1554.
37. Alam, M., S. King, and M. Haque, Characterization of very low thermal conductivity thin films. Journal of Thermal Analysis and Calorimetry, 2014. 115: p. 1541-1550.
38. Lee, S. Constriction/spreading resistance model for electronics packaging. in Proc. of ASME/JSME Thermal Engineering Conf., 1995. 1995.
39. Naraghi, M. and V. Antonetti, Macro-constriction resistance of distributed contact contour areas in a vacuum environment. ASME-PUBLICATIONS-HTD, 1993. 263: p. 107-107.
40. Song, S. Closed-form equation for thermal constriction/spreading resistances with variable resistance boundary condition. in Proceedings of IEPS Conference, 1995. 1995.
41. Simons, R., calculation corner: simple formulas for estimating thermal spreading resistance. Electronics Cooling, 2004. 10: p. 8-11.
42. Coleman, H.W. and W.G. Steele, Experimentation, validation, and uncertainty analysis for engineers. 2018: John Wiley & Sons.
43. Wang, G., et al., Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C, 2008. 112(22): p. 8192-8195.
44. Renteria, J.D., et al., Strongly anisotropic thermal conductivity of free‐standing reduced graphene oxide films annealed at high temperature. Advanced Functional Materials, 2015. 25(29): p. 4664-4672.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92590-
dc.description.abstract高性能電子產品的追求不可避免地導致晶片的功率密度增加;因此,高效的散熱變得至關重要,晶片高功率運作時產生的局部熱點,能夠透過均熱層(Heat spreader)來將熱量擴散至整個表面,使熱點迅速的降溫,以防止元件過熱而造成性能下降或損壞,再透過散熱片(Heat sink) 有效地將積體電路元件產生的熱量傳遞到外部環境。單層石墨烯薄膜具有極高的熱傳導率約為 5000 W/m-K,十分適合作為均熱層的材料。然而,石墨烯薄膜的熱導率隨著厚度增加而降低,而高度純凈的石墨烯薄膜的生產成本昂貴。相反,還原氧化石墨烯(rGO)薄膜的熱導率與石墨烯相當,可以通過一個成本效益的還原過程從氧化石墨烯(GO)輕鬆製備。用於 rGO 合成的傳統還原劑對環境有害。為了促進綠色循環經濟和可持續發展,在這項研究中,木質素被用作還原劑。木質素具有出色的還原能力。研究結果顯示使用木質素成功合成了還原氧化石墨烯(L-rGO)薄膜。將 L-rGO 薄膜在 1400°C 下熱退火以增強其傳熱性能。其中 L-rGO 薄膜的彈性模數較低,在外部應力下容易斷裂。但經由高溫熱退火處理使薄膜更具柔韌性。研究還測量了L-rGO 薄膜的平面熱導率。L-rGO 薄膜的平面熱導率為 3.32 W/m-K。然而,通過熱退火,其熱導率可增加到 50-60 W/m-K。此外架設一擴散熱阻量測系統,量測功率密度約為 1000 W/cm2 的矽加熱片,透過理論計算圓形矽晶片之擴算熱阻為 9.08 K/W,本實驗量測之矽晶片為方形,因此理論誤差約為-2.1 %~+4.5 %;經由擴散熱阻量測系統量測之結果矽晶片之擴散熱阻為 9.175 ± 0.65 K/W,由此結果驗證了此實驗系統之可信度。再將 rGO 作用於矽晶片上以評估它們在降低矽晶片的擴散熱阻方面的效果。通過經退火的 L-rGO 薄膜,矽晶片的擴散熱阻從約 11 K/W 減少到約 5 K/W。zh_TW
dc.description.abstractIn the relentless pursuit of optimizing the performance of electronic devices, the quest for heightened power invariably leads to an escalation in chip power density, with current levels surging to a remarkable 300 W/cm2. Consequently, the efficacious dissipation of heat assumes critical significance in ensuring operational stability and longevity. Addressing this imperative, the present study delves into the pivotal role of efficient heat management strategies, particularly focusing on the utilization of advanced materials as heat spreaders. Central to this endeavor is the exploration of single-layer graphene membranes, distinguished by their unparalleled thermal conductivity (k) nearing 5000 W/m-K. This attribute positions them as formidable candidates for facilitating heat transfer within electronic devices. However, the practical implementation of graphene membranes is not devoid of challenges. Notably, the reduction in thermal conductivity with increasing thickness, coupled with the substantial costs associated with the fabrication of pristine graphene membranes, underscores the need for alternative solutions. In this context, reduced graphene oxide (rGO) films emerge as promising alternatives, offering thermal conductivities comparable to graphene while affording ease of synthesis from graphene oxide (GO) through cost-effective reduction processes. Crucially, the adoption of environmentally sustainable practices is paramount in contemporary research endeavors. In alignment with this ethos, the present study explores lignin, a naturally abundant biopolymer, as a viable reducing agent for the synthesis of reduced graphene oxide (L-rGO) films. Leveraging the exceptional reduction capabilities of lignin, the study successfully demonstrates the synthesis of L-rGO films, poised to enhance heat transfer efficiency within electronic devices. Furthermore, thermal annealing at elevated temperatures emerges as a pivotal step in enhancing the thermal properties of L-rGO films. Despite 3inherent fragilities attributable to their low elastic modulus, the annealing process imbues these films with augmented flexibility, thereby fortifying their suitability for practical applications. Experimental investigations encompassing the measurement of in-plane thermal conductivity (kin-plane) reveal promising insights into the thermal performance of L-rGO films. Additionally, the deployment of a sophisticated thermal spreading resistance measurement system enables the assessment of power density in silicon substrates, affirming the efficacy of the proposed heat management strategy. Indeed, the integration of annealed L-rGO films yields tangible improvements in thermal spreading resistance, thereby underscoring the transformative potential of this approach in optimizing heat dissipation within electronic devices. This research not only advances our understanding of heat transfer phenomena but also paves the way for the development of innovative solutions with far-reaching implications for electronic device design and functionality.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-02T16:05:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-05-02T16:05:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
致謝 iv
目次 v
圖次 vii
表次 xii
符號表 xiii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 論文編排 4
第二章、樣品檢測與熱傳量測理論介紹 7
2.1 樣品結構分析系統 7
2.1.1 拉曼光譜儀 7
2.1.2 X光繞射儀 7
2.1.3 X射線光電子能譜儀 8
2.2 樣品熱性質量測模型 8
2.2.1 微尺度之平面熱傳導率量測模型 8
2.2.2 擴散熱阻模型 9
第三章、還原氧化石墨烯製程與實流程 15
3.1 還原氧化石墨烯製程 15
3.2 平面熱傳導率實驗 16
3.3 擴散熱阻量測實驗 18
3.4 熱損失估算 18
3.5 誤差分析 19
3.5.1 平面熱傳導率量測系統誤差分析 19
3.5.2 擴散熱阻量測系統誤差分析 21
第四章、實驗量測結果 31
4.1 型態 31
4.2 拉曼光譜儀量測結果 31
4.3 X光繞射儀量測結果 32
4.4 X射線光電子能譜儀 34
4.5 平面熱傳導率量測結果 35
4.6 擴散熱阻量測結果 36
第五章 結論與未來工作 48
5.1 結論 48
5.2 未來工作 49
參考文獻 50
第六章 附錄 54
-
dc.language.isozh_TW-
dc.subject熱阻zh_TW
dc.subject熱傳導率zh_TW
dc.subject木質素zh_TW
dc.subject還原氧化石墨烯zh_TW
dc.subjectLigninen
dc.subjectReduced Graphene Oxideen
dc.subjectThermal Conductivityen
dc.subjectThermal 4 Resistanceen
dc.title探討綠色還原劑木質素合成還原氧化石墨烯之熱性質zh_TW
dc.titleExplore the Thermal Properties of the Reduced Graphene Oxide Membranes Synthesized by Using the Green Reducing Agent of Ligninen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張之威;李明蒼zh_TW
dc.contributor.oralexamcommitteeChih-Wei Chang;Ming-Tsang Leeen
dc.subject.keyword木質素,還原氧化石墨烯,熱傳導率,熱阻,zh_TW
dc.subject.keywordLignin,Reduced Graphene Oxide,Thermal Conductivity,Thermal 4 Resistance,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202400871-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-04-19-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-04-18-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved