Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92575
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李峻霣zh_TW
dc.contributor.advisorJiun-Yun Lien
dc.contributor.author蘇遙zh_TW
dc.contributor.authorYao Suen
dc.date.accessioned2024-04-22T16:14:38Z-
dc.date.available2024-04-23-
dc.date.copyright2024-04-22-
dc.date.issued2024-
dc.date.submitted2024-04-17-
dc.identifier.citation[1] Moore, G.E., Cramming more components onto integrated circuits. Proceedings of the IEEE, 1998. 86(1): p. 82-85.
[2] Wall, D.W. Limits of instruction-level parallelism. in Proceedings of the fourth international conference on Architectural support for programming languages and operating systems. 1991.
[3] Feynman, R.P., Simulating physics with computers. International journal of theoretical physics, 1982.
[4] Kringhøj, A., Exploring the Semiconducting Josephson Junction of Nanowire-based Superconducting Qubits. 2020, University of Copenhagen, Faculty of Science, Niels Bohr Institute.
[5] Larsen, T.W., Mesoscopic Superconductivity towards Protected Qubits. 2018, University of Copenhagen, Faculty of Science, Niels Bohr Institute.
[6] Anderson, P.W. and J.M. Rowell, Probable observation of the Josephson superconducting tunneling effect. Physical Review Letters, 1963. 10(6): p. 230.
[7] Shepherd, J.G., Supercurrents through thick, clean S—N—S sandwiches. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1972. 326(1566): p. 421-430.
[8] Castelvecchi, D., IBM releases first-ever 1,000-qubit quantum chip. Nature, 2023. 624(7991): p. 238-238.
[9] Arute, F., et al., Quantum supremacy using a programmable superconducting processor. Nature, 2019. 574(7779): p. 505-510.
[10] Jafferis, D., et al., Traversable wormhole dynamics on a quantum processor. Nature, 2022. 612(7938): p. 51-55.
[11] Clark, T., R. Prance, and A. Grassie, Feasibility of hybrid Josephson field effect transistors. Journal of Applied Physics, 1980. 51(5): p. 2736-2743.
[12] Volkov, A., et al., Proximity and Josephson effects in superconductor-two-dimensional electron gas planar junctions. Physica C: Superconductivity, 1995. 242(3-4): p. 261-266.
[13] Casparis, L., et al., Gatemon benchmarking and two-qubit operations. Physical review letters, 2016. 116(15): p. 150505.
[14] Larsen, T.W., et al., Semiconductor-nanowire-based superconducting qubit. Physical review letters, 2015. 115(12): p. 127001.
[15] Zhuo, E., et al., Hole-type superconducting gatemon qubit based on Ge/Si core/shell nanowires. npj Quantum Information, 2023. 9(1): p. 51.
[16] Casparis, L., et al., Superconducting gatemon qubit based on a proximitized two-dimensional electron gas. Nature nanotechnology, 2018. 13(10): p. 915-919.
[17] Stern, A. and N.H. Lindner, Topological quantum computation—from basic concepts to first experiments. Science, 2013. 339(6124): p. 1179-1184.
[18] Walter Ogburn, R. and J. Preskill. Topological quantum computation. in NASA International Conference on Quantum Computing and Quantum Communications. 1998. Springer.
[19] Fu, L. and C.L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Physical review letters, 2008. 100(9): p. 096407.
[20] Mourik, V., et al., Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science, 2012. 336(6084): p. 1003-1007.
[21] Whiticar, A.M., Flux dependence of topological superconductivity in two-dimensional heterostructures. 2020, University of Copenhagen, Faculty of Science, Niels Bohr Institute.
[22] Deng, M.-T., et al., Nonlocality of Majorana modes in hybrid nanowires. Physical Review B, 2018. 98(8): p. 085125.
[23] Whiticar, A.M., et al., Coherent transport through a Majorana island in an Aharonov–Bohm interferometer. Nature communications, 2020. 11(1): p. 3212.
[24] Ando, T., A.B. Fowler, and F. Stern, Electronic properties of two-dimensional systems. Reviews of Modern Physics, 1982. 54(2): p. 437.
[25] Sze, S.M. and K.K. Ng, Physics of semiconductor devices. 3rd ed. 2007, Hoboken, N.J: Wiley-Interscience.
[26] Umansky, V., et al., MBE growth of ultra-low disorder 2DEG with mobility exceeding 35× 106 cm2/V s. Journal of Crystal Growth, 2009. 311(7): p. 1658-1661.
[27] O’Farrell, E., et al., Hybridization of subgap states in one-dimensional superconductor-semiconductor coulomb islands. Physical review letters, 2018. 121(25): p. 256803.
[28] Das, A., et al., Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nature Physics, 2012. 8(12): p. 887-895.
[29] Saeedi, K., et al., Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science, 2013. 342(6160): p. 830-833.
[30] Sabbagh, D., et al., Quantum transport properties of industrial si 28/si o 2 28. Physical Review Applied, 2019. 12(1): p. 014013.
[31] Myronov, M. Appearance of High Mobility Carriers in Strained Epitaxial Germanium. in Electrochemical Society Meeting Abstracts aimes2018. 2018. The Electrochemical Society, Inc.
[32] Moriya, R., et al., Cubic Rashba spin-orbit interaction of a two-dimensional hole gas in a strained-Ge/SiGe quantum well. Physical review letters, 2014. 113(8): p. 086601.
[33] Xiang, J., et al., Ge/Si nanowire mesoscopic Josephson junctions. Nature nanotechnology, 2006. 1(3): p. 208-213.
[34] Hendrickx, N., et al., Gate-controlled quantum dots and superconductivity in planar germanium. Nature communications, 2018. 9(1): p. 1-7.
[35] Vigneau, F., et al., Germanium quantum-Well Josephson field-effect transistors and interferometers. Nano letters, 2019. 19(2): p. 1023-1027.
[36] Laubscher, K., J.D. Sau, and S.D. Sarma, Majorana zero modes in gate-defined germanium hole nanowires. Physical Review B, 2024. 109(3): p. 035433.
[37] Zelazna, K., et al., Electronic band structure of compressively strained Ge1− xSnx with x< 0.11 studied by contactless electroreflectance. Applied Physics Letters, 2015. 106(14).
[38] Tai, C.T., et al., Strain effects on rashba spin‐orbit coupling of 2D hole gases in GeSn/Ge heterostructures. Advanced Materials, 2021. 33(26): p. 2007862.
[39] Dimoulas, A., et al., Fermi-level pinning and charge neutrality level in germanium. Applied physics letters, 2006. 89(25).
[40] Blonder, G., m.M. Tinkham, and k.T. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Physical Review B, 1982. 25(7): p. 4515.
[41] Klapwijk, T., Proximity effect from an Andreev perspective. Journal of superconductivity, 2004. 17: p. 593-611.
[42] Tinkham, M., Introduction to superconductivity. 2004: Courier Corporation.
[43] Buzea, C. and K. Robbie, Assembling the puzzle of superconducting elements: a review. Superconductor Science and Technology, 2004. 18(1): p. R1.
[44] Ashcroft, N.W. and N.D. Mermin, Solid state physics. 2022: Cengage Learning.
[45] De Gennes, P.-G., Superconductivity of metals and alloys. 2018: CRC press.
[46] Bretheau, L., Localized excitations in superconducting atomic contacts: probing the Andreev doublet. 2013, Ecole Polytechnique X.
[47] Chang, W., Superconducting proximity effect in InAs nanowires. 2014, Harvard University.
[48] Sugiyama, Y., et al., Nb/GaAs super-Schottky diode. IEEE Electron Device Letters, 1980. 1(11): p. 236-238.
[49] Silver, A., et al. Superconductor‐semiconductor device research. in AIP Conference Proceedings. 1978. American Institute of Physics.
[50] Vernon, F., et al., The super-Schottky diode. IEEE Transactions on Microwave Theory and Techniques, 1977. 25(4): p. 286-294.
[51] McColl, M., et al., The super-Schottky microwave mixer. IEEE Transactions on Magnetics, 1977. 13(1): p. 221-227.
[52] McColl, M., M. Millea, and A. Silver, The superconductor‐semiconductor Schottky barrier diode detector. Applied Physics Letters, 1973. 23(5): p. 263-264.
[53] Roth, L.B., J.A. Roth, and P.M. Schwartz. Super‐Schottky and Josephson‐effect devices using niobium on thin silicon membranes. in AIP Conference Proceedings. 1978. American Institute of Physics.
[54] Huang, C. and T. Van Duzer, Schottky diodes and other devices on thin silicon membranes. IEEE Transactions on Electron Devices, 1976. 23(6): p. 579-583.
[55] Giaever, I. and K. Megerle, Study of superconductors by electron tunneling. Physical Review, 1961. 122(4): p. 1101.
[56] Kastalsky, A., et al., Observation of pair currents in superconductor-semiconductor contacts. Physical review letters, 1991. 67(21): p. 3026.
[57] Magnée, P., et al., Enhanced conductance near zero voltage bias in mesoscopic superconductor-semiconductor junctions. Physical Review B, 1994. 50(7): p. 4594.
[58] 葉茂榮, 分子束磊晶及電子槍蒸鍍準備之鋁薄膜的超導特性研究. 2009, 國立臺灣大學物理研究所學位論文.
[59] Liang, C.-T., et al., Superconductivity in an aluminum film grown by molecular beam epitaxy. Chinese Journal of Physics, 2012. 50(4): p. 638-642.
[60] Cochran, J.F. and D. Mapother, Superconducting transition in aluminum. Physical Review, 1958. 111(1): p. 132.
[61] Abeles, B., R.W. Cohen, and G. Cullen, Enhancement of superconductivity in metal films. Physical Review Letters, 1966. 17(12): p. 632.
[62] Hauser, J., Enhancement of superconductivity in aluminum films. Physical Review B, 1971. 3(5): p. 1611.
[63] Neugebauer, C. and R. Ekvall, Vapor‐Deposited Superconductive Films of Nb, Ta, and V. Journal of Applied Physics, 1964. 35(3): p. 547-553.
[64] Rairden, J. and C. Neugebauer, Critical temperature of niobium and tantalum films. Proceedings of the IEEE, 1964. 52(10): p. 1234-1238.
[65] Alessandrini, E., R. Laibowitz, and J. Viggiano, Morphology of thin superconducting Nb films. Journal of Vacuum Science and Technology, 1981. 18(2): p. 318-323.
[66] Nivedita, L., et al., Correlation between crystal structure, surface/interface microstructure, and electrical properties of nanocrystalline niobium thin films. Nanomaterials, 2020. 10(7): p. 1287.
[67] Davidson, A., et al., Transport properties of a superconductor-semiconductor ohmic contact. IEEE Transactions on Magnetics, 1987. 23(2): p. 727-730.
[68] Schroder, D.K., Semiconductor Material and Device Characterization. 2006: John Wiley & Sons.
[69] Clarke, J., Supercurrents in lead—copper—-lead sandwiches. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1969. 308(1495): p. 447-471.
[70] Kjærgaard, M., Proximity Induced Superconducting Properties in One and Two Dimensional Semiconductors. 2015, University of Copenhagen, Faculty of Science, Niels Bohr Institute.
[71] Dubos, P., et al., Josephson critical current in a long mesoscopic SNS junction. Physical Review B, 2001. 63(6): p. 064502.
[72] Seto, J. and T. Van Duzer, Supercurrent tunneling junctions with tellurium barriers. Applied Physics Letters, 1971. 19(11): p. 488-491.
[73] Hu, E., L. Jackel, and R. Epworth. Josephson tunneling through Ge‐Sn barriers. in AIP Conference Proceedings. 1978. American Institute of Physics.
[74] Ruby, R. and T. Van Duzer, Silicon-coupled Josephson junctions and super-Schottky diodes with coplanar electrodes. IEEE Transactions on Electron Devices, 1981. 28(11): p. 1394-1397.
[75] Serfaty, A., J. Aponte, and M. Octavio, Properties of step-edge Pb-Si-Pb Josephson junctions. Journal of low temperature physics, 1986. 63(1): p. 23-33.
[76] Nishino, T., E. Yamada, and U. Kawabe, Carrier-concentration dependence of critical superconducting current induced by the proximity effect in silicon. Physical Review B, 1986. 33(3): p. 2042.
[77] Takayanagi, H. and T. Kawakami, Superconducting proximity effect in the native inversion layer on InAs. Physical review letters, 1985. 54(22): p. 2449.
[78] Shabani, J., et al., Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks. Physical Review B, 2016. 93(15): p. 155402.
[79] Kjærgaard, M., et al., Transparent semiconductor-superconductor interface and induced gap in an epitaxial heterostructure Josephson junction. Physical Review Applied, 2017. 7(3): p. 034029.
[80] Hendrickx, N., et al., Ballistic supercurrent discretization and micrometer-long Josephson coupling in germanium. Physical Review B, 2019. 99(7): p. 075435.
[81] Aggarwal, K., et al., Enhancement of proximity-induced superconductivity in a planar Ge hole gas. Physical Review Research, 2021. 3(2): p. L022005.
[82] 戴嘉澤, 鍺錫/鍺異質結構二維電洞氣之Rashba自旋-軌域耦合效應與等效質量. 2021, 國立臺灣大學電子工程學研究所學位論文.
[83] 李宗穎, 鍺錫/鍺異質結構奈米元件之電導量子化效應. 2022, 國立臺灣大學電子工程學研究所學位論文.
[84] Gupta, S., et al., Highly Selective Dry Etching of Germanium over Germanium–Tin (Ge1–x Sn x): A Novel Route for Ge1–x Sn x Nanostructure Fabrication. Nano letters, 2013. 13(8): p. 3783-3790.
[85] Kleinsasser, A., et al., n‐InAs/GaAs heterostructure superconducting weak links with Nb electrodes. Applied physics letters, 1986. 49(25): p. 1741-1743.
[86] Sahari, S.K., et al., Native oxidation growth on Ge (111) and (100) surfaces. Japanese Journal of Applied Physics, 2011. 50(4S): p. 04DA12.
[87] Aoki, Y., et al., In situ substrate surface cleaning by low‐energy ion bombardment for high quality thin film formation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1993. 11(2): p. 307-313.
[88] Raynal, P., et al., GeSn surface preparation by wet cleaning and in-situ plasma treatments prior to metallization. Microelectronic Engineering, 2019. 203: p. 38-43.
[89] 蘇誼炘, 無摻雜矽/矽鍺與鍺/鍺矽異質結構中的表面穿隧效應. 2017, 國立臺灣大學電子工程學研究所學位論文.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92575-
dc.description.abstract超導體/半導體異質結構在拓樸量子計算中扮演重要角色。拓樸量子位元可由馬約拉那零模態組成,理論預測當一個半導體奈米線與超導體相接時,在奈米線中會形成馬約拉那零模態。而要形成馬約拉那零模態,超導體/半導體介面必須要有極高的穿透率,如此才能藉由鄰近效應將超導特性引入半導體中,而半導體材料本身也需要具有強Rashba自旋軌域耦合並配合外加磁場來改變奈米線的能帶結構,進而讓奈米線擁有拓樸特性。鍺基半導體是有潛力的材料選擇,因為超導體/p型鍺介面上不存在蕭特基位能障,使得介面穿透率高;此外,鍺錫/鍺異質結構中的二維電洞氣體具有強Rashba自旋軌域耦合效應。目前已經有研究團隊觀察到鍺約瑟夫森場效電晶體中由臨近效應導致的超導電流,因此本論文著重在研究鋁/鍺介面特性以及由鍺錫/鍺異質結構製作的約瑟夫森場效電晶體。

本論文呈現了鋁薄膜的超導特性與鋁/p+型鍺接面的電性量測結果。鋁薄膜的臨界溫度為1.4 K,代表在溫度為0 K時的超導能隙(Δ)是213 μeV。鋁薄膜的變磁場量測結果則顯示其臨界磁場在溫度0.05 K下高達0.047 T。鋁/p+型鍺接面從室溫一路降溫至0.3 K都是歐姆接觸。一般來說,當接面偏壓小時,超導能隙會阻止半導體中的載子穿隧進入超導體中,造成接面的微分電導在電壓為零附近下降。然而鋁/p+型鍺接面的微分電導不隨偏壓改變,兩個可能的原因分別是極高的超導體/半導體介面穿透率以及接面邊緣的漏電流。

本實驗還製作了兩種基於鍺錫/鍺異質結構的約瑟夫森場效電晶體,其中一種電晶體使用了自行開發的SF6電漿蝕刻製程來去除源極/汲極區域的鍺間隔層,讓鋁能夠直接接觸鍺錫層以增加鋁/鍺錫二維電洞氣體的介面穿透率。低溫量測結果顯示在0.05 K下約瑟夫森場效電晶體的開關比達4×105,代表電晶體在低溫時漏電流很小;然而本實驗並沒有在約瑟夫森場效電晶體中觀察到超導電流,推測是因為蝕刻製程導致鋁/鍺(錫)介面不佳、鍺間隔層太厚、或電晶體通道太長等原因所造成。
zh_TW
dc.description.abstractA superconductor/semiconductor heterostructure is crucial for topological quantum computing. A semiconductor nanowire in contact with a superconductor is predicted to host Majorana zero modes, which are the building blocks of a topological qubit. To observe Majorana zero modes, a superconductor/semiconductor interface needs to be highly transparent to ensure that superconductivity can be induced in the semiconductor by proximity effect. The semiconductor materials should also possess strong Rashba spin-orbit coupling, which enables topological properties in a nanowire by tuning its band structure via magnetic fields. Ge-based semiconductor materials are promising due to the absence of Schottky barriers at a superconductor/p-Ge interface, leading to the transparency of the interface. Furthermore, two-dimensional hole gas in GeSn/Ge heterostructure shows strong Rashba spin-orbit coupling. Supercurrent induced by proximity effect has been observed in Ge Josephson field-effect transistors (FETs). In this work, the Al/Ge interface and Josephson FETs based on a GeSn/Ge heterostructure are studied.

In this work, the superconductivity of Al thin films and ohmic nature of Al/p+-Ge contact are demonstrated. The Al thin film has a critical temperature as high as 1.4 K, and the corresponding superconducting energy gap (Δ) is 213 μeV at 0 K. The Al thin film is also characterized under magnetic fields, and the results show that it has critical field as high as 0.047 T at 0.05 K. The Al/p+-Ge contact remains ohmic from room temperature down to 0.3 K. Typically, superconducting gap will prevent carriers in semiconductor from tunneling into superconductor at small voltage bias, and thus decrease the differential conductance of superconductor/semiconductor contact around zero voltage. However, the differential conductance of Al/p+-Ge contact remains constant no matter how applied voltage changes. There are two possible reasons including high transparency of superconductor/semiconductor interface and leakage current at the edge of contact.

Two kinds of Josephson FETs based on a GeSn/Ge heterostructure are fabricated. A SF6 plasma etching technique is developed to remove the Ge spacer at the source and drain in order to make Al directly contact with the GeSn layer, to enhance the transparency between the superconductor and two-dimensional hole gas. Electrical measurements of Josephson FETs are carried out in a dilution fridge. The transistors show an on/off ratio as high as 4×105 at 0.05 K, which indicates a low leakage current at low temperatures. However, no supercurrent is observed in all transistors. Possible reasons are poor Al/Ge(Sn) interfaces formed during the etching process, the thick Ge spacer, or the long channel length.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-04-22T16:14:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-04-22T16:14:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 v
圖次 vii
第 1 章 引言 1
1.1 研究動機──量子計算 1
1.2 超導量子計算 1
1.3 拓樸量子計算 4
1.4 論文架構 6
第 2 章 鋁/鍺接面特性研究 7
2.1 超導體/半導體介面物理 7
2.1.1 超導現象 7
2.1.2 BCS理論:超導體的載子特性 9
2.1.3 超導體/正常金屬介面載子傳輸特性 12
2.1.4 超導鄰近效應 17
2.2 文獻回顧 18
2.3 鋁/鍺接觸元件製作 23
2.3.1 超導薄膜製備 23
2.3.2 鋁/鍺接觸元件 24
2.4 鋁/鍺接觸元件電性量測 25
2.4.1 量測架構 25
2.4.2 超導薄膜量測結果 27
2.4.3 鋁/鍺接觸元件量測結果 29
2.5 結論 31
第 3 章 鍺錫約瑟夫森電晶體 32
3.1 約瑟夫森電晶體原理 32
3.1.1 約瑟夫森效應 32
3.1.2 安德烈夫束縛態 33
3.2 文獻回顧 38
3.3 鍺錫約瑟夫森電晶體元件製作 43
3.3.1 鍺錫/鍺異質結構磊晶 43
3.3.2 平面型鍺錫約瑟夫森電晶體 45
3.3.3 台面型鍺錫約瑟夫森電晶體 47
3.4 鍺錫約瑟夫森電晶體電性量測 51
3.4.1 量測架構 51
3.4.2 鍺錫量子井霍爾量測 52
3.4.3 平面型鍺錫約瑟夫森電晶體 53
3.4.4 台面型鍺錫約瑟夫森電晶體 57
3.5 結論 62
第 4 章 結論及未來工作 63
4.1 結論 63
4.2 未來工作 64
參考文獻 65
-
dc.language.isozh_TW-
dc.subject鍺錫/鍺異質結構zh_TW
dc.subject約瑟夫森效應zh_TW
dc.subject超導體/半導體介面zh_TW
dc.subject量子計算zh_TW
dc.subjectGeSn/Ge Heterostructureen
dc.subjectSuperconductor/Semiconductor Interfaceen
dc.subjectJosephson Effecten
dc.subjectQuantum Computingen
dc.title鋁/鍺接面特性與鍺錫約瑟夫森場效電晶體zh_TW
dc.titleAl/Ge Interface and GeSn Josephson Field-Effect Transistorsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee羅廣禮;邱劭斌zh_TW
dc.contributor.oralexamcommitteeGuang-Li Luo;Shao-Pin Chiuen
dc.subject.keyword鍺錫/鍺異質結構,超導體/半導體介面,約瑟夫森效應,量子計算,zh_TW
dc.subject.keywordGeSn/Ge Heterostructure,Superconductor/Semiconductor Interface,Josephson Effect,Quantum Computing,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202400864-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-04-17-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2029-04-17-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-04-17
6.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved