Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92556
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李泰成zh_TW
dc.contributor.advisorTai-Cheng Leeen
dc.contributor.author許朝硯zh_TW
dc.contributor.authorChao-Yen Hsuen
dc.date.accessioned2024-04-12T16:13:58Z-
dc.date.available2024-04-13-
dc.date.copyright2024-04-12-
dc.date.issued2024-
dc.date.submitted2024-04-11-
dc.identifier.citation[1] J. Lagos, B. Hershberg, E. Martens, P. Wambacq, and J. Craninckx, “A single channel, 600ms/s, 12b, ringampbased pipelined adc in 28nm cmos,” IEEE Jour nal of SolidState Circuits , vol. 54, pp. 403–416, Feb. 2019.
[2] J. Lagos, B. P. Hershberg, E. Martens, P. Wambacq, and J. Craninckx, “A 1gs/s, 12 b, singlechannel pipelined adc with deadzonedegenerated ring amplifiers,” IEEE Journal of SolidState Circuits , vol. 54, pp. 646–658, Mar. 2019.
[3] B. Razavi, Principles of Data Conversion System Design. WileyIEEE Press, first ed., 1995.
[4] W. Jiang, Y. Zhu, M. Zhang, C.H. Chan, and R. P. Martins, “A temperature stabilized singlechannel 1gs/s 60db sndr sarassisted pipelined adc with dynamic gmrbased amplifier,” IEEE Journal of SolidState Circuits , vol. 55, pp. 322–332, Feb. 2020.
[5] C.Y. Lin, Y.H. Wei, and T.C. Lee, “27.7 a 10b 2.6gs/s timeinterleaved sar adc with background timingskew calibration,” in 2016 IEEE International SolidState Circuits Conference (ISSCC), pp. 468–469, Jan. 2016.
[6] J.W. Nam, M. Hassanpourghadi, A. Zhang, and M. S.W. Chen, “A 12bit 1.6, 3.2, and 6.4 gs/s 4b/cycle timeinterleaved sar adc with dual reference shifting and inter polation,” IEEE Journal of SolidState Circuits , vol. 53, pp. 1765–1779, Jun. 2018.
[7] D. Cline and P. Gray, “A power optimized 13b 5 msamples/s pipelined analog todigital converter in 1.2 /spl mu/m cmos,” IEEE Journal of SolidState Circuits , vol. 31, pp. 294–303, Mar. 1996.
[8] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U.K. Moon, “Ring amplifiers for switched capacitor circuits,” IEEE Journal of SolidState Cir cuits, vol. 47, pp. 2928–2942, Dec. 2012.
[9] Y. Lim and M. P. Flynn, “A 100 ms/s, 10.5 bit, 2.46 mw comparatorless pipeline adc using selfbiased ring amplifiers,” IEEE Journal of SolidState Circuits , vol. 50, pp. 2331–2341, Oct. 2015.
[10] K. M. Megawer, F. A. Hussien, M. M. Aboudina, and A. N. Mohieldin, “A system atic design methodology for classabstyle ring amplifiers,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, pp. 1169–1173, Sep. 2018.
[11] D. J. Tony Carusone and K. Martin, Analog Integrated Circuit Design. Wiley, sec ond ed., 2012.
[12] Y. Lim and M. P. Flynn, “A calibrationfree 2.3 mw 73.2 db sndr 15b 100 ms/s fourstage fully differential ring amplifier based sarassisted pipeline adc,” in 2017 Symposium on VLSI Circuits, pp. C98–C99, Jun. 2017.
[13] T.C. Hung, J.C. Wang, and T.H. Kuo, “16.4 a calibrationfree 71.7db sndr 100ms/s 0.7mw weightedaveraging correlated level shifting pipelined sar adc with speed enhancement scheme,” in 2020 IEEE International SolidState Circuits Conference (ISSCC) , pp. 256–258, Feb. 2020.
[14] J.C. Wang and T.H. Kuo, “A 72db sndr 130ms/s 0.8mw pipelinedsar adc using a distributed averaging correlated level shifting ring amplifier,” IEEE Journal of SolidState Circuits , vol. 57, pp. 3794–3803, Dec. 2022.
[15] C. Y. Lee, P. K. Venkatachala, A. ElShater, B. Xiao, H. Hu, and U.K. Moon, “Cas coded ring amplifiers for high speed and high accuracy settling,” in 2019 IEEE In ternational Symposium on Circuits and Systems (ISCAS), pp. 1–5, May 2019.
[16] P. K. Venkatachala, S. Leuenberger, A. ElShater, C. Lee, Y. Xu, B. Xiao, M. Oat man, and U.K. Moon, “Process invariant biasing of ring amplifiers using deadzone regulation circuit,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, May 2018.
[17] J. Xavier, P. Barquinha, and J. Goes, “Design of a ringamplifier robust against pvt variations in deepnanoscale finfet cmos,” in 2021 XXXVI Conference on Design of Circuits and Integrated Systems (DCIS), pp. 1–5, Nov. 2021.
[18] M. Zhan, L. Jie, X. Tang, and N. Sun, “A 0.004mm2 200ms/s pipelined sar adc with kt/c noise cancellation and robust ringamp,” in 2022 IEEE International SolidState Circuits Conference (ISSCC), vol. 65, pp. 164–166, Feb. 2022.
[19] Y. Chen, J. Wang, H. Hu, F. Ye, and J. Ren, “A 200ms/s, 11 bit sarassisted pipeline adc with biasenhanced ring amplifier,” in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4, May 2017.
[20] C.C. Liu, S.J. Chang, G.Y. Huang, and Y.Z. Lin, “A 10bit 50MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE Journal of SolidState Cir cuits, vol. 45, pp. 731–740, Apr. 2010.
[21] L. Sumanen, M. Waltari, and K. Halonen, “A mismatch insensitive CMOS dynamic comparator for pipeline A/D converters,” ICECS 2000. 7th IEEE International Con ference on Electronics, Circuits and Systems (Cat. No.00EX445), vol. 1, pp. 32–35, Dec. 2000.
[22] B. Murmann, “ADC Performance Survey 19972023.” [Online]. Available: https: //web.stanford.edu/~murmann/adcsurvey.html, 2023.
[23] L. Wei, Z. Zheng, N. Markulic, J. Lagos, E. Martens, Y. Zhu, C.H. Chan, J. Cran inckx, and R. P. Martins, “An auxiliarychannelsharing background distortion and gain calibration achieving >8db sfdr improvement over 4th nyquist zone in 1gs/s adc,” in 2021 Symposium on VLSI Circuits, pp. 1–2, Jun. 2021.
[24] M. Gu, Y. Zhong, L. Jie, and N. Sun, “A 12b 1gs/s pipelined adc with digital back ground calibration of interstage gain, capacitor mismatch, and kickback errors,” in ESSCIRC 2023IEEE 49th European Solid State Circuits Conference (ESSCIRC) , pp. 329–332, Sep. 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92556-
dc.description.abstract本論文提出了一種結合動態偏壓和增益提升技術的巢狀環形放大器。所提出之新型放大器在提升增益至近90分貝的同時,保留了環形放大器原本的高迴轉率特性,該架構有助於改善速度與解析度間的設計權衡。此放大器被應用在一個無需校準的十一位元十億取樣頻率單通道管線式線類比數位轉換器系統。與此同時,我們也提出相對應的偏壓電路來緩解環形放大器容易受製程、電壓和溫度變異影響的缺點。

此類比數位轉換器利用28奈米技術製造,在十億赫茲的取樣頻率下,可測得53.52分貝的訊號對雜訊失真比,同時僅耗能14.7毫瓦,量測供應電壓為1伏特,並且達到了159分貝的Schreier效能指標。
zh_TW
dc.description.abstractIn this thesis, we propose a nested ring amplifier that combines dynamic bias and gain-boost techniques. The proposed amplifier significantly enhances gain, achieving nearly 90 dB, while retaining the high-slew capability inherent in ring amplifiers. This enhancement relaxes speed and resolution constraints. The amplifier is implemented in a calibration-free 11-bit 1GS/s single-channel pipelined ADC. Furthermore, the proposed biasing circuits are used to alleviate the process, voltage, and temperature (PVT) -sensitive issues associated with ring amplifiers.

Fabricated in a 28-nm CMOS technology, the ADC achieves 53.52-dB SNDR under sampling rate of 1GS/s, consuming 14.7 mW from a 1-V supply and yielding a Schreier figure-of-merit (FoMs) of 159 dB.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-04-12T16:13:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-04-12T16:13:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
誌謝 iii
摘要 v
Abstract vi
Contents vii
List of Figures x
List of Tables xiii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Fundamentals 3
2.1 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 ADC Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Differential Nonlinearity (DNL) . . . . . . . . . . . . . . . . . . 5
2.2.2 Integral Nonlinearity (INL) . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 SignaltoNoise Ratio (SNR) . . . . . . . . . . . . . . . . . . . . 6
2.2.4 SignaltoNoise and Distortion Ratio (SNDR) . . . . . . . . . . . 6
2.2.5 Effective Number of Bits (ENOB) . . . . . . . . . . . . . . . . . 6
2.2.6 SpuriousFree Dynamic Range (SFDR) . . . . . . . . . . . . . . 6
2.2.7 Total Harmonic Distortion (THD) . . . . . . . . . . . . . . . . . 7
2.2.8 Dynamic Range (DR) . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.9 Figure of Merit (FoM) . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Pipelined ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Ring amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Slewing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 System Architecture and Implementation 14
3.1 1.5bit/stage vs 2.5bit/stage . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Multiplying DAC . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 3bit Flash Backend Circuit . . . . . . . . . . . . . . . . . . . . 20
3.3 Nested Ring Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Proposed Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 PVT Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.4 Proposed Bias Circuits . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.5 CMFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Peripheral Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Bootstrapped Switch . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.4 Synchronization, Decimation and Output Buffer . . . . . . . . . 32
3.5 Layout Floor Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.1 Chip 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.2 Chip 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 Measurement Result 39
4.1 Chip Micrograph and Printed Circuit Board . . . . . . . . . . . . . . . . 39
4.2 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.1 Basic Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Temperature Chamber . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Phase Unbalance . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Chip 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Chip 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Conclusion 52
5.1 Comparison Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Bibliography 54
-
dc.language.isoen-
dc.subject無須校準zh_TW
dc.subject管線式類比數位轉換器zh_TW
dc.subject增益提升zh_TW
dc.subject動態偏壓zh_TW
dc.subject環形放大器zh_TW
dc.subjectring amplifieren
dc.subjectdynamic biasen
dc.subjectgain boosten
dc.subjectcalibration-freeen
dc.subjectPipelined ADCen
dc.title具有製程電壓溫度不敏感性巢狀環形放大器之十一位元十億赫茲管線式類比數位轉換器zh_TW
dc.titleA 11b 1GS/s Pipelined ADC with PVT-insensitive Nested Ring Amplifiersen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林宗賢;陳信樹;鍾勇輝zh_TW
dc.contributor.oralexamcommitteeTsung-Hsien Lin;Hsin-Shu Chen;Yung-Hui Chungen
dc.subject.keyword管線式類比數位轉換器,無須校準,環形放大器,動態偏壓,增益提升,zh_TW
dc.subject.keywordPipelined ADC,calibration-free,ring amplifier,dynamic bias,gain boost,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202400852-
dc.rights.note未授權-
dc.date.accepted2024-04-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
Appears in Collections:電子工程學研究所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
28.11 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved