Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92554
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃文達zh_TW
dc.contributor.advisorWen-Dar Huangen
dc.contributor.author黃渝雅zh_TW
dc.contributor.authorYu-Ya Huangen
dc.date.accessioned2024-04-12T16:13:15Z-
dc.date.available2024-04-13-
dc.date.copyright2024-04-12-
dc.date.issued2023-
dc.date.submitted2024-02-26-
dc.identifier.citation邱運全、陳正昌、曾東海。(1994)。水稻新品種-台稉11號。高雄區農業改良場研究彙報,6(1)。
李雅琴。(1977)。植物荷爾蒙對水稻種子及幼苗Aryl acylamidase活性的影響。台灣大學農藝學研究所學位論文。
周金英、蔡文福、鄭安靜。(1975)。秈稉稻品種間Aryl acylamidase的活性。科學農業,23(7-8),335-336。
林再發。(1980)。臺中秈10號之育成。台中區農業改良場研究彙報,03,1-6。
林再發。(1984)。水稻高產品種之選育特別論及臺中秈17號。台中區農業改良場研究彙報,08,29-40。
林富雄。(1996)。台灣水稻品種改良之成就與展望。台灣省農業試驗所專刊,59,47-69。
許明晃。(2003)。甘藷葉片色素含量與反射光譜關係之研究。台灣大學農藝學研究所學位論文。
許志聖、宋勳。(1989)。稉稻新品種-台稉9號。台中區農業專訊,5。
許宏昌、蔡思聖、吳文欽、徐仲禹、黃佳興、范美玲。(2018)。節水灌溉方法對於東部水稻田適用性之初步研究。花蓮區農業改良場研究彙報,36,1-12。
許志聖、楊嘉凌、侯福分。(2015)。台灣水田除草劑的演變與發展,中華民國雜草學會會刊,26。
鄭安靜。(1976)。水分、養分的缺乏及不同温度處理對水稻體內Aryl acylamidase活性的影響。台灣大學農藝學研究所學位論文。
陳清田、張煜權、洪振東。(2014)。灌溉管理操作對水稻產量與節水效能影響之研究。農業工程學報,60(1)。
陳素娥。(1996)。水稻新品種臺稉14號特性及栽培管理要點。桃園區農業專訊,17,6-8。
陳素娥、黃振增、林孟輝、鄭隨和。(2004)。水稻桃園 3 號之育成。桃園區農業改良場研究彙報,56,1-16。
陳勵勤、羅正宗。(2016)。漫談水稻台南11號之貢獻。台南區農業專訊,97,12-15。
楊志維、鄭智允、簡禎佑、林孟輝。(2022)。適合有機及友善栽培之水稻新品種「桃園6號」。農政與農情,農科快訊,357,111-114。
楊嘉凌、鄭佳綺、王柏蓉、吳以健。(2016)。台灣多樣化的水稻品種及硬秈稻米生產現況。台中區農業專訊,94。
楊嘉凌、鄭佳綺、賴明信、吳永培、楊志維、張素貞、羅正宗、吳志文、丁文彥、宣大平。(2013)。良質米育種的演變與成果。良質米產業發展研討會專輯,37-52。
蔡文福。(1974)。水田殺草劑propanil及其代謝作用。科學農業,22(11-12),409-414。
蔣永正。(2012)。除草劑抗藥性發展及抗性雜草管理。有害生物研討會專刊,19-36。
劉永忠。(1978)。水稻品種與除草寧選擇性的關係。台灣大學農藝學研究所學位論文。
簡禎佑、楊志維、鄭智允、林孟輝。(2020)。降低一期作供水壓力延後水稻插秧新選擇新品種桃園5號介紹。桃園農業專訊,113,1-3。
[行政院農業委員會] [農業統計資料查詢] [引用日期:2023年4月5日] [https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx]
[經濟部水利署] [各項用水統計資料庫] [引用日期:2023年4月5日] [https://wuss.wra.gov.tw/annuals.aspx]
[聯合國糧食及農業組織] [作物和牲畜產品] [引用日期:2023年4月5日] [https://www.fao.org/faostat/en/#data/QCL]
Abigail, M. E. A., Samuel, S. M., & Ramalingam, C. (2015). Addressing the environmental impacts of butachlor and the available remediation strategies: a systematic review. International Journal of Environmental Science and Technology, 12(12), 4025-4036.
Alam, S. N., & Cohen, M. B. (1998). Detection and analysis of QTLs for resistance to the brown planthopper, Nilaparvata lugens, in a doubled-haploid rice population. Theoretical and Applied Genetics, 97(8), 1370-1379.
Ambrose, A. M., Larson, P. S., Borzelleca, J. F., & Hennigar, G. R. (1972). Toxicologic studies on 3’,4’-dichloropropionanilide. Toxicology and Applied Pharmacology, 23(4), 650-659.
Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1-2), 95-120.
Bausch, W. C., & Duke, H. R. (1996). Remote sensing of plant nitrogen status in corn. Transactions of the ASAE, 39(5), 1869-1875.
Beisel, N. S., Callaham, J. B., Sng, N. J., Taylor, D. J., Paul, A-L., & Ferl, R. J. (2018). Utilization of single-image normalized difference vegetation index (SI-NDVI) for early plant stress detection. Applications in Plant Sciences, 6(10), e01186.
Belder, P., Spiertz, J. H. J., Bouman, B. A. M., Lu, G., & Tuong, T. P. (2005). Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Research, 93(2), 169-185.
Benediktsson, J., Chanussot, J., & Moon, W. (2012). Very high-resolution remote sensing: challenges and opportunities [Point of View]. Proceedings of the IEEE, 100, 1907-1910.
Blackburn, G. A. (1998). Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. International Journal of Remote Sensing, 19(4), 657-675.
Boopathy, R., Rajesh, R. V., Darvesh, S., & Layer, P. G. (2007). Human serum cholinesterase from liver pathological samples exhibit highly elevated aryl acylamidase activity. Clinica Chimica Acta, 380(1), 151-156.
Boshkovski, B., Tzerakis, C., Doupis, G., Zapolska, A., Kalaitzidis, C., & Koubouris, G. (2021). Relationship between physiological and biochemical measurements with spectral reflectance for two Phaseolus vulgaris L. genotypes under multiple stress. International Journal of Remote Sensing, 42(4), 1230-1249.
Bouman, B. (2001). Water-efficient management strategies in rice production. International Rice Research Institute, 26, 17-22.
Braun, S., & Flückiger, W. (1984). Increased population of the aphid Aphis pomi at a motorway. Part 2—The effect of drought and deicing salt. Environmental Pollution Series A, Ecological and Biological, 36(3), 261-270.
Carey III, V. F., Duke, S. O., Hoagland, R. E., & Talbert, R. E. (1995). Resistance mechanism of propanil-Resistant Barnyardgrass: 1. Absorption, Translocation, and Site of Action Studies. Pesticide Biochemistry and Physiology, 52(3), 182-189.
Carey III, V. F., Hoagland, R. E., & Talbert, R. E. (1997). Resistance mechanism of propanil-resistant barnyardgrass: II. In-vivo metabolism of the propanil molecule. Pesticide Science, 49(4), 333-338.
Casida, J. E. (2009). Pest Toxicology: The Primary Mechanisms of Pesticide Action. Chemical Research in Toxicology, 22(4), 609-619.
Chang, Y.C., Uphoff, N. T., & Yamaji, E. (2016). A conceptual framework for eco-friendly paddy farming in Taiwan, based on experimentation with System of Rice Intensification (SRI) methodology. Paddy and Water Environment, 14(1), 169-183.
Chappelle, E. W., Kim, M. S., & McMurtrey, J. E. (1992). Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sensing of Environment, 39(3), 239-247.
Chávez, R. O., Clevers, J. G. P. W., Decuyper, M., de Bruin, S., & Herold, M. (2016). 50 years of water extraction in the Pampa del Tamarugal basin: Can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)? Journal of Arid Environments, 124, 292-303.
Chen, J. J., & Matsunaka, S. (1990). The propanil hydrolyzing enzyme aryl acylamidase in the wild rices of genus Oryza. Pesticide Biochemistry and Physiology, 38(1), 26-33.
Chen, Z., Schmidt, B., & Schäffer, A. (2017). Uptake and decomposition of the herbicide propanil in the plant Bidens pilosa L. dominating in the Yangtze Three Gorges Reservoir (TGR), China. Environmental Science and Pollution Research, 24(12), 11141-11153.
Cheng, X., Zhu, L., & He, G. (2013). Towards understanding of molecular interactions between rice and the brown planthopper. Molecular Plant, 6(3), 621-634.
Cui, Y., Wang, X., Wang, X., Zhang, X., & Fang, L. (2021). Evaluation methods of heavy metal pollution in soils based on enzyme activities: A review. Soil Ecology Letters, 3(3), 169-177.
Datt, B. (1998). Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in Eucalyptus leaves. Remote Sensing of Environment, 66(2), 111-121.
Dawson, A. H., Eddleston, M., Senarathna, L., Mohamed, F., Gawarammana, I., Bowe, S. J., Manuweera, G., Buckley, N. A. (2010). Acute human lethal toxicity of agricultural pesticides: A prospective cohort study. PLOS Medicine, 7(10), e1000357.
De Datta, S. K. (1981). Principles and practices of rice production. John Wiley & Sons, Inc.
Delgado, J. A., Short, N. M., Roberts, D. P., & Vandenberg, B. (2019). Big data analysis for sustainable agriculture on a geospatial cloud framework. Frontiers in Sustainable Food Systems, 3(54), 1-13.
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Prentice, I.C., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P.B., Moles, A.T., Dickie, J., Gillison, A.N., Zanne, A.E., Chave, J., Wright, S.J., Sheremet’ev, S.N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J.S., Günther, A., Falczuk, V., Rüger, N., Mahecha M.D., & Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167-171.
Dutrieux, L. P., Verbesselt, J., Kooistra, L., & Herold, M. (2015). Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia. ISPRS Journal of Photogrammetry and Remote Sensing, 107, 112-125.
Elvidge, C. D., & Chen, Z. (1995). Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, 54(1), 38-48.
Everitt, J. H., Pettit, R. D., & Alaniz, M. A. (1987). Remote Sensing of Broom Snakeweed (Gutierrezia sarothrae) and Spiny Aster (Aster spinosus). Weed Science, 35(2), 295-302.
Fan, X., Jia, L., Li, Y., Smith, S. J., Miller, A. J., & Shen, Q. (2007). Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. Journal of Experimental Botany, 58(7), 1729-1740.
Fu, Y., Yang, G., Pu, R., Li, Z., Li, H., Xu, X., Song, X., Yang, X., Zhao, C. (2021). An overview of crop nitrogen status assessment using hyperspectral remote sensing: Current status and perspectives. European Journal of Agronomy, 124, 126241.
Gao, B.C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266.
Gaynor, J. J., & Still, C. C. (1983). Subcellular Localization of Rice Leaf Aryl Acylamidase Activity 1. Plant Physiology, 72(1), 80-85.
Ge, Y., Thomasson, J. A., & Sui, R. (2011). Remote sensing of soil properties in precision agriculture: A review. Frontiers of Earth Science, 5(3), 229-238.
George, S. T., & Balasubramanian, A. S. (1981). The aryl acylamidases and their relationship to cholinesterases in human serum, erythrocyte and liver. European Journal of Biochemistry, 121(1), 177-186.
Gitelson, A., & Merzlyak, M. N. (1994a). Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology, 22(3), 247-252.
Gitelson, A., & Merzlyak, M. N. (1994b). Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral Features and Relation to Chlorophyll Estimation. Journal of Plant Physiology, 143(3), 286-292.
Gitelson, A. A., Buschmann, C., & Lichtenthaler, H. K. (1999). The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in Plants. Remote Sensing of Environment, 69(3), 296-302.
Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271-282.
Gitelson, A. A., & Merzlyak, M. N. (1998). Remote sensing of chlorophyll concentration in higher plant leaves. Advances in Space Research, 22(5), 689-692.
Gruenhagen, R. D., & Moreland, D. E. (1971). Effects of herbicides on ATP levels in excised soybean hypocotyls. Weed Science, 19(4), 319-323.
Hakeem, K. R., Ahmad, A., Iqbal, M., Gucel, S., & Ozturk, M. (2011). Nitrogen-efficient rice cultivars can reduce nitrate pollution. Environmental Science and Pollution Research, 18(7), 1184-1193.
Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86(4), 542-553.
Hardeland, R. (2017). Taxon- and site-specific melatonin catabolism. Molecules, 22(11), 2015.
Hargrove, T. R. (1979). Diffusion and adoption of semidwarf rice cultivars as parents in asian rice breeding programs. Crop Science, 19(5), 571-574.
Hasan, Z. T., Atrakji, D., & Mehuaiden, D. A. K. (2022). The effect of melatonin on thrombosis, sepsis and mortality rate in COVID-19 patients. International Journal of Infectious Diseases, 114, 79-84.
Hirase, K., & Matsunaka, S. (1991). Physiological role of the propanil hydrolyzing enzyme (aryl acylamidase I) in rice plants. Pesticide Biochemistry and Physiology, 41(1), 82-88.
Hoagland, R. E., & Graf, G. (1972a). An aryl acylamidase from tulip which hydrolyzes 3’,4’-dichloropropionanilide. Phytochemistry, 11(2), 521-527.
Hoagland, R. E., & Graf, G. (1972b). Enzymatic hydrolysis of herbicides in plants. Weed Science, 20(4), 303-305.
Hoagland, R. E., Graf, G., & Handel, E. D. (1974). Hydrolysis of 3’,4’-dichloropropionanilide by plant aryl acylamidases. Weed Research, 14(6), 371-374.
Hofstra, G., & Switzer, C. M. (1968). The phytotoxicity of propanil. Weed Science, 16(1), 23-28.
Horler, D. N. H., Dockray, M., & Barber, J. (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4(2), 273-288.
Hsing, Y. I. (2014). Rice in Taiwan. Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. (pp. 1-3). Springer, Dordrecht.
Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1-6.
Huang, W.D., Lin, K.H., Hsu, M.H., Huang, M.Y., Yang, Z.W., Chao, P.Y., & Yang, C.M. (2014). Eliminating interference by anthocyanin in chlorophyll estimation of sweet potato (Ipomoea batatas L.) leaves. Botanical Studies, 55(1), 11.
Jin, J., & Wang, Q. (2016). Hyperspectral indices based on first derivative spectra closely trace canopy transpiration in a desert plant. Ecological Informatics, 35, 1-8.
Kanawi, E., Van Scoy, A. R., Budd, R., & Tjeerdema, R. S. (2016). Environmental fate and ecotoxicology of propanil: a review. Toxicological and Environmental Chemistry, 98(7), 689-704.
Keys, A. J., Bird, I. F., Cornelius, M. J., Lea, P. J., Wallsgrove, R. M., & Miflin, B. J. (1978). Photorespiratory nitrogen cycle. Nature, 275(5682), 741-743.
Khaliq, A., Matloob, A., Ahmad, N., Rasul, F., & Awan, I. (2012). Post emergence chemical weed control in direct seeded fine rice. Journal of Animal and Plant Sciences, 22.
Khush, G. S., & Jena, K. K. (2009). Current Status and Future Prospects for Research on Blast Resistance in Rice (Oryza sativa L.). Advances in Genetics, Genomics and Control of Rice Blast Disease, (pp. 1-10). Springer, Dordrecht.
Lastra, O. C. (2019). Derivative spectrophotometric determination of nitrate in plant tissue. Journal of AOAC International, 86(6), 1101-1105.
Liang, C.G., Chen, L.P., Wang, Y., Liu, J., Xu, G.L., & Li, T. (2011). High temperature at grain-filling stage affects nitrogen metabolism enzyme activities in grains and grain nutritional quality in rice. Rice Science, 18(3), 210-216.
Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation. NY: John Wiley & Sons.
Lissoni, P., Messina, G., Rovelli, F., Lissoni, A., Fumagalli, L., Brivio, F., Porro, G., & Fede, G. (2019). A study of a possible cancer cure by correcting the main cancer-related psychoneuroendocrine alterations responsible for tumor-related immunosuppression. Cancer Reports and Reviews, 3(4).
Liu, J. (2014). Propanil. Encyclopedia of Toxicology (Third Edition) (pp. 1092-1093). Oxford: Academic Press.
Lohstroh, P. (2019). Propanil (N-(3,4-dichlorophenyl)propanamide) Risk Characterization Document. Human Health Assessment Branch.
Lopez-Martinez, N., Gonzalez-Gutierrez, J., & De Prado, R. (2001). Propanil activity, uptake and metabolism in resistant Echinochloa spp. biotypes. Weed Research, 41(2), 187-196.
Ma, S., Zhou, Y., Gowda, P. H., Dong, J., Zhang, G., Kakani, V. G., Wagle, P., Liangfu ChenJiang, W. (2019). Application of the water-related spectral reflectance indices: A review. Ecological Indicators, 98, 68-79.
Madakadze, I. C., Stewart, K. A., Madakadze, R. M., Peterson, P. R., Coulman, B. E., & Smith, D. L. (1999). Field evaluation of the chlorophyll meter to predict yield and nitrogen concentration of switchgrass. Journal of Plant Nutrition, 22(6), 1001-1010.
Mercado, S. A. S., Caleño, J. D. Q., & Suárez, J. P. R. (2020). Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test. Chemosphere, 249, 126193.
Middleton, E. M., Campbell, P. K. E., McMurtrey, J. E., Corp, L. A., Butcher, L. M., & Chappelle, E. W. (2002). "Red edge" optical properties of corn leaves from different nitrogen regimes. IEEE International Geoscience and Remote Sensing Symposium, 4, 2208-2210.
Moraes, B. S., Loro, V. L., Glusczak, L., Pretto, A., Menezes, C., Marchezan, E., & de Oliveira Machado, S. (2007). Effects of four rice herbicides on some metabolic and toxicology parameters of teleost fish (Leporinus obtusidens). Chemosphere, 68(8), 1597-1601.
Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote Sensing, 2(10), 2369-2387.
Murch, S. J., & Erland, L. A. E. (2021). A systematic review of melatonin in plants: An example of evolution of literature. Frontiers in Plant Science, 12.
Naidu, R. A., Perry, E. M., Pierce, F. J., & Mekuria, T. (2009). The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Computers and Electronics in Agriculture, 66(1), 38-45.
Nam, K. H., Kim, Y. J., Moon, Y. S., Pack, I. S., & Kim, C. G. (2017). Salinity affects metabolomic profiles of different trophic levels in a food chain. Science of the Total Environment, 599-600, 198-206.
Otuechere, C. A., Ayoade, F., & Arogundade, O. J. (2019). Impact of an acylanilide herbicide propanil on biochemical indices in kidney of diabetic rats. Asian Journal of Biological Sciences, 12(2), 210-216.
Pascual, V. J., & Wang, Y. M. (2017). Utilizing rainfall and alternate wetting and drying irrigation for high water productivity in irrigated lowland paddy rice in southern Taiwan. Plant Production Science, 20(1), 24-35.
Peñuelas, J., & Filella, I. (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science, 3(4), 151-156.
Price, J. C., & Bausch, W. C. (1995). Leaf area index estimation from visible and near-infrared reflectance data. Remote Sensing of Environment, 52(1), 55-65.
Raj, S. K., & Syriac, E. K. (2017). Weed management in direct seeded rice: a review. Agricultural Reviews, 38(1).
Ray, T. B., & Still, C. C. (1975). Propanil metabolism in rice: A comparison of propanil amidase activities in rice plants and callus cultures. Pesticide Biochemistry and Physiology, 5(2), 171-177.
Read, J. J., Tarpley, L., McKinion, J. M., & Reddy, K. R. (2002). Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton. Journal of Environmental Quality, 31(5), 1442-1452.
Rubia-Sanchez, E., Suzuki, Y., Arimura, K., Miyamoto, K., Matsumura, M., & Watanabe, T. (2003). Comparing Nilaparvata lugens (Stal) and Sogatella furcifera (Horvath) (Homoptera: Delphacidae) feeding effects on rice plant growth processes at the vegetative stage. Crop Protection, 22(7), 967-974.
Salazar Mercado, S. A., Quintero Caleño, J. D., & Rojas Suárez, J. P. (2020). Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test. Chemosphere, 249, 126193.
Sasaki, T., Kawamura, M., & Ishikawa, H. (1996). Nitrogen recycling in the brown planthopper, Nilaparvata lugens: Involvement of yeast-like endosymbionts in uric acid metabolism. Journal of Insect Physiology, 42(2), 125-129.
Singh, S., Chhokar, R., Gopal, R., Ladha, J., Gupta, R., Kumar, V., & Singh, M. (2009). Integrated weed management: a key to success for direct-seeded rice in the Indo-Gangetic plains. Integrated Crop and Resource Management in the Rice-Wheat System of South Asia. 261-278. International Rice Research Institute.
Slominski, A. T., Semak, I., Fischer, T. W., Kim, T.-K., Kleszczyński, K., Hardeland, R., & Reiter, R. J. (2017). Metabolism of melatonin in the skin: Why is it important? Experimental Dermatology, 26(7), 563-568.
Smith, D., & Buchholtz, K. P. (1962). Transpiration rate reduction in plants with atrazine. Science, 136(3512), 263-264.
Souza, S. R., Stark, E. M. L. M., Fernandes, M. S., & Magalhaes, J. R. (1999). Effects of supplemental nitrogen on nitrogen‐assimilation enzymes, free amino nitrogen, soluble sugars, and crude protein of rice. Communications in Soil Science and Plant Analysis, 30(5-6), 711-724.
Still, G. G. (1968). Metabolism of 3,4-dichloropropionanifide in plants: The metabolic fate of the 3,4-dichloroaniline moiety. Science, 159(3818), 992-993.
Stoop, W. A., Uphoff, N., & Kassam, A. (2002). A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers. Agricultural Systems, 71(3), 249-274.
Takebe, M., Yoneyama, T., Inada, K., & Murakami, T. (2008). Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant and Soil, 122, 295-297.
Tarpley, L., Reddy, K. R., & Sassenrath-Cole, G. F. (2000). Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Science, 40(6), 1814-1819.
Thomas, J., & Gausman, H. (1977). Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops 1. Agronomy Journal, 69(5), 799-802.
Tian, J., Wang, L., Li, X., Gong, H., Shi, C., Zhong, R., & Liu, X. (2017). Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest. International Journal of Applied Earth Observation and Geoinformation, 61, 22-31.
Tian, Y. C., Yao, X., Yang, J., Cao, W. X., Hannaway, D. B., & Zhu, Y. (2011). Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance. Field Crops Research, 120(2), 299-310.
Tolley-Henry, L., & Raper, C. D. (1986). Utilization of ammonium as a nitrogen source: Effects of ambient acidity on growth and nitrogen accumulation by soybean. Plant Physiology, 82(1), 54-60.
Tsai, W.F. (1974). Metabolism of propanil: solubilization and purification of a propanil hydrolyzing aryl acylamidase from rice leaves. Ph. D. dissertation, University of Califorina, Davis.
Tsai, W.T. (2019). Trends in the use of glyphosate herbicide and its relevant regulations in Taiwan: A water contaminant of increasing concern. Toxics, 7(1), 4.
Tsai, W.T. (2020). Status of herbicide use, regulatory management and case study of paraquat in Taiwan. Environment, Development and Sustainability, 22(3), 2673-2683.
Tuong, T., & Bouman, B. (2003). Rice production in water-scarce environments. Water productivity in agriculture: limits and opportunities for improvement. 1, 13-42.
Váradi, L., Breedon, M., Chen, F. F., Trinchi, A., Cole, I. S., & Wei, G. (2019). Evaluation of novel Griess-reagent candidates for nitrite sensing in aqueous media identified via molecular fingerprint searching. RSC Advances, 9(7), 3994-4000.
Vicente-Serrano, S. M., Camarero, J. J., Olano, J. M., Martín-Hernández, N., Peña-Gallardo, M., Tomás-Burguera, M., Gazol, A., Azorin-Molina, C., Bhuyan, U., & El Kenawy, A. (2016). Diverse relationships between forest growth and the normalized difference vegetation index at a global scale. Remote Sensing of Environment, 187, 14-29.
Vogelmann, J. E., Rock, B. N., & Moss, D. M. (1993). Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14(8), 1563-1575.
Walia, U. S., Walia, S. S., Sidhu, A. S., & Nayyar, S. (2012). Bioefficacy of pre- and post-emergence herbicides in direct-seeded rice in Central Punjab. Indian Journal of Weed Science, 44(1), 30-33.
Wang, W., Yao, X., Yao, X., Tian, Y., Liu, X., Ni, J., Cao, W., & Zhu, Y. (2012). Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Research, 129, 90-98.
Wang, Y., & Li, J. (2005). The plant architecture of rice (Oryza sativa). Plant Molecular Biology, 59(1), 75-84.
Watt, M. S., Pearse, G. D., Dash, J. P., Melia, N., & Leonardo, E. M. C. (2019). Application of remote sensing technologies to identify impacts of nutritional deficiencies on forests. ISPRS Journal of Photogrammetry and Remote Sensing, 149, 226-241.
Webster, E. P., Teló, G. M., Blouin, D. C., & McKnight, B. M. (2018). Imazethapyr plus propanil mixtures in imidazolinone-resistant Rice. Weed Technology, 32(1), 45-51.
Witt, K. L., Zeiger, E., Tice, R. R., & van Birgelen, A. P. (2000). The genetic toxicity of 3,3',4,4'-tetrachloroazobenzene and 3,3',4, 4'-tetrachloroazoxybenzene: discordance between acute mouse bone marrow and subchronic mouse peripheral blood micronucleus test results. Mutation Research, 472(1-2), 147-154.
Wu, C. S., Xiang, Y. Q., Zheng, L. F., & Tong, Q. X. (2000). Estimating chlorophyll density of crop canopies by using hyperspectral data. Journal of Remote Sensing, 4(3), 228-232.
Xue, L., Cao, W., Luo, W., Dai, T., & Zhu, Y. (2004). Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal, 96(1), 135-142.
Yang, Z. W., Hsu, M. H., Chen, J. C., Huang, W. D., Yang, C. M., & Deng J. (2012). Grey Relational Analysis of Pigment Levels and the Normalized Difference Vegetation Index during the Vegetative Phase of Paddy Rice. Journal of Grey System, 24, 275-284.
Yoder, B. J., & Pettigrew-Crosby, R. E. (1995). Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 53(3), 199-211.
Yogo, Y., & Ishizuka, K. (1986). Tolerance of Finger Millet to Propanil. Journal of Weed Science and Technology, 31(2), 143-151.
Yuan, Y., Zhang, P., Schäffer, A., & Schmidt, B. (2017). 3,4-dichloroaniline revisited: A study on the fate of the priority pollutant in a sediment-water system derived from a rice growing region in Italy. Science of The Total Environment, 574, 1012-1020.
Zarco-Tejada, P. J., Miller, J. R., Noland, T. L., Mohammed, G. H., & Sampson, P. H. (2001). Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39(7), 1491-1507.
Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165, 104943.
Zhang, G. Q. (2020). Prospects of utilization of inter-subspecific heterosis between indica and japonica rice. Journal of Integrative Agriculture, 19(1), 1-10.
Zhu, X., & Liu, D. (2015). Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 102, 222-231.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92554-
dc.description.abstract除草靈 (Propanil) 為水稻萌後選擇性除草劑,水稻藉由所含有水解酵素Aryl acylamidase可以將Propanil分解,避免受Propanil的藥害。Aryl acylamidase除了能有效降解Propanil,在氮素代謝中也扮演重要角色,水稻的Aryl acylamidase活性會因品種與肥培管理而有所差異。因此本研究擬探討台灣秈、稉稻品種及不同氮素等級對水稻葉片Aryl acylamidase活性之影響,同時透過分析水稻葉片反射光譜,建立Aryl acylamidase酵素指數 (Enzyme index) 及預測模型,以期在未來能透過遙測等非破壞性方式,快速且大範圍的監測水稻Aryl Acylamidase活性。秈稉稻比較實驗之參試品種為台中秈10號、台中秈17號、桃園3號、桃園5號、桃園6號、台稉9號、台稉11號和台稉14號;氮素等級實驗參試品種為桃園3號、桃園5號、桃園6號及台稉11號,氮素處理等級分為80、120、160及200 kg ha-1共4級,並測定555nm下之吸光度來代表Aryl acylamidase活性大小。結果顯示,品種間Aryl acylamidase活性有顯著差異,稉稻品種高於秈稻。在氮素處理試驗中,可發現整體而言,氮素施用會提高各品種Aryl acylamidase活性,影響程度依品種而異。反射光譜結果中,4品種於520、680及750 nm附近為敏感波段,因此以上述3波長建立酵素指數。Aryl acylamidase活性與酵素指數迴歸分析結果顯示,各品種之預測模型決定係數皆高於0.9。本研究確立了Aryl acylamidase的活性測定方式,並透過品種比較及氮素處理試驗,確立以及在水稻品種間的差異性及和氮素的關聯。在反射光譜上,本研究成功建立Aryl acylamidase酵素指數及非破壞性Aryl acylamidase活性預測模型,而各模型皆有優秀的預測能力,顯示運用反射光譜監測Aryl acylamidase活性為可行之方法,提供水稻栽培系統中雜草管理之參考。zh_TW
dc.description.abstractPropanil is a postemergence selective herbicide in rice fields. The hydrolyzing enzyme Aryl acylamidase in rice can degrade Propanil to avoid damage caused by herbicides. Aryl acylamidase activity in rice varies depending on the variety and fertilizer management. Therefore, this study aims to investigate the effects of indica and japonica rice varieties, as well as different nitrogen levels, on the activity of Aryl acylamidase in rice leaves in Taiwan. The study also seeks to establish Aryl acylamidase enzyme indices and predictive models by analyzing the reflectance spectrum of rice leaves. Thus, in the future, it is possible to monitor the Aryl acylamidase activity of rice in a non-destructive way and on a rapid and large scale, such as remote sensing. The rice varieties tested in the indica and japonica rice comparison experiment were Taichung Sen No. 10, Taichung Sen No. 17, Taoyuan No.3, Taoyuan No.6, Taikeng No.9, Taikeng No.11, and Taikeng No.14. The nitrogen level experiment was conducted on Taoyuan No.3, Taoyuan No.5, Taoyuan No.6, and Taikeng No.11. The nitrogen treatment levels had four levels: 80, 120, 160, and 200 kg ha-1, and the absorbance at 555 nm was measured to represent the Aryl acylamidase activity. The results showed significant differences in Aryl acylamidase activity among the varieties, with the japonica rice being higher than indica rice. The nitrogen treatment experiment found that overall, nitrogen application increased the activity of Aryl acylamidase in each variety, with the degree of effect varying by it. The results of the reflectance spectrum showed that the four varieties were sensitive around 520, 680, and 750 nm, so the enzyme indices were established from these wavelengths. The regression analysis of Aryl acylamidase activity and enzyme indices showed that the coefficient of determination in all varieties' prediction models was higher than 0.9. In this study, we determined the activity of Aryl acylamidase. The variability among rice varieties and the association with nitrogen were established through variety comparison and nitrogen treatment experiments. In the reflectance spectrum, Aryl acylamidase enzyme index and non-destructive Aryl acylamidase activity prediction models were successfully developed. Each model had an excellent predictive ability, indicating that using the reflectance spectrum to monitor Aryl acylamidase activity is feasible for weed management in rice cultivation systems.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-04-12T16:13:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-04-12T16:13:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 viii
表次 xii
第一章 前言 1
一、水稻 1
二、除草靈 (Propanil) 2
三、Aryl acylamidase 5
四、反射光譜遙測 8
五、研究動機 9
第二章 材料與方法 11
一、試驗架構與處理 11
(一) Aryl acylamidase活性分析條件之建立 11
(二) 秈稉稻葉片Aryl acylamidase活性比較試驗 11
(三) 氮素對水稻葉片Aryl acylamidase活性影響試驗 12
二、分析方法 12
(一) Aryl acylamidase活性分析 12
(二) 反射光譜測定 13
三、統計分析 14
第三章 結果 15
一、Aryl acylamidase活性 15
(一) Aryl acylamidase 活性分析條件建立 15
(二) 不同水稻品種 15
(三) 不同氮素處理 15
二、高光譜分析 16
(一) 反射光譜 16
(二) 一次微分 17
(三) 標準差 (Standard deviation, STD) 17
(四) 酵素指數 (Enzyme index) 18
(五) 迴歸分析與預測模型篩選 18
第四章 討論 26
一、Aryl acylamidase活性 26
(一) Aryl acylamidase 活性分析條件建立 26
(二) 不同水稻品種 26
(三) 不同氮素處理 28
二、高光譜分析 29
(一) 反射光譜 29
(二) 酵素指數 30
(三) 預測模型 31
第五章 結論 34
第六章 參考文獻 35
-
dc.language.isozh_TW-
dc.subject遙感探測zh_TW
dc.subject除草靈zh_TW
dc.subject水稻zh_TW
dc.subject氮素zh_TW
dc.subject反射光譜zh_TW
dc.subjectAryl acylamidasezh_TW
dc.subjectremote sensingen
dc.subjectAryl acylamidaseen
dc.subjectPropanilen
dc.subjectriceen
dc.subjectnitrogenen
dc.subjectreflectance spectraen
dc.title水稻葉片Aryl Acylamidase活性與反射光譜關聯性之研究zh_TW
dc.titleStudies on the Relationship of Aryl Acylamidase Activity and Reflectance Spectra in the Leaves of Riceen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊棋明;許明晃;楊志維;陳昶璋zh_TW
dc.contributor.oralexamcommitteeChi-Ming Yang;Ming-Huang Hsu;Zhi-Wei Yang;Chang-Chang Changen
dc.subject.keywordAryl acylamidase,除草靈,水稻,氮素,反射光譜,遙感探測,zh_TW
dc.subject.keywordAryl acylamidase,Propanil,rice,nitrogen,reflectance spectra,remote sensing,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202400750-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-27-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2029-02-26-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved