請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92546完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱士維 | zh_TW |
| dc.contributor.advisor | Shi-Wei Chu | en |
| dc.contributor.author | 廖于碩 | zh_TW |
| dc.contributor.author | Yu-Shuo Liao | en |
| dc.date.accessioned | 2024-04-09T16:13:46Z | - |
| dc.date.available | 2024-04-10 | - |
| dc.date.copyright | 2024-04-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-04-08 | - |
| dc.identifier.citation | Allen Institute for Brain Science (2004). Allen Mouse Brain Atlas. Available from https://atlas.brain-map.org/.
Araki, T. (2017). The history of optical microscope. Mechanical Engineering Reviews , 4 (1), 16-00242. https://doi.org/10.1299/mer.16-00242 Bando, Y., Grimm, C., Cornejo, V. H., & Yuste, R. (2019). Genetic voltage indicators. BMC Biol 17, 71 https://doi.org/10.1186/s12915-019-0682-0 Cheng, L. C., Horton, N. G., Wang, K., Chen, S. J., & Xu, C. (2014). Measurements of multiphoton action cross sections for multiphoton microscopy. Biomedical Optics Express , 5 (10), 3427-3433. https://doi.org/10.1364/Boe.5.003427 Dana, H., Marom, A., Paluch, S., Dvorkin, R., Brosh, I., & Shoham, S. (2014). Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks. Nat Commun , 5 , 3997. https://doi.org/10.1038/ncomms4997 Diaspro, A., Chirico, G., & Collini, M. (2005). Two-photon fluorescence excitation and related techniques in biological microscopy. Quarterly Reviews of Biophysics , 38 (2), 97-166. https://doi.org/10.1017/S0033583505004129 Duncan, M. D., Reintjes, J., & Manuccia, T. J. (1982). Scanning Coherent Anti-Stokes Raman Microscope. Optics Letters , 7 , 350-352. https://doi.org/10.1364/Ol.7.000350 Escobet-Montalbán, A., Gasparoli, F. M., Nylk, J., Liu, P. F., Yang, Z. Y., & Dholakia, K. (2018). Three-photon light-sheet fluorescence microscopy. Optics Letters , 43 (21), 5484-5487. https://doi.org/10.1364/Ol.43.005484 Freudiger, C. W., Min, W., Saar, B. G., Lu, S., Holtom, G. R., He, C. W., . . . Xie, X. S. (2008). Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science , 322 (5909), 1857-1861. https://doi.org/10.1126/science.1165758 Furuta, T., Yamauchi, K., Okamoto, S., Takahashi, M., Kakuta, S., Ishida, Y., . . . Hioki, H. (2022). Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method, ScaleSF. iScience , 25 (1). https://doi.org/10.1016/j.isci.2021.103601 Hodgkin, A. L., & Huxley, A. F. (1939). Action Potentials Recorded from Inside a Nerve Fibre. Nature 144, 710–711. https://doi.org/10.1038/144710a0 Hontani Y, Akbari N, Kolkman KE, Wu C, Xia F, Choe K, Wang GZ, Sokolova M, Fetcho JR, Xu C. Deep-Tissue Three-Photon Fluorescence Microscopy in Intact Mouse and Zebrafish Brain. J Vis Exp. 2022 Jan 13;(179). https://dx.doi.org/10.3791/63213. Horton, N. G., Wang, K., Kobat, D., Clark, C. G., Wise, F. W., Schaffer, C. B., & Xu, C. (2013). In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics , 7 (3), 205-209. https://doi.org/10.1038/Nphoton.2012.336 Hsu, K. J., Lin, Y. Y., Chiang, A. S., & Chu, S. W. (2019). Optical properties of adult Drosophila brains in one-, two-, and three-photon microscopy. Biomed Opt Express , 10 (4), 1627-1637. https://doi.org/10.1364/BOE.10.001627 Huang, S.-H., Irawati, N., Chien, Y.-F., Lin, J.-Y., Tsai, Y.-H., Wang, P.-Y., . . . Chu, S.-W. (2021). Optical volumetric brain imaging: speed, depth, and resolution enhancement. Journal of Physics D: Applied Physics , 54 (32), 323002. https://doi.org/10.1088/1361-6463/abff7b Imperato, S., Harms, F., Hubert, A., Mercier, M., Bourdieu, L., & Fragola, A. (2022). Single-shot quantitative aberration and scattering length measurements in mouse brain tissues using an extended-source Shack-Hartmann wavefront sensor. Optics Express , 30 (9), 15250-15265. https://doi.org/10.1364/Oe.456651 Bueno, J.M., Liao, YS., Ávila, F.J., Cheng, SF., Chu, SW. (2022). Drosophila Brain Advanced Multiphoton Imaging. In: Mazumder, N., Gangadharan, G., Kistenev, Y.V. (eds) Advances in Brain Imaging Techniques. Springer, Singapore. https://doi.org/10.1007/978-981-19-1352-5_4 Keiser, G. (2022). Light-Tissue Interactions. In G. Keiser (Ed.), Biophotonics: Concepts to Applications (pp. 169-221). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-3482-7_6 Kennedy, D., & Norman, C. (2005). What Don''t We Know? Science , 309 (5731), 75-75. https://doi.org/doi:10.1126/science.309.5731.75 Kobat, D., Durst, M. E., Nishimura, N., Wong, A. W., Schaffer, C. B., & Xu, C. (2009). Deep tissue multiphoton microscopy using longer wavelength excitation. Optics Express , 17 (16), 13354-13364. https://doi.org/10.1364/OE.17.013354 Kornfeld, J., & Denk, W. (2019). Progress and remaining challenges in high-throughput volume electron microscopy (vol 50, pg 261, 2018). Current Opinion in Neurobiology , 55 , 213-213. https://doi.org/10.1016/j.conb.2019.05.003 Liu, H. J., Deng, X. Q., Tong, S., He, C., Cheng, H., Zhuang, Z. W., . . . Wang, K. (2019). In Vivo Deep-Brain Structural and Hemodynamic Multiphoton Microscopy Enabled by Quantum Dots. Nano Letters , 19 (8), 5260-5265. https://doi.org/10.1021/acs.nanolett.9b01708 Maioli, V., Boniface, A., Mahou, P., Ortas, J. F., Abdeladim, L., Beaurepaire, E., & Supatto, W. (2020). Fast in vivo multiphoton light-sheet microscopy with optimal pulse frequency. Biomed Opt Express , 11 (10), 6012-6026. https://doi.org/10.1364/BOE.400113 Minsky, M. (1957). Microscopy apparatus . U. S. P. Office. https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US3013467 Müller-Wille, S. (2010). Cell theory, specificity, and reproduction, 1837-1870. Stud Hist Philos Biol Biomed Sci , 41 (3), 225-231. https://doi.org/10.1016/j.shpsc.2010.07.008 Oreopoulos, J., Berman, R., & Browne, M. (2014). Spinning-disk confocal microscopy: present technology and future trends. Quantitative Imaging in Cell Biology , 123 , 153-175. https://doi.org/10.1016/B978-0-12-420138-5.00009-4 Otomo, K., Goto, A., Yamanaka, Y., Hori, T., Nakayama, H., & Nemoto, T. (2020). High-peak-power 918-nm laser light source based two-photon spinning-disk microscopy for green fluorophores. Biochem Biophys Res Commun , 529 (2), 238-242. https://doi.org/10.1016/j.bbrc.2020.05.213 Otomo, K., Hibi, T., Murata, T., Watanabe, H., Kawakami, R., Nakayama, H., . . . Nemoto, T. (2015). Multi-point Scanning Two-photon Excitation Microscopy by Utilizing a High-peak-power 1042-nm Laser. Analytical Sciences , 31 (4), 307-313. https://doi.org/10.2116/analsci.31.307 Ouzounov, D. G., Wang, T., Wang, M., Feng, D. D., Horton, N. G., Cruz-Hernandez, J. C., . . . Xu, C. (2017). In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat Methods , 14 (4), 388-390. https://doi.org/10.1038/nmeth.4183 Petráň, M., Hadravský, M., Egger, M. D., & Galambos, R. (1968). Tandem-Scanning Reflected-Light Microscope*. Journal of the Optical Society of America , 58 (5), 661-664. https://doi.org/10.1364/JOSA.58.000661 Rowlands, C. J., Park, D., Bruns, O. T., Piatkevich, K. D., Fukumura, D., Jain, R. K., . . . So, P. T. C. (2017). Wide-field three-photon excitation in biological samples. Light-Science & Applications , 6 .https://doi.org/10.1038/lsa.2016.255 Scanziani, M., & Häusser, M. (2009). Electrophysiology in the age of light. Nature , 461 (7266), 930-939. https://doi.org/10.1038/nature08540 Schrodel, T., Prevedel, R., Aumayr, K., Zimmer, M., & Vaziri, A. (2013). Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat Methods , 10 (10), 1013-1020. https://doi.org/10.1038/nmeth.2637 Shimomura, O., Johnson, F. H., & Saiga, Y. (1962). Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol , 59 , 223-239. https://doi.org/10.1002/jcp.1030590302 Shimozawa, T., Yamagata, K., Kondo, T., Hayashi, S., Shitamukai, A., Konno, D., . . . Mimori-Kiyosue, Y. (2013). Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging. Proc Natl Acad Sci U S A , 110 (9), 3399-3404. https://doi.org/10.1073/pnas.1216696110 Sigal, Y. M., Zhou, R. B., & Zhuang, X. W. (2018). Visualizing and discovering cellular structures with super-resolution microscopy. Science , 361 (6405), 880-887. https://doi.org/10.1126/science.aau1044 Streich, L., Boffi, J. C., Wang, L., Alhalaseh, K., Barbieri, M., Rehm, R., . . . Prevedel, R. (2021). High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy. Nature Methods , 18 (10), 1253-+. https://doi.org/10.1038/s41592-021-01257-6 Takasaki, K., Abbasi-Asl, R., & Waters, J. (2020). Superficial Bound of the Depth Limit of Two-Photon Imaging in Mouse Brain. Eneuro , 7 (1). https://doi.org/10.1523/eneuro.0255-19.2019 Truong, T. V., Supatto, W., Koos, D. S., Choi, J. M., & Fraser, S. E. (2011). Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat Methods , 8 (9), 757-760. https://doi.org/10.1038/nmeth.1652 Wang, M. R., Wu, C. Y., Sinefeld, D., Li, B., Xia, F., & Xu, C. (2018).Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain Biomedical Optics Express , 9 (8). https://doi.org/10.1364/BOE.9.003534 Wang, T., Ouzounov, D. G., Wang, M., & Xu, C. (2017, 2017/04/02). Quantitative Comparison of Two-photon and Three-photon Activity Imaging of GCaMP6s-labeled Neurons in vivo in the Mouse Brain. OSA Technical Digest (online) Optics in the Life Sciences Congress. https://doi.org/10.1364/BRAIN.2017.BrM4B.4 Wang, T. Y., Wu, C. Y., Ouzounov, D. G., Gu, W. C., Xia, F., Kim, M., . . . Xu, C. (2020). Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. eLife 9:e53205.. https://doi.org/10.7554/eLife.53205 Weisenburger, S., Tejera, F., Demas, J., Chen, B., Manley, J., Sparks, F. T., . . . Vaziri, A. (2019). Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy. Cell , 177 (4),1050-1066.e14. https://doi.org/10.1016/j.cell.2019.03.011 Whittaker, E. T. (2018). A History of the Theories of Aether and Electricity from the Age of Descartes to the Close of the Nineteenth Century . Creative Media Partners, LLC. Wolf, S., Supatto, W., Debregeas, G., Mahou, P., Kruglik, S. G., Sintes, J. M., . . . Candelier, R. (2015). Whole-brain functional imaging with two-photon light-sheet microscopy. Nat Methods , 12 (5), 379-380. https://doi.org/10.1038/nmeth.3371 Wu, J., Ji, N., & Tsia, K. K. (2021). Speed scaling in multiphoton fluorescence microscopy. Nature Photonics , 15 (11), 800-812. https://doi.org/10.1038/s41566-021-00881-0 Xiao, G. Q., Corle, T. R., & Kino, G. S. (1988). Real-Time Confocal Scanning Optical Microscope. Applied Physics Letters , 53 (8), 716-718. https://doi.org/10.1063/1.99814 Xiao, Y., Deng, P., Zhao, Y., Yang, S., & Li, B. (2023). Three-photon excited fluorescence imaging in neuroscience: From principles to applications [Review]. Frontiers in Neuroscience , 17 . https://doi.org/10.3389/fnins.2023.1085682 Zernike, F. (1942). Phase contrast, a new method for the microscopic observation of transparent objects. Physica , 9 (7), 686-698. https://doi.org/https://doi.org/10.1016/S0031-8914(42)80035-X Zhang, T., Hernandez, O., Chrapkiewicz, R., Shai, A., Wagner, M. J., Zhang, Y., . . . Schnitzer, M. J. (2019). Kilohertz two-photon brain imaging in awake mice. Nat Methods , 16 (11), 1119-1122. https://doi.org/10.1038/s41592-019-0597-2 Zhang, Y., Rózsa, M., Liang, Y. J., Bushey, D., Wei, Z. Q., Zheng, J. H., . . . Looger, L. L. (2023). Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature , 615 (7954), 884-+. https://doi.org/10.1038/s41586-023-05828-9 Zheng, Z. H., Lauritzen, J. S., Perlman, E., Robinson, C. G., Nichols, M., Milkie, D., . . . Bock, D. D. (2018). A Complete Electron Microscopy Volume of the Brain of Adult. Cell , 174 (3), 730-+. https://doi.org/10.1016/j.cell.2018.06.019 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92546 | - |
| dc.description.abstract | 在神經科學的研究中,徹底地了解大腦結構性與功能性的迴路是至關重要的目標。而高速深組織的活體腦成像是達到此目標的必要條件之一。近年來,隨著雷射技術的發展,結合高速成像技術 (如光片、旋轉盤或多焦點陣列掃描顯微術) 的雙光子激發螢光顯微鏡被研發出來,並應用在生物樣本上。這些技術使得對於小型模式動物的活體高速深組織光學腦成像變得逐漸可行。然而,儘管相比於雙光子激發,三光子激發在深組織有其優勢,但在目前的文獻中卻很少有高速三光子的系統被成功開發。
在本研究中,我們利用客製化的旋轉盤結合可調波長的高功率飛秒雷射系統,展示了首個三光子旋轉盤顯微鏡,我們達到了接近300 Hz的幀率進行三光子成像,為首個超過100 Hz 幀率的三光子顯微鏡。我們對不同的樣本進行成像,包含綠色螢光球、固定的小鼠腦片與活體的果蠅進行腦成像,以展示其能力。在實驗中我們實現了以3毫秒的曝光時間對微流道晶片中的流動螢光球進行高速成像。而在對老鼠與果蠅的腦成像實驗則顯示出,相比於雙光子旋轉盤成像,三光子旋轉盤成像具有更低的訊號衰減率。我們的研究實現了目前最高速的三光子成像,提供了一種可行的三光子高速成像系統。 | zh_TW |
| dc.description.abstract | Achieving a comprehensive understanding of the brain's structural and functional circuits is a crucial goal in neuroscience. To address this need, high-speed volumetric imaging of emergent properties within the connectomes of living animals is essential. Advances in laser techniques have enabled deep tissue imaging of the brain at high speed by combining two-photon excitation with rapid microscopy methods such as light-sheet, spinning disk, or multifoci array scanning microscopy. Despite the potential for improved imaging depth compared to two-photon excitation, high-speed three-photon imaging remains relatively scarce in the literature.
In this study, we utilize a customized spinning disk unit combined with a wavelength-tunable high-power femtosecond laser to showcase the three-photon microscopy at a frame rate of ~300 Hz, marking a significant milestone in achieving three-photon microscopy above the 100 Hz regime. We demonstrate its versatility by imaging various samples, including green fluorescent beads, in vivo Drosophila brains, and fixed mouse brains. Our experimental setup achieves three-photon high-speed imaging with an exposure time of only 3 ms for floating fluorescent beads inside a microfluidic chip. Furthermore, our brain imaging findings reveal that three-photon spinning disk imaging exhibits a lower attenuation rate compared to its two-photon spinning disk counterpart. Our work paves the way for utilizing three-photon excitation in high-speed deep tissue imaging applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-04-09T16:13:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-04-09T16:13:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee ⅰ
致謝 ⅱ 中文摘要 ⅲ Abstract ⅳ Contents ⅴ List of Figures ⅵ List of Tables ⅶ Ch1. Introduction 1 1.1 Tools for Neuroimaging: The Advantage of Optical Microscopy 1 1.2 Optical microscopy for brain imaging 6 1.3 Deep tissue imaging — Multiphoton fluorescence microscopy 7 1.4 Deep tissue functional imaging — High-speed multi-photon microscopy 10 1.5 Our solution — Three-photon spinning disk microscopy 14 Ch2. Principle of Techniques for Three-photon Spinning Disk Microscopy 16 2.1 Principle of three-photon excitation microscopy 16 2.2 Principle of spinning disk confocal scanning unit 18 Ch3. Method 21 3.1 Optical system 21 3.2 Selection of MP-spinning disk unit 23 3.3 Selection of the camera 24 3.4 Optimization of the 3P signal 26 3.5 Calculation of attenuation length 28 Ch4. Experiments and Results 30 4.1 3P power dependent test 30 4.2 Demonstrate the speed: microfluidic chip 32 4.3 Attenuation length measurement — fixed mouse brain 33 4.4 Attenuation length measurement — in vivo Drosophila brain 40 4.5. Discussion 45 Ch5. Conclusion and Outlooks 48 5.1 Conclusion 48 5.2 Outlooks 48 Reference List 51 | - |
| dc.language.iso | en | - |
| dc.subject | 多光子顯微鏡 | zh_TW |
| dc.subject | 三光子顯微鏡 | zh_TW |
| dc.subject | 訊號衰減 | zh_TW |
| dc.subject | 腦成像 | zh_TW |
| dc.subject | 旋轉盤顯微鏡 | zh_TW |
| dc.subject | spinning disk microscopy | en |
| dc.subject | brain imaging | en |
| dc.subject | signal attenuation | en |
| dc.subject | multiphoton microscopy | en |
| dc.subject | three-photon microscopy | en |
| dc.title | 三光子高速旋轉盤顯微術應用於腦成像 | zh_TW |
| dc.title | Three-photon high-speed spinning disk microscopy for brain imaging | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝佳龍;楊尚達 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Lung Hsieh;Shang-Da Yang | en |
| dc.subject.keyword | 三光子顯微鏡,多光子顯微鏡,旋轉盤顯微鏡,腦成像,訊號衰減, | zh_TW |
| dc.subject.keyword | three-photon microscopy,multiphoton microscopy,spinning disk microscopy,brain imaging,signal attenuation, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202400835 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-04-09 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 11.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
