請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92502完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周佳靚 | zh_TW |
| dc.contributor.advisor | Chia-Ching Chou | en |
| dc.contributor.author | 許凱富 | zh_TW |
| dc.contributor.author | Kai-Fu Hsu | en |
| dc.date.accessioned | 2024-03-26T16:21:06Z | - |
| dc.date.available | 2024-03-27 | - |
| dc.date.copyright | 2024-03-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-03-21 | - |
| dc.identifier.citation | 1. Husna, A., S.H. Amin, and B. Shah, Demand forecasting in supply chain management using different deep learning methods, in Demand forecasting and order planning in supply chains and humanitarian logistics. 2021, IGI Global. p. 140-170.
2. Seyedan, M. and F. Mafakheri, Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. Journal of Big Data, 2020. 7(1): p. 1-22. 3. Mediavilla, M.A., F. Dietrich, and D. Palm, Review and analysis of artificial intelligence methods for demand forecasting in supply chain management. Procedia CIRP, 2022. 107: p. 1126-1131. 4. Falatouri, T., et al., Predictive analytics for demand forecasting–a comparison of SARIMA and LSTM in retail SCM. Procedia Computer Science, 2022. 200: p. 993-1003. 5. Kochak, A. and S. Sharma, Demand forecasting using neural network for supply chain management. International journal of mechanical engineering and robotics research, 2015. 4(1): p. 96-104. 6. Ren, S., H.-L. Chan, and T. Siqin, Demand forecasting in retail operations for fashionable products: methods, practices, and real case study. Annals of Operations Research, 2020. 291: p. 761-777. 7. Huber, J. and H. Stuckenschmidt, Daily retail demand forecasting using machine learning with emphasis on calendric special days. International Journal of Forecasting, 2020. 36(4): p. 1420-1438. 8. İşlek, İ. and Ş.G. Öğüdücü. A retail demand forecasting model based on data mining techniques. in 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE). 2015. IEEE. 9. Lalou, P., S.T. Ponis, and O.K. Efthymiou, Demand forecasting of retail sales using data analytics and statistical programming. Management & Marketing, 2020. 15(2): p. 186-202. 10. Punia, S., et al., Deep learning with long short-term memory networks and random forests for demand forecasting in multi-channel retail. International journal of production research, 2020. 58(16): p. 4964-4979. 11. Turgut, Y. and M. Erdem. Forecasting of retail produce sales based on XGBoost algorithm. in Industrial Engineering in the Internet-of-Things World: Selected Papers from the Virtual Global Joint Conference on Industrial86 Engineering and Its Application Areas, GJCIE 2020, August 14–15, 2020. 2022. Springer. 12. Arunraj, N.S., D. Ahrens, and M. Fernandes, Application of SARIMAX model to forecast daily sales in food retail industry. International Journal of Operations Research and Information Systems (IJORIS), 2016. 7(2): p. 1-21. 13. Shukla, M. and S. Jharkharia, Applicability of ARIMA models in wholesale vegetable market: An investigation. International Journal of Information Systems and Supply Chain Management (IJISSCM), 2013. 6(3): p. 105-119. 14. Elmasdotter, A. and C. Nyströmer, A comparative study between LSTM and ARIMA for sales forecasting in retail. 2018. 15. Felix, P., Data-driven retail food waste reduction: a comparison of demand forecasting techniques and dynamic pricing strategies. 2018, University of Twente. 16. Miguéis, V.L., et al., Reducing fresh fish waste while ensuring availability: Demand forecast using censored data and machine learning. Journal of Cleaner Production, 2022. 359: p. 131852. 17. Mahmoudyan, M. and A. Zeqiri, Time series forecasting using neural networks minimizing food waste by forecasting demand in retail sales. 2021. 18. Priyadarshi, R., et al., Demand forecasting at retail stage for selected vegetables: a performance analysis. Journal of Modelling in Management, 2019. 14(4): p. 1042-1063. 18. Priyadarshi, R., et al., Demand forecasting at retail stage for selected vegetables: a performance analysis. Journal of Modelling in Management, 2019. 14(4): p. 1042-1063. 19. Nikolicic, S., et al., Reducing food waste in the retail supply chains by improving efficiency of logistics operations. Sustainability, 2021. 13(12): p. 6511. 20. Rodrigues, M., et al., Machine learning models for short-term demand forecasting in food catering services: A solution to reduce food waste. Journal of Cleaner Production, 2024. 435: p. 140265. 21. Thompson, G.M., Labor scheduling, part 1: Forecasting demand. The Cornell Hotel and Restaurant Administration Quarterly, 1998. 39(5): p. 22-31. 22. Tanizaki, T., et al., Demand forecasting in restaurants using machine learning and statistical analysis. Procedia CIRP, 2019. 79: p. 679-683. 23. Ittmann, H.W., The impact of big data and business analytics on supply chain management. Journal of Transport and Supply Chain Management, 2015. 9(1): p. 1-9. 24. Udokwu, C., et al., Improving Sales Prediction for Point-of-Sale Retail Using Machine Learning and Clustering, in Machine Learning and Data Analytics for Solving Business Problems: Methods, Applications, and Case Studies. 2022, Springer. p. 55-73.87 25. Paranavithana, I.R., T.D. Rupasinghe, and D.D. Prior. A Machine-Learnt Approach to Market Segmentation and Purchase Prediction Using Point-OfSale (POS) Data. in Transactions on Engineering Technologies: Proceedings of World Congress on Engineering 2021. 2022. Springer. 26. Gallucci, J.A. and H.J. McCarthy, Enhancing the demand planning process with POS forecasting. The Journal of Business Forecasting, 2008. 27(4): p. 11. 27. Hirche, M., J. Haensch, and L. Lockshin, Comparing the day temperature and holiday effects on retail sales of alcoholic beverages–a time-series analysis. International Journal of Wine Business Research, 2021. 33(3): p. 432-455. 28. Shilong, Z. Machine learning model for sales forecasting by using XGBoost. in 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). 2021. IEEE. 29. Niu, Y. Walmart sales forecasting using xgboost algorithm and feature engineering. in 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). 2020. IEEE. 30. Zhang, L., et al. Time series forecast of sales volume based on XGBoost. in Journal of Physics: Conference Series. 2021. IOP Publishing. 31. Muthukadan, B., Selenium python bindings. 2016, Abril. 32. Ni, S., Y. Peng, and Z. Liu, Logistics Demand Forecast of Fresh Food ECommerce Based on Bi-LSTM Model. Journal of Computer and Communications, 2022. 10(09): p. 51-65. 33. Wulff, S.S., Time series analysis: Forecasting and control. Journal of Quality Technology, 2017. 49(4): p. 418. 34. Chen, T. and C. Guestrin. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016. 35. Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural computation, 1997. 9(8): p. 1735-1780. 36. Van Der Walt, S., S.C. Colbert, and G. Varoquaux, The NumPy array: a structure for efficient numerical computation. Computing in science & engineering, 2011. 13(2): p. 22-30. 37. McKinney, W. Data structures for statistical computing in python. in Proceedings of the 9th Python in Science Conference. 2010. Austin, TX. 38. Chabot, C., C. Stolte, and P. Hanrahan, Tableau software. Tableau software, 2003. 6. 39. Hunter, J.D., Matplotlib: A 2D graphics environment. Computing in science & engineering, 2007. 9(03): p. 90-95. 40. Waskom, M.L., Seaborn: statistical data visualization. Journal of Open88 Source Software, 2021. 6(60): p. 3021. 41. Van Calster, T., et al., Profit-oriented sales forecasting: a comparison of forecasting techniques from a business perspective. arXiv preprint arXiv:2002.00949, 2020 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92502 | - |
| dc.description.abstract | 隨著零售業的數據化轉型,準確預測來客人數、銷售額以及商品銷售量成為業界面臨的重大挑戰。本研究旨在探討和比較三種機器學習模型: Seasonal Autoregressive Integrated Moving Average Exogenous (SARIMAX) 、 eXtreme Gradient Boosting (XGBoost) 和 Long Short-Term Memory (LSTM) 模型在使用零售數據對於需求預測上的表現。通過對一家連鎖速食企業過去半年的日銷售數據進行分析。 本研究對這三種模型進行了模型性能比較, 預測短期的來客人數、銷售額及商品銷售量。研究方法包括數據預處理、特徵選擇、模型訓練與優化以及預測性能評估。首先,對原始數據集進行清洗和預處理,以滿足模型訓練的需求。其次,利用相關性分析和特徵重要性評估來選擇最具預測價值的特徵。然後,對SARIMAX、XGBoost 和 LSTM 模型進行參數調優,以達到最佳預測效能。最後,通過比較各模型的預測結果,包括 R2、 MAPE、 MAE 和 RMSE,來評估和分析在不同預測任務上的表現。本研究的結果表明, 在來客人數為 SARIMAX 模型表現最佳,銷售額為 XGBoost 模型最佳,商品的銷售數量表現最佳的皆是SARIMAX 模型。 透過來客人數預測結果我們可以進行員工人力排班,銷售額預測結果可以對公司的規劃進行布局,商品銷售數量預測則是可以對於成本進行有效的控管。 | zh_TW |
| dc.description.abstract | As the retail industry undergoes digital transformation, accurately predicting foot traffic, sales revenue, and product sales volume has become a significant challenge. This study aims to explore and compare three machine learning models: Seasonal Autoregressive Integrated Moving Average Exogenous (SARIMAX), eXtreme Gradient Boosting (XGBoost), and Long Short-Term Memory (LSTM) models in their performance on demand forecasting using retail data. Analysis was conducted on the daily sales data of a chain fast-food enterprise over the past six months. The study compares the performance of these three models in predicting short-term foot traffic, sales revenue, and product sales volume. Research methods include data preprocessing, feature selection, model training and optimization, and predictive performance evaluation. Firstly, the original dataset was cleaned and preprocessed to meet the requirements for model training. Secondly, the most predictive features were selected through correlation analysis and feature importance evaluation. Then, parameters of the SARIMAX, XGBoost, and LSTM models were tuned to achieve optimal predictive performance. Finally, the predictive results of each model were compared, including R2, MAPE, MAE, and RMSE, to assess and analyze their performance in different forecasting tasks. The results of this study indicate that SARIMAX performs best in predicting foot traffic, XGBoost performs best in predicting sales revenue, and SARIMAX also performs best in predicting product sales volume. Through the prediction of foot traffic, we can schedule employee shifts, sales revenue prediction can inform company planning, and product sales volume prediction can effectively control costs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-26T16:21:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-26T16:21:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii 圖次 vii 表次 x 第一章、 緒論 1 1.1 零售業 1 1.2 機器學習應用在實際案例 3 1.3 研究動機與目標 6 1.4 論文架構 7 第二章、研究理論及方法 8 2.1 資料來源 8 2.2 資料前處理及新特徵建立 8 2.3 特徵選擇 13 2.4 預測模型 14 2.4.1 Seasonal Autoregressive Integrated Moving Average Exogenous model (SARIMAX) 14 2.4.2 eXtreme Gradient Boosting (XGBoost) 15 2.4.3 Long Short-Term Memory (LSTM) 16 2.5 模型訓練 18 2.6 模型表現評估 20 2.6.1 評估指標 20 2.6.2 離群值散點圖繪製 21 2.7 特徵重要性 22 2.8 軟體 23 第三章、資料視覺化 24 3.1 性別與年齡層:人數分析 24 3.2 天氣與假日:人數分析 25 3.3 銷售行為分析 27 3.4 人數與銷售額關係分析 28 第四章、來客人數預測結果與分析 29 4.1 SARIMAX 來客人數預測結果與分析 29 4.2 XGBoost 來客人數預測結果與分析 32 4.3 LSTM 來客人數預測結果與分析 35 4.4 特徵重要性分析 38 4.5 結果討論與分析 39 第五章、銷售額預測結果與分析 40 5.1 SARIMAX 銷售額預測結果與分析 40 5.2 XGBoost 銷售額預測結果與分析 43 5.3 LSTM 銷售額預測結果與分析 46 5.4 特徵重要性分析 49 5.5 結果討論與分析 50 第六章、商品銷售量預測結果與分析 51 6.1 商品 A 銷售量預測結果與分析 51 6.1.1 SARIMAX 商品 A 銷售量預測結果與分析 51 6.1.2 XGBoost 商品 A 銷售量預測結果與分析 54 6.1.3 LSTM 商品 A 銷售量預測結果與分析 57 6.1.4 特徵重要性分析 60 6.2 商品 B 銷售量預測結果與分析 61 6.2.1 SARIMAX 商品 B 銷售量預測結果與分析 61 6.2.2 XGBoost 商品 B 銷售量預測結果與分析 64 6.2.3 LSTM 商品 B 銷售量預測結果與分析 67 6.2.4 特徵重要性分析 70 6.3 商品 C 銷售量預測結果與分析 71 6.3.1 SARIMAX 商品 C 銷售量預測結果與分析 71 6.3.2 XGBoost 商品 C 銷售量預測結果與分析 74 6.3.3 LSTM 商品 C 銷售量預測結果與分析 77 6.3.4 特徵重要性分析 80 6.4 模型綜合分析討論 81 第七章、結論及未來展望 83 7.1 結論 83 7.2 未來展望 84 參考文獻 85 附錄 A | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 需求預測 | zh_TW |
| dc.subject | 零售業 | zh_TW |
| dc.subject | SARIMAX | zh_TW |
| dc.subject | XGBoost | zh_TW |
| dc.subject | LSTM | zh_TW |
| dc.subject | SARIMAX | en |
| dc.subject | Demand forecasting | en |
| dc.subject | retail insdustry | en |
| dc.subject | LSTM | en |
| dc.subject | XGBoost | en |
| dc.title | 應用機器學習進行連鎖速食餐飲業來客數與銷售之預測 | zh_TW |
| dc.title | Applying machine learning to predict the number of customers and sales for a fast-food chain restaurant | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張書瑋;汪立本;謝依芸 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Wei Chang;Li-Pen Wang;I-Yun Hsieh | en |
| dc.subject.keyword | 需求預測,零售業,SARIMAX,XGBoost,LSTM, | zh_TW |
| dc.subject.keyword | Demand forecasting,retail insdustry,SARIMAX,XGBoost,LSTM, | en |
| dc.relation.page | 96 | - |
| dc.identifier.doi | 10.6342/NTU202400794 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-03-21 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
