Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92495
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恭如zh_TW
dc.contributor.advisorGong-Ru Linen
dc.contributor.author鄒承霖zh_TW
dc.contributor.authorCheng-Lin Tsouen
dc.date.accessioned2024-03-26T16:19:06Z-
dc.date.available2024-03-27-
dc.date.copyright2024-03-26-
dc.date.issued2023-
dc.date.submitted2023-12-09-
dc.identifier.citation[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Journal on Computing, vol. 26, no. 5, 1997, doi: 10.1137/S0097539795293172.
[2] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev Mod Phys, vol. 81, no. 3, 2009, doi: 10.1103/RevModPhys.81.1301.
[3] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor Comput Sci, vol. 560, no. P1, 2014, doi: 10.1016/j.tcs.2014.05.025.
[4] A. K. Ekert, “Quantum cryptography based on Bellâs theorem,” Phys Rev Lett, vol. 67, no. 6, 1991, doi: 10.1103/PhysRevLett.67.661.
[5] H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys Rev Lett, vol. 94, no. 23, 2005, doi: 10.1103/PhysRevLett.94.230504.
[6] K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys Rev Lett, vol. 89, no. 3, pp. 379021–379023, Jul. 2002, doi: 10.1103/PhysRevLett.89.037902.
[7] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl Phys Lett, vol. 87, no. 19, 2005, doi: 10.1063/1.2126792.
[8] R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J Mod Opt, vol. 47–2, no. 3, 2000, doi: 10.1080/09500340008244058.
[9] E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt Express, vol. 14, no. 26, 2006, doi: 10.1364/oe.14.013073.
[10] C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl Phys Lett, vol. 84, no. 19, 2004, doi: 10.1063/1.1738173.
[11] C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of the DARPA Quantum Network,” Proc. SPIE 5815, Quantum Information and Computation III, vol. 5815, no. 15, 2005.
[12] M. Peev et al., “The SECOQC quantum key distribution network in Vienna,” New J Phys, vol. 11, 2009, doi: 10.1088/1367-2630/11/7/075001.
[13] M. Sasaki et al., “Field test of quantum key distribution in the Tokyo QKD Network,” Opt Express, vol. 19, no. 11, 2011, doi: 10.1364/oe.19.010387.
[14] D. Stucki et al., “Long-term performance of the SwissQuantum quantum key distribution network in a field environment,” New J Phys, vol. 13, 2011, doi: 10.1088/1367-2630/13/12/123001.
[15] J. F. Dynes et al., “Cambridge quantum network,” npj Quantum Inf, vol. 5, no. 1, 2019, doi: 10.1038/s41534-019-0221-4.
[16] W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, "Practical free-space Quantum key distribution over 1 km," Phys Rev Lett 81, (1998).
[17] R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J Phys 4, (2002).
[18] Q. Peng, G. Chen, X. Li, Q. Liao, and Y. Guo, "Performance improvement of underwater continuous-variable quantum key distribution via photon subtraction," Entropy 21, (2019).
[19] P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron Lett, vol. 33, no. 3, 1997, doi: 10.1049/el:19970147.
[20] H. Takesue, T. Honjo, and H. Kamada, “Differential phase shift quantum key distribution using 1.3-μm up-conversion detectors,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 45, no. 7, 2006, doi: 10.1143/JJAP.45.5757.
[21] L. Ma et al., “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J Phys, vol. 11, 2009, doi: 10.1088/1367-2630/11/4/045020
[22] K. Iwashita and K. Nakagawa, “Suppression of Mode Partition Noise by Laser Diode Light Injection,” IEEE Trans Microw Theory Tech, vol. 30, no. 10, 1982, doi: 10.1109/TMTT.1982.1131305.
[23] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth Enhancement and Broadband Noise Reduction in Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 7, no. 7, 1995, doi: 10.1109/68.393181.
[24] L. Chrostowski, C. H. Chang, and C. Chang-Hasnain, “Reduction of relative intensity noise and improvement of spur-free dynamic range of an injection locked VCSEL,” in Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2003. doi: 10.1109/leos.2003.1252996.
[25] C. Lin and F. Mengel, “Reduction of frequency chirping and dynamic linewidth in high-speed directly modulated semiconductor lasers by injection locking,” Electron Lett, vol. 20, 1984, doi: 10.1049/el:19840734.
[26] H. L. Stover and W. H. Steier, “Locking of laser oscillators by light injection,” Appl Phys Lett, vol. 8, no. 4, 1966, doi: 10.1063/1.1754502.
[27] Y. Yamamoto, “Receiver Performance Evaluation of Various Digital Optical Modulation-Demodulation Systems in the 0.5-10 μm Wavelength Region,” IEEE J Quantum Electron, vol. 16, no. 11, 1980, doi: 10.1109/JQE.1980.1070400.
[28] S. Kobayashi and T. Kimura, “Optical FM Signal Amplification by Injection Locked and Resonant Type Semiconductor Laser Amplifiers,” IEEE Trans Microw Theory Tech, vol. 30, no. 4, 1982, doi: 10.1109/TMTT.1982.1131083.
[29] P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium- Doped Fiber Amplifiers: Fundamentals and Technology (Optics and Photonics) (1999).
[30] G. R. Lin, Y. H. Lin, and Y. C. Chang, "Theory and experiments of a mode-beating noise-suppressed and mutually injection-locked Fabry-Perot laser diode and Erbium-doped fiber amplifier link," IEEE J Quantum Electron 40, (2004).
[31] E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, "Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths," Opt Express 16, (2008).
[32] C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection Locking of VCSELs," in IEEE Journal on Selected Topics in Quantum Electronics (2003), Vol. 9.
[33] G. R. Lin, Y. S. Liao, Y. C. Chi, H. C. Kuo, G. C. Lin, H. L. Wang, and Y. J. Chen, "Long-cavity Fabry-Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application," Journal of Lightwave Technology 28, (2010).
[34] G.-R. Lin, Y.-C. Chi, Y.-S. Liao, H.-C. Kuo, Z.-W. Liao, H.-L. Wang, and G.-C. Lin, "A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission," Opt Express 20, (2012).
[35] Y.-C. Li, Y.-C. Chi, M.-C. Cheng, I.-C. Lu, J. Chen, and G.-R. Lin, "Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF," Opt Express 21, (2013).
[36] Y. C. Chi, Y. C. Li, and G. R. Lin, "Specific jacket SMA-connected to-can package fpld transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multisubcarrier OOFDM up to 15 Gb/s," Journal of Lightwave Technology 31, (2013).
[37] Z. L. Yuan, B. Fröhlich, M. Lucamarini, G. L. Roberts, J. F. Dynes, and A. J. Shields, “Directly phase-modulated light source,” Phys Rev X, vol. 6, no. 3, 2016, doi: 10.1103/PhysRevX.6.031044.
[38] G. L. Roberts, M. Lucamarini, J. F. Dynes, S. J. Savory, Z. L. Yuan, and A. J. Shields, “Modulator-Free Coherent-One-Way Quantum Key Distribution,” Laser Photon Rev, vol. 11, no. 4, 2017, doi: 10.1002/lpor.201700067.
[39] T. K. Paraïso et al., “A modulator-free quantum key distribution transmitter chip,” npj Quantum Inf, vol. 5, no. 1, 2019, doi: 10.1038/s41534-019-0158-7.
[40] R. Shakhovoy et al., “Direct phase modulation via optical injection: theoretical study,” Opt Express, vol. 29, no. 6, p. 9574, Mar. 2021, doi: 10.1364/oe.413095.
[41] I. De Marco et al., “Real-time operation of a multi-rate, multi-protocol quantum key distribution transmitter,” Optica, vol. 8, no. 6, 2021, doi: 10.1364/optica.423517.
[42] P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron Lett, vol. 33, no. 3, 1997, doi: 10.1049/el:19970147.
[43] H. Takesue, T. Honjo, and H. Kamada, “Differential phase shift quantum key distribution using 1.3-μm up-conversion detectors,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 45, no. 7, 2006, doi: 10.1143/JJAP.45.5757.
[44] L. Ma et al., “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J Phys, vol. 11, 2009, doi: 10.1088/1367-2630/11/4/045020
[45] E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 15, no. 3, 2009, doi: 10.1109/JSTQE.2009.2014779.
[46] E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys Rev A, vol. 73, no. 1, 2006, doi: 10.1103/PhysRevA.73.012344.
[47] G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys Rev A (Coll Park) 50, (1994).
[48] C. Qian and W. W. Brey, "Impedance matching with an adjustable segmented transmission line," Journal of Magnetic Resonance 199, 104–110 (2009).
[49] Z. Zhao, Z. Bai, D. Jin, Y. Qi, J. Ding, B. Yan, Y. Wang, Z. Lu, and R. P. Mildren, "Narrow laser-linewidth measurement using short delay self-heterodyne interferometry," Opt Express 30, (2022).
[50] T. Honjo, T. Inoue, and K. Inoue, "Influence of light source linewidth in differential-phase-shift quantum key distribution systems," Opt Commun 284, (2011).
[51] Z. Liu and R. Slavik, "Optical Injection Locking: From Principle to Applications," Journal of Lightwave Technology 38, (2020).
[52] G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, "Security aspects of practical quantum cryptography," in Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2000), Vol. 1807.
[53] Z. L. Yuan, B. Fröhlich, M. Lucamarini, G. L. Roberts, J. F. Dynes, and A. J. Shields, "Directly phase-modulated light source," Phys Rev X 6, (2016).
[54] A. Tanaka, M. Fujiwara, K. I. Yoshino, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, and A. Tajima, "High-speed quantum key distribution system for 1-mbps real-time key generation," IEEE J Quantum Electron 48, (2012).
[55] T. K. Paraïso, I. De Marco, T. Roger, D. G. Marangon, J. F. Dynes, M. Lucamarini, Z. Yuan, and A. J. Shields, "A modulator-free quantum key distribution transmitter chip," npj Quantum Inf 5, (2019).
[56] I. De Marco, R. I. Woodward, G. L. Roberts, T. K. Paraïso, T. Roger, M. Sanzaro, M. Lucamarini, Z. Yuan, and A. J. Shields, "Real-time operation of a multi-rate, multi-protocol quantum key distribution transmitter," Optica 8, (2021).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92495-
dc.description.abstract首次展示了在O波段(1308.4 nm)的主-從屬雷射的注入鎖定(OIL)系統對使用差分相移(DPS)協定的量子密鑰分發(QKD)傳輸,通過準確控制分佈回饋式雷射(DFBLD)的溫度和電流實現了穩定性。具體來說,長時間的量子密鑰生成中由於自由載流子的過度生成而引起的聲子誘導相位波動是歸因於腔內加熱。通過降低主雷射的偏置電流水平,可以抑制這些波動。接下來,該研究主要探討了主雷射的相位和功率對從屬雷射相位的影響。相位調製器(PM)和強度調製器(IM)被用來精確控制相位和強度,分別。主雷射和從屬雷射的閾值電流分別為5 mA和6 mA,微分阻抗為5歐姆。在絕熱良好的系統中,將增益值設置為100,實現了±0.05%的功率和±0.2 pm的波長擾動。熱電致冷晶片的增益設定為100有效地保持了干涉儀的可見度>96%,dPo/Po, max和dPo/dt測量值在±1%和±1×10-3 mW/s以下。對於主雷射,功率變化150 μW(相當於電流變化0.12 mA)的階梯狀訊號可以產生相位變化。將直流偏置電流從7 Ith (35 mA)降低到2 Ith (10 mA),可以更穩定地控制從屬雷射的相位。該系統在6 km通信距離處表現出量子誤碼率(QBER)為3.57%和安全金鑰率(SKR)為3524 bit/s。將單個DFBLD由IM和PM調變(M->IM->PM)的參考傳輸系統,在15 km的傳輸中的QBER為3.7%,SKR為178 bit/s,但成本最高。帶有PM調制的OIL系統(M->PM->S)在12 km傳輸中的QBER為3.45%,SKR為4372 bit/s。帶有IM調制的OIL系統(M->IM->S)在9 km傳輸中的QBER為3.45%,SKR為5337 bit/s。對於1024位的DPS-QKD傳輸,QBER分別為M->IM->PM的3.77%,M->PM->S的3.83%,M->IM->S的4.02%和M->S的4.94%。比較這四種系統,顯然M->IM->PM在QBER、SKR和合規傳輸距離方面皆具有最佳的傳輸性能。然而,它的成本最高,約為4984美元。與之相反,M->S的費用最低(266美元),但在QBER、SKR和合規傳輸距離方面的傳輸性能表現最差。zh_TW
dc.description.abstractFor the first time, a master-to-slave injection-locked DFBLD pair in the O-band at 1308.4 nm is demonstrated for single-photon DPS-QKD with precise stabilization achieved through feedback control of the DFBLDs’ temperature and current. In particular, phonon-induced phase fluctuations are attributed to intra-cavity heating caused by the excessive generation of free carriers during long quantum key generation with a 3-dB bandwidth of 1.5 GHz. These fluctuations can be suppressed by reducing the bias level of the master DFBLD.
Next, the study primarily investigates the influence of the phase and power of the master DFBLD on the phase of the slave DFBLD. The PM and IM are used to preciously control the phase and intensity, respectively. The study offers an extensive evaluation of the performance metrics such as key rate, error rate, and transmission distance in both phase and power decoding.
Additionally, it investigates temporal stability, coding efficiency, and cost-effectiveness across four DPS-QKD systems based on DFBLD technology. The master and slave DFBLDs had threshold currents of 5 mA and 6 mA, with the differential resistance of 5 ohms. With a Gain value set at 100, we achieved ±0.05% power and ±0.2 pm wavelength fluctuations in the well-insulated system. The set of TE-cooler gain at 100 effectively maintains the DI at visibility >96% with dPo /Po, max and dPo/dt measured below ±1% and±1×10-3 mW/s. For the master DFBLD, the step-like power of 150 μW or an equivalent photocurrent of 0.12 mA can induce the π phase shift. Decreasing the DC bias from 7 Ith (35 mA) to 2 Ith (10 mA), the phase of the slave DFBLD can be more stability. The system demonstrated the QBER of 3.57% and secure key rate of 3524 bit/s at 6 km communication distance.
The four QKD systems are discussed in the following The system with the single DFBLD into IM and PM is the reference transmission structure, which has a QBER of 3.7% and an SKR of 178 bit/s in the 15-km transmission, while the cost is the highest. The OIL system with PM modulation has a QBER of 3.45% and an SKR of 4372 bit/s in the 12-km transmission. The OIL system with IM modulation has a QBER of 3.45% and an SKR of 5337 bit/s in the 9-km transmission. In contrast, the OIL system by directly modulated dual lasers has the lowest cost despite the poorest QBER, SKR, and compliant transmission distance performance. For the 1024-bit DPS-QKD transmission, the QBERs are 3.77% of M->IM->PM, 3.83% of M->PM->S, 4.02% of M->IM->S, and 4.94% of M->S. Comparing these four systems, it is evident that M->IM->PM has the best QKD performance in the QBER, SKR, and compliant transmission distance. However, it comes at the highest cost, which is approximately 4984 USD. In contrast, M->S has the lowest expense (266 USD) with the poorest QKD performance in the QBER, SKR, and compliant transmission distance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-26T16:19:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-26T16:19:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 Summary of quantum key distribution (QKD) 1
1.1.1 Historical review of QKD 1
1.1.2 Optical injection locking (OIL) technology 3
1.2 Motivation 4
1.3 Thesis architecture 5
Chapter 2 O-band Quantum Key Distribution with Differential-Phase-Shift Protocol by Optical-injection-locking System 7
2.1 The experiment setup of OIL system 7
2.1.1 The structure of the packaged TO-can laser 7
2.1.2 Experimental setup of OIL system with DPS-QKD 9
2.2 Result and Discussion 11
2.3 Summary 32
Chapter 3 The influence of the injection phase and power in OIL system by O-band laser 35
3.1 Experiment setup 35
3.2 Result and Discussion 37
3.2.1 Master-to-slave OIL system with external phase modulation 40
3.2.2 Master-to-slave OIL system with external intensity modulation 42
3.2.3 Direct modulation in master-to-slave OIL system 45
3.2.4 Single DFBLD with external IM and PM 46
3.2.5 DPS-QKD performance comparisons with four transmission system 48
3.3 Summary 54
Chapter 4 Conclusion 57
REFERENCE 60
作者簡介 67
期刊論文與研討會論文投稿及發表紀錄 68
-
dc.language.isoen-
dc.subject從屬雷射zh_TW
dc.subject分佈回饋式雷射zh_TW
dc.subjectO波段zh_TW
dc.subject強度調製器zh_TW
dc.subject熱電致冷晶片zh_TW
dc.subject安全金鑰率zh_TW
dc.subject量子誤碼率zh_TW
dc.subject相位調製器zh_TW
dc.subject注入鎖定zh_TW
dc.subject差分相移zh_TW
dc.subject量子密鑰分發zh_TW
dc.subject主雷射zh_TW
dc.subjectOptical Injection Locking (OIL)en
dc.subjectO-banden
dc.subjectDifferential Phase Shift (DPS)en
dc.subjectQuantum Key Distribution (QKD)en
dc.subjectmaster DFBLDen
dc.subjectslave DFBLDen
dc.subjectPhase Modulator (PM)en
dc.subjectIntensity Modulator (IM)en
dc.subjectTE-cooleren
dc.subjectQuantum Bit Error Rate (QBER)en
dc.subjectSecure Key Rate (SKR)en
dc.title抑制熱引發相位編碼失真的O波段分佈回饋式雷射量子密鑰分發zh_TW
dc.titleSuppressing the Heating-induced Phase-Shift Distortion of O-band DFBLD for Quantum Key Distributionen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃勝廣;吳育任zh_TW
dc.contributor.oralexamcommitteeSheng-Kwang Hwang;Yuh-Renn Wuen
dc.subject.keywordO波段,注入鎖定,差分相移,量子密鑰分發,主雷射,從屬雷射,分佈回饋式雷射,相位調製器,強度調製器,熱電致冷晶片,量子誤碼率,安全金鑰率,zh_TW
dc.subject.keywordO-band,Optical Injection Locking (OIL),Differential Phase Shift (DPS),Quantum Key Distribution (QKD),master DFBLD,slave DFBLD,Phase Modulator (PM),Intensity Modulator (IM),TE-cooler,Quantum Bit Error Rate (QBER),Secure Key Rate (SKR),en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202304485-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-12-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2026-12-31-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
11.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved