Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92494
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林書妍zh_TW
dc.contributor.advisorShu-Yen Linen
dc.contributor.author王俊翔zh_TW
dc.contributor.authorChun-Hsiang Wangen
dc.date.accessioned2024-03-26T16:18:49Z-
dc.date.available2025-08-31-
dc.date.copyright2024-03-26-
dc.date.issued2024-
dc.date.submitted2024-03-07-
dc.identifier.citation中央氣象署. 2019-2023. 氣候資料服務系統-阿里山觀測站. <https://codis.cwa.gov.tw/StationData>.
王兩全. 1996. 台灣野生茶樹蒐集及利用. 茶業專訊 18:4.
王經文、黃盟元、陳忠偉、陳忠義、翁韶良、翁仁憲. 2022. 台灣生物多樣性研究 24(3):96-128.
王鐘和. 2002a. 茶樹營養特性及其管理策略(二)—茶樹營養管理對策. 農業世界 223:34-39.
王鐘和. 2002b. 茶樹營養特性及其管理策略(一)—茶樹營養特性. 農業世界 222:70-73.
行政院農業部. 2021. 臺閩地區農作物災害損失. 農業統計資料查詢. <https://agrstat.moa.gov.tw/sdweb/public/official/OfficialInformation.aspx>.
阮忠仁. 2009. 山、海、平原的現代化變遷, p. 442-485. 嘉義縣志‧卷二‧沿革志. 嘉義縣政府. 嘉義.
李臺強、張清寬. 2003. 台灣茶樹種原圖誌:慶祝建場100週年紀念特刊. 行政院農業委員會茶業改良場, 桃園.
林木連. 2000. 有機質肥料在茶樹栽培上之施用技術, p. 147-162. 刊於:陳武雄、林俊義、林木連主編. 有機質肥料合理化施用技術. 中華永續農業協會. 臺中.
林儒宏. (無日期). 中南部各茶區特色說明. 農業部茶及飲料作物改良場. 2024年2月7日取自 <https://www.tbrs.gov.tw/ws.php?id=4804>.
邱芳慶、邱垂豐、林金池、黃正宗、葉茂生. 2010. 不同海拔茶區青心烏龍季節間茶葉化學成分及品質之變異. 臺灣茶業研究彙報 29:1-10.
徐嘉君. 2015. 台灣山地霧林的分布與型態. 林業研究專訊 22:5-8.
郭春芳、孙 云、唐玉海、张木清. 2009. 水分脅迫對茶樹葉片葉綠素螢光特性的影響. 中國生態農業學報 17(3): 560-564.
陳右人. 2006. 臺灣茶樹育種. 植物種苗 8:1-20.
陳國任. 2021. 探索臺灣特色茶之容顏, p. 117-140. 茶顏觀色品茶趣—臺灣茶風味解析. 華品文創. 臺北.
陳誌宏、劉千如、邱垂豐、黃文理. 2019. 不同茶樹品種於乾旱逆境下之外表形態與生理指標之建立. 作物、環境與生物資訊 16(3): 150-161.
楊子瑩、羅敏輝、鄭兆尊. 2021. 氣候變遷對棲蘭雲霧森林地表通量特性的影響. 大氣科學 49: 111-152.
葉子明、紀采靜. 2018. 茶葉消費者購買台灣茶葉再購意願因素之研究. 行銷評論 15: 259-290.
劉秋芳、林育聖、林儒宏、劉千如. 2020. 低溫對茶樹造成傷害的種類及成因. 茶業專訊 114:15-18.
劉敏莉. 2012. 葉綠素螢光在作物耐熱性篩選之應用. 高雄區農業改良場研究彙報 21:1-15.
鄭混元、范宏杰. 2013. 台灣野生茶樹資源及其利用. 臺灣茶業研究彙報 32:21-44.
賴彥任. 2017. 臺大實驗林轄區雲遮蔽時空變化. 國立臺灣大學生物資源暨農學院實驗林研究報告 31:67-76.
蘇彥碩、曹碧貴、蕭建興. 2019. 茶園土壤品質及施肥推薦 p. 351-364. 刊於:黃維廷、李艷琪、郭鴻裕主編. 作物土壤管理與施肥技術—果樹與茶作篇. 行政院農業委員會農業試驗所.
Abdel-Ghany, A.M. and I.M. Al-Helal. 2010. Characterization of solar radiation transmission through plastic shading nets. Sol. Energy Mater. Sol. Cells 94:1371-1378.
Abudureheman, B., X. Yu, D. Fang, and H. Zhang. 2022. Enzymatic Oxidation of Tea Catechins and Its Mechanism. Molecules 27:942.
Ashihara, H. 2015. Occurrence, biosynthesis and metabolism of theanine (gamma-glutamyl-L-ethylamide) in plants: a comprehensive review. Nat Prod Commun 10:803-810.
Ashihara, H. and H. Kubota. 1986. Patterns of Adenine Metabolism and Caffeine Biosynthesis in Different Parts of Tea Seedlings. Physiologia Plantarum 68:275-281.
Badhani, B., N. Sharma, and R. Kakkar. 2015. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. Rsc Advances 5:27540-27557.
Barman, T.S., U. Baruah, and J.K. Saikia. 2008. Irradiance influences tea leaf (L.) photosynthesis and transpiration. Photosynthetica 46:618-621.
Berry, Z.C. and G.R. Goldsmith. 2020. Diffuse light and wetting differentially affect tropical tree leaf photosynthesis. New Phytol 225:143-153.
Brouquisse, R., J.P. Gaudillere, and P. Raymond. 1998. Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to Light/Dark cycles and to extended darkness. Plant Physiol 117:1281-1291.
Chen, J., S. Wu, F. Dong, J. Li, L. Zeng, J. Tang, and D. Gu. 2021. Mechanism Underlying the Shading-Induced Chlorophyll Accumulation in Tea Leaves. Front Plant Sci 12:779819.
Chen, T., S. Lin, Z. Chen, T. Yang, S. Zhang, J. Zhang, G. Xu, X. Wan, and Z. Zhang. 2023. Theanine, a tea-plant-specific non-proteinogenic amino acid, is involved in the regulation of lateral root development in response to nitrogen status. Hortic Res 10:uhac267.
Chen, Y., X. Fu, X. Mei, Y. Zhou, S. Cheng, L. Zeng, F. Dong, and Z. Yang. 2017. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. J Proteomics 157:10-17.
Clegg, M.S., C.L. Keen, B. Lönnerdal, and L.S. Hurley. 1981. Influence of ashing techniques on the analysis of trace elements in biological samples. Biological Trace Element Research 3:237-244.
Close, D.C. and C. McArthur. 2002. Rethinking the role of many plant phenolics - protection from photodamage not herbivores? Oikos 99:166-172.
Dai, W., D. Qi, T. Yang, H. Lv, L. Guo, Y. Zhang, Y. Zhu, Q. Peng, D. Xie, J. Tan, and Z. Lin. 2015. Nontargeted Analysis Using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry Uncovers the Effects of Harvest Season on the Metabolites and Taste Quality of Tea (Camellia sinensis L.). J Agric Food Chem 63:9869-9878.
Duncan, J.M.A., S.D. Saikia, N. Gupta, and E.M. Biggs. 2016. Observing climate impacts on tea yield in Assam, India. Appl. Geogr. 77:64-71.
Fu, X., J. Chen, J. Li, G. Dai, J. Tang, and Z. Yang. 2022. Mechanism underlying the carotenoid accumulation in shaded tea leaves. Food Chem X 14:100323.
Fu, X., Y. Chen, X. Mei, T. Katsuno, E. Kobayashi, F. Dong, N. Watanabe, and Z. Yang. 2015. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Sci Rep 5:16858.
Fu, X., S. Cheng, Y. Liao, X. Xu, X. Wang, X. Hao, P. Xu, F. Dong, and Z. Yang. 2020. Characterization of l-Theanine Hydrolase in Vitro and Subcellular Distribution of Its Specific Product Ethylamine in Tea (Camellia sinensis). J Agric Food Chem 68:10842-10851.
Garrone, A., N. Archipowa, P.F. Zipfel, G. Hermann, and B. Dietzek. 2015. Plant Protochlorophyllide Oxidoreductases A and B: CATALYTIC EFFICIENCY AND INITIAL REACTION STEPS. J Biol Chem 290:28530-28539.
Gong, A.D., S.B. Lian, N.N. Wu, Y.J. Zhou, S.Q. Zhao, L.M. Zhang, L. Cheng, and H.Y. Yuan. 2020. Integrated transcriptomics and metabolomics analysis of catechins, caffeine and theanine biosynthesis in tea plant (Camellia sinensis) over the course of seasons. BMC Plant Biol 20:294.
Han, W.-Y., J.-G. Huang, X. Li, Z.-X. Li, G.J. Ahammed, P. Yan, and J.R. Stepp. 2016. Altitudinal effects on the quality of green tea in east China: a climate change perspective. Eur. Food Res. Technol. 243:323-330.
Hepler, P.K. 2005. Calcium: a central regulator of plant growth and development. Plant Cell 17:2142-2155.
Hollingsworth, R.G., J.W. Armstrong, and E. Campbell. 2002. Caffeine as a repellent for slugs and snails. Nature 417:915-916.
Hu, J., D. Zhou, and Y. Chen. 2009. Preparation and antioxidant activity of green tea extract enriched in epigallocatechin (EGC) and epigallocatechin gallate (EGCG). J Agric Food Chem 57:1349-1353.
Janendra, W.A.M.D.C., A. Janaki Mojotti, and M.A. Wijeratne. 2007. Ecophysiology of tea. Braz. J. Plant Physiol. 19(4):229-332.
Jayasinghe, S.L. and L. Kumar. 2021. Potential Impact of the Current and Future Climate on the Yield, Quality, and Climate Suitability for Tea [Camellia sinensis (L.) O. Kuntze]: A Systematic Review. Agronomy-Basel 11:619.
Jyoti, V.V., B. Pratikhya, and G. Giridhar. 2021. Phenolic Compounds in Tea: Phytochemical, Biological, and Therapeutic Applications, p. Ch. 20. In: A.B. Farid (ed.). Phenolic Compounds. IntechOpen, Rijeka.
Kato, M. and H. Ashihara. 2008. Biosynthesis and Catabolism of Purine Alkaloids in Camellia Plants. Natural Product Communications 3:1934578X0800300.
Kawade, K., H. Tabeta, A. Ferjani, and M.Y. Hirai. 2023. The Roles of Functional Amino Acids in Plant Growth and Development. Plant Cell Physiol 64:1482-1493.
Kim, Y., K.L. Goodner, J.D. Park, J. Choi, and S.T. Talcott. 2011. Changes in antioxidant phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. Food Chem. 129:1331-1342.
Landi, M., M. Zivcak, O. Sytar, M. Brestic, and S.I. Allakhverdiev. 2020. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochim Biophys Acta Bioenerg 1861:148131.
Lee, L.S., J.H. Choi, N. Son, S.H. Kim, J.D. Park, D.J. Jang, Y. Jeong, and H.J. Kim. 2013. Metabolomic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea. J Agric Food Chem 61:332-338.
Li, C.L., J. Xu, H.M. Xu, J. Liu, L.X. Zhang, and Z.K. Wang. 2023. Analysis of growth resistance mechanisms and causes in tea plants (Camellia sinensis) in high-pH regions of Northern China. Front Nutr 10:1131380.
Li, N., D. Euring, J.Y. Cha, Z. Lin, M. Lu, L.J. Huang, and W.Y. Kim. 2020. Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change. Front Plant Sci 11:627969.
Li, X., J.P. Wei, G.J. Ahammed, L. Zhang, Y. Li, P. Yan, L.P. Zhang, and W.Y. Han. 2018. Brassinosteroids Attenuate Moderate High Temperature-Caused Decline in Tea Quality by Enhancing Theanine Biosynthesis in Camellia sinensis L. Front Plant Sci 9:1016.
Li, Y., S. Ogita, C.A. Keya, and H. Ashihara. 2008. Expression of Caffeine Biosynthesis Genes in Tea (Camellia sinensis). Zeitschrift für Naturforschung C 63:267-270.
Liang, L.L., Y.K. Song, W.J. Qian, J.Y. Ruan, Z.T. Ding, Q.F. Zhang, and J.H. Hu. 2021. Metabolomics analysis reveals the responses of tea plants to excessive calcium. J Sci Food Agric 101:5678-5687.
Liang, Y.R., W.Y. Ma, J.L. Lu, and Y. Wu. 2001. Comparison of chemical compositions of Ilex latifolia thumb and Camellia sinensis L. Food Chem. 75:339-343.
Liao, Y., X. Zhou, and L. Zeng. 2022. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Crit Rev Food Sci Nutr 62:3751-3767.
Lin, S.K., J. Lin, Q.L. Liu, Y.F. Ai, Y.Q. Ke, C. Chen, Z.Y. Zhang, and H. He. 2014. Time-course of photosynthesis and non-structural carbon compounds in the leaves of tea plants (Camellia sinensis L.) in response to deficit irrigation. Agric. Water Manage. 144:98-106.
Lin, Y.S., Y.J. Tsai, J.S. Tsay, and J.K. Lin. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J Agric Food Chem 51:1864-1873.
Liu, J., M. Liu, H. Fang, Q. Zhang, and J. Ruan. 2021. Accumulation of Amino Acids and Flavonoids in Young Tea Shoots Is Highly Correlated With Carbon and Nitrogen Metabolism in Roots and Mature Leaves. Front Plant Sci 12:756433.
Liu, L., N. Lin, X. Liu, S. Yang, W. Wang, and X. Wan. 2020. From Chloroplast Biogenesis to Chlorophyll Accumulation: The Interplay of Light and Hormones on Gene Expression in Camellia sinensis cv. Shuchazao Leaves. Front Plant Sci 11:256.
Liu, Y., L. Gao, L. Liu, Q. Yang, Z. Lu, Z. Nie, Y. Wang, and T. Xia. 2012. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). J Biol Chem 287:44406-44417.
Liu, Z.A., J.P. Yang, and Z.C. Yang. 2012. Using a chlorophyll meter to estimate tea leaf chlorophyll and nitrogen contents. Journal of Soil Science and Plant Nutrition 12:339-348.
Liu, Z.B., M.E. Bruins, W.J.C. de Bruijn, and J.P. Vincken. 2020. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. J. Food Compos. Anal. 86:9.
Liu, Z.W., Z.J. Wu, H. Li, Y.X. Wang, and J. Zhuang. 2017. L-Theanine Content and Related Gene Expression: Novel Insights into Theanine Biosynthesis and Hydrolysis among Different Tea Plant (Camellia sinensis L.) Tissues and Cultivars. Front Plant Sci 8:498.
Lu, Z., Y. Liu, L. Zhao, X. Jiang, M. Li, Y. Wang, Y. Xu, L. Gao, and T. Xia. 2014. Effect of low-intensity white light mediated de-etiolation on the biosynthesis of polyphenols in tea seedlings. Plant Physiol Biochem 80:328-336.
Matthews, J.S.A., S. Vialet-Chabrand, and T. Lawson. 2020. Role of blue and red light in stomatal dynamic behaviour. Journal of Experimental Botany 71:2253-2269.
Mravec, J., S.K. Kracun, M.G. Rydahl, B. Westereng, D. Pontiggia, G. De Lorenzo, D.S. Domozych, and W.G.T. Willats. 2017. An oligogalacturonide-derived molecular probe demonstrates the dynamics of calcium-mediated pectin complexation in cell walls of tip-growing structures. Plant J 91:534-546.
Nalina, M., S. Saroja, R. Rajkumar, B. Radhakrishnan, and K.N. Chandrashekara. 2018. Variations in quality constituents of green tea leaves in response to drought stress under south Indian condition. Scientia Horticulturae 233:359-369.
Naznin, M.T., M. Lefsrud, V. Gravel, and M.O.K. Azad. 2019. Blue Light added with Red LEDs Enhance Growth Characteristics, Pigments Content, and Antioxidant Capacity in Lettuce, Spinach, Kale, Basil, and Sweet Pepper in a Controlled Environment. Plants (Basel) 8:93.
Oh, S. and S.C. Koh. 2014. Photosystem II photochemical efficiency and photosynthetic capacity in leaves of tea plant (Camellia sinensis L.) under winter stress in the field. Hortic. Environ. Biotechnol. 55:363-371.
Pandey, K.B. and S.I. Rizvi. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2:270-278.
Qian, W., J. Hu, X. Zhang, L. Zhao, Y. Wang, and Z. Ding. 2018. Response of Tea Plants to Drought Stress, p. 63-81Stress Physiology of Tea in the Face of Climate Change. Springer Singapore.
Qiao, C.L., B. Xu, Y.T. Han, J. Wang, X. Wang, L.L. Liu, W.X. Liu, S.Q. Wan, H. Tan, Y.Z. Liu, and X.M. Zhao. 2018. Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea. A meta-analysis. Agron. Sustain. Dev. 38:10.
Reinhardt, K., W.K. Smith, and G.A. Carter. 2010. Clouds and cloud immersion alter photosynthetic light quality in a temperate mountain cloud forest. Botany 88:462-470.
Ren, T., P. Zheng, K. Zhang, J. Liao, F. Xiong, Q. Shen, Y. Ma, W. Fang, and X. Zhu. 2021. Effects of GABA on the polyphenol accumulation and antioxidant activities in tea plants (Camellia sinensis L.) under heat-stress conditions. Plant Physiol Biochem 159:363-371.
Ruan, J., L. Ma, and Y. Yang. 2012. Magnesium nutrition on accumulation and transport of amino acids in tea plants. J Sci Food Agric 92:1375-1383.
Ruan, J.Y., L.F. Ma, and Y.Z. Shi. 2013. Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China. Journal of Plant Nutrition and Soil Science 176:450-459.
Saimaiti, A., D.D. Zhou, J. Li, R.G. Xiong, R.Y. Gan, S.Y. Huang, A. Shang, C.N. Zhao, H.Y. Li, and H.B. Li. 2023. Dietary sources, health benefits, and risks of caffeine. Crit Rev Food Sci Nutr 63:9648-9666.
Sano, T., H. Horie, A. Matsunaga, and Y. Hirono. 2018. Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation. J Sci Food Agric 98:5666-5676.
Shao, C.Y., J.J. Chen, Z.D. Lv, X.Z. Gao, S.N. Guo, R. Xu, Z.Y. Deng, S.H. Yao, Z.D. Chen, Y.K. Kang, J.A. Huang, Z.H. Liu, and C.W. Shen. 2023. Staged and repeated drought-induced regulation of phenylpropanoid synthesis confers tolerance to a water deficit environment in Camellia sinensis. Ind. Crop. Prod. 201:17.
Shen, J., D. Zhang, L. Zhou, X. Zhang, J. Liao, Y. Duan, B. Wen, Y. Ma, Y. Wang, W. Fang, and X. Zhu. 2019. Transcriptomic and metabolomic profiling of Camellia sinensis L. cv. 'Suchazao' exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways. Tree Physiol 39:1583-1599.
Shi, J., W. Wu, Y. Zhang, S. Baldermann, Q. Peng, J. Wang, L. Xu, G. Yang, J. Fu, H. Lv, and Z. Lin. 2023. Comprehensive analysis of carotenoids constituents in purple-coloured leaves and carotenoid-derived aroma differences after processing into green, black, and white tea. Lwt 173:10.
Shirin, A., Y.Z. Zhang, P. Mao, Y.P. Lei, P.X. Bai, Y.X. Wang, L. Ruan, H.S. Xun, L.Y. Wu, H. Cheng, L.Y. Wang, and K. Wei. 2022. Responses of secondary metabolites and transcriptomes in the tea cultivar 'Zhong Ming 6' (Camellia sinensis) to blue light and red light. Plant Growth Regul.
Sledz, W., E. Los, A. Paczek, J. Rischka, A. Motyka, S. Zoledowska, J. Piosik, and E. Lojkowska. 2015. Antibacterial activity of caffeine against plant pathogenic bacteria. Acta Biochim Pol 62:605-612.
Sparks, D.L., B. Singh, and M.G. Siebecker. 2024. The Chemistry of Saline and Sodic Soils, p. 411-438. In: D.L. Sparks, B. Singh, and M.G. Siebecker (eds.). Environmental Soil Chemistry. Elsevier Science.
Tang, Q., K. Liu, C. Yue, L. Luo, L. Zeng, and Z. Wu. 2023. CsXDH1 gene promotes caffeine catabolism induced by continuous strong light in tea plant. Hortic Res 10:uhad090
Tseng, W.-Y. and H.-Y. Lai. 2022. Comprehensive Analysis Revealed the Specific Soil Properties and Foliar Elements Respond to the Quality Composition Levels of Tea (Camellia sinensis L.). Agronomy 12:670.
Tuiebayeva, A.M., M.M. Sergazina, M.B. Alimzhanova, and Z.S. Mukataeva. 2018. Determination of the chemical composition of tea by modern physico-chemical methods: a review. Int. J. Biol. Chem. 11:142-152.
Wang, M., Q. Zheng, Q. Shen, and S. Guo. 2013. The Critical Role of Potassium in Plant Stress Response. International Journal of Molecular Sciences 14:7370-7390.
Wang, W., H. Xin, M. Wang, Q. Ma, L. Wang, N.A. Kaleri, Y. Wang, and X. Li. 2016. Transcriptomic Analysis Reveals the Molecular Mechanisms of Drought-Stress-Induced Decreases in Camellia sinensis Leaf Quality. Front Plant Sci 7:385.
Wang, Y., X.M. Cheng, T.Y. Yang, Y.L. Su, S.J. Lin, S.P. Zhang, and Z.L. Zhang. 2021. Nitrogen-Regulated Theanine and Flavonoid Biosynthesis in Tea Plant Roots: Protein-Level Regulation Revealed by Multiomics Analyses. J. Agric. Food Chem. 69:10002-10016.
Wang, Y.S., L.P. Gao, Y. Shan, Y.J. Liu, Y.W. Tian, and T. Xia. 2012. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae 141:7-16.
Wei, K.L., M.Y. Liu, Y.F. Shi, H. Zhang, J.Y. Ruan, Q.F. Zhang, and M.H. Cao. 2022. Metabolomics Reveal That the High Application of Phosphorus and Potassium in Tea Plantation Inhibited Amino-Acid Accumulation but Promoted Metabolism of Flavonoid. Agronomy-Basel 12:1086.
Weng, J.H., C.T. Chien, C.W. Chen, and X.M. Lai. 2011. Effects of osmotic- and high-light stresses on PSII efficiency of attached and detached leaves of three tree species adapted to different water regimes. Photosynthetica 49:555-563.
Wijeratne, M.A., A. Anandacoomaraswamy , M.K.S.L.D. Amarathunga, Janaka Ratnasiri,, B.R.S.B. Basnayake, and N. Kalra. 2007. Assessment of impact of climate change on productivity of tea(Camellia sinensis L.) plantations in Sri Lanka. J. Natn. Sci. Foundation Sri Lanka 35(2):119-126.
Wink, M. 2010. Introduction: Biochemistry, Physiology and Ecological Functions of Secondary Metabolites, p. 1-19. In: M. Wink (ed.). Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism. Wiley-Blackwell, Singapore.
Wu, W., J. Shi, J. Jin, Z. Liu, Y. Yuan, Z. Chen, S. Zhang, W. Dai, and Z. Lin. 2023. Comprehensive metabolic analyses provide new insights into primary and secondary metabolites in different tissues of Jianghua Kucha tea (Camellia sinensis var. assamica cv. Jianghua). Front. Nutr. 10.
Xi, S.Q., H.Y. Chu, Z.J. Zhou, T. Li, S.R. Zhang, X.X. Xu, Y.L. Pu, G.Y. Wang, Y.X. Jia, and X.J. Liu. 2023. Effect of potassium fertilizer on tea yield and quality: A meta-analysis. Eur. J. Agron. 144:9.
Xiang, P., I.W. Wilson, J. Huang, Q. Zhu, M. Tan, J. Lu, J. Liu, S. Gao, S. Zheng, D. Lin, Y. Zhang, and J. Lin. 2020. Co-regulation of catechins biosynthesis responses to temperature changes by shoot growth and catechin related gene expression in tea plants (Camellia sinensis L.). The Journal of Horticultural Science and Biotechnology 96:228-238.
Xiang, P., Q. Zhu, M. Tukhvatshin, B. Cheng, M. Tan, J. Liu, X. Wang, J. Huang, S. Gao, D. Lin, Y. Zhang, L. Wu, and J. Lin. 2021. Light control of catechin accumulation is mediated by photosynthetic capacity in tea plant (Camellia sinensis). BMC Plant Biol 21:478.
Xiang, P., Q.F. Zhu, L.H. Zhang, P.Z. Xu, L.J. Liu, Y.Y. Li, B.S. Cheng, X.J. Wang, J.H. Liu, Y.T. Shi, L.Y. Wu, and J.K. Lin. 2023. Integrative analyses of transcriptome and metabolome reveal comprehensive mechanisms of Epigallocatechin-3-gallate (EGCG) biosynthesis in response to ecological factors in tea plant (Camellia sinensis). Food Research International 166:12.
Yamashita, H., Y. Tanaka, K. Umetsu, S. Morita, Y. Ono, T. Suzuki, T. Takemoto, A. Morita, and T. Ikka. 2020. Phenotypic Markers Reflecting the Status of Overstressed Tea Plants Subjected to Repeated Shade Cultivation. Front Plant Sci 11:556476.
Yan, Y.L., S. Jeong, C.E. Park, N.D. Mueller, S.L. Piao, H. Park, J. Joo, X. Chen, X.H. Wang, J.G. Liu, and C.M. Zheng. 2021. Effects of extreme temperature on China's tea production. Environ. Res. Lett. 16:11
Yang, X.D., K. Ni, Y.Z. Shi, X.Y. Yi, Q.F. Zhang, L. Fang, L.F. Ma, and J.Y. Ruan. 2018. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric. Ecosyst. Environ. 252:74-82.
Yang, Y.Z., T. Li, R.M. Teng, M.H. Han, and J. Zhuang. 2021. Low temperature effects on carotenoids biosynthesis in the leaves of green and albino tea plant (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae 285:9.
Yang, Z.J., T.R. Sinclair, M. Zhu, C.D. Messina, M. Cooper, and G.L. Hammer. 2012. Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environ Exp Bot 78:157-162.
Ye, J.H., Y.Q. Lv, S.R. Liu, J. Jin, Y.F. Wang, C.L. Wei, and S.Q. Zhao. 2021. Effects of Light Intensity and Spectral Composition on the Transcriptome Profiles of Leaves in Shade Grown Tea Plants (Camellia sinensis L.) and Regulatory Network of Flavonoid Biosynthesis. Molecules 26:5836.
Ye, J.H., Y. Ye, J.F. Yin, J. Jin, Y.R. Liang, R.Y. Liu, P. Tang, and Y.Q. Xu. 2022. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends Food Sci. Technol. 123:130-143.
Yu, Z. and Z. Yang. 2020. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Crit. Rev. Food Sci. Nutr. 60:844-858.
Zhang, H., Y. Song, Z. Fan, J. Ruan, J. Hu, and Q. Zhang. 2023. Aluminum Supplementation Mediates the Changes in Tea Plant Growth and Metabolism in Response to Calcium Stress. Int J Mol Sci 25:530.
Zhang, L., Q.Q. Cao, D. Granato, Y.Q. Xu, and C.T. Ho. 2020. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 101:139-149.
Zhang, Q., G. Bi, T. Li, Q. Wang, Z. Xing, J. LeCompte, and R.L. Harkess. 2022. Color Shade Nets Affect Plant Growth and Seasonal Leaf Quality of Camellia sinensis Grown in Mississippi, the United States. Front Nutr 9:786421.
Zhang, Q., M. Liu, R. Mumm, R.C.H. Vos, and J. Ruan. 2021. Metabolomics reveals the within-plant spatial effects of shading on tea plants. Tree Physiol 41:317-330.
Zhang, W., K. Ni, L. Long, and J. Ruan. 2023. Nitrogen transport and assimilation in tea plant (Camellia sinensis): a review. Front Plant Sci 14:1249202. doi: 10.3389/fpls.2023.1249202.
Zhang, X.C., K.Y. Chen, Z.Y. Zhao, S.Y. Li, and Y.Y. Li. 2023. A Novel LED Light Radiation Approach Enhances Growth in Green and Albino Tea Varieties. Plants (Basel) 12:988.
Zhang, X., K. Liu, Q. Tang, L. Zeng, and Z. Wu. 2023. Light Intensity Regulates Low-Temperature Adaptability of Tea Plant through ROS Stress and Developmental Programs. International Journal of Molecular Sciences 24:9852.
Zhao, Y., S. Yao, X. Zhang, Z. Wang, C. Jiang, Y. Liu, X. Jiang, L. Gao, and T. Xia. 2023. Flavan-3-ol Galloylation-Related Functional Gene Cluster and the Functional Diversification of SCPL Paralogs in Camellia sp. J Agric Food Chem 71:488-498.
Zheng, C., J.Q. Ma, C.L. Ma, S.Y. Shen, Y.F. Liu, and L. Chen. 2019. Regulation of Growth and Flavonoid Formation of Tea Plants (Camellia sinensis) by Blue and Green Light. J Agric Food Chem 67:2408-2419.
Zhu, Q., L. Liu, X. Lu, X. Du, P. Xiang, B. Cheng, M. Tan, J. Huang, L. Wu, W. Kong, Y. Shi, L. Wu, and J. Lin. 2023. The biosynthesis of EGCG, theanine and caffeine in response to temperature is mediated by hormone signal transduction factors in tea plant (Camellia sinensis L.). Front Plant Sci 14:1149182.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92494-
dc.description.abstract氣候變遷造成的環境因子變動對茶葉生產影響甚鉅,也同時影響茶菁內容物的組成,進而影響成茶品質。阿里山為臺灣高山茶重要茶區,茶園位於海拔800公尺至1600公尺區間,且是雲霧帶的分布區域。在阿里山茶區中,海拔高度與地理環境的共同影響使得同一氣候區下各茶園可能有不同的微氣候環境。為探討不同海拔茶區氣候因子對茶菁內容物組成差異的效應及可能成因,本研究分為三個部分進行。第一部分為標定大阿里山茶區不同海拔共14座阿里山茶園,分析各茶園土壤養分、植體礦物養分及2022年春茶茶菁中兒茶素、咖啡因、總游離胺基酸等內容物含量,並由架設於各茶園的微氣象站所蒐集之氣溫、光量子通量、相對溼度等為氣象因子參數,探討茶菁在不同環境下內容物的組成及變化。分析結果顯示茶菁中總游離胺基酸含量與EGCG呈負相關 (r = -0.68*),茶菁採摘前21日的氣象條件為茶菁中兒茶素異構物組成比例的關鍵區間,酯型兒茶素含量與氣溫為高度正相關 (r = 0.81**),而與相對濕度呈現負相關 (r = -0.57*)。以氣溫與光積值為參數對茶園樣區進行群集分析,茶園樣區可分為四群,氣溫為主要分群因子,在20℃以下的栽培環境中,溫度增加會使酯型兒茶素含量比例提高,氣溫18℃為酯型兒茶素含量變化的關鍵溫度;光積值為次要分群因子,自然光強度對兒茶素含量的影響則不如氣溫顯著。阿里山茶區經常出現雲霧,雲霧會改變氣溫與光強度,提高散射光比例及改變紅藍光的組合比例,因此設計不同光照與氣溫的試驗進行討論。第二部分以兩個日夜溫環境20/15℃、30/25℃,分別進行0%、50%、80%三個程度連續遮陰處理14日,探討溫度與光度對茶菁內容物的影響。結果顯示栽培於20℃的植株嫩梢較30℃有更高的總兒茶素含量,含量隨光強度降低而減少,咖啡因不受溫度影響,但在低光度下會累積。溫度與光度對兒茶素的累積具有交感效應。第三部分以人工光盤設定單光質紅光、單光質藍光、紅藍光2:1 (RRB)、紅藍光1:2 (RBB) 4種光質處理茶樹7日並分析嫩梢內容物,結果顯示EGC的含量隨藍光比例增加先升後降,在組合光質紅光200 μmol∙m-2∙s-1、藍光100 μmol∙m-2∙s-1處理下有最高的含量。本研究初步探討氣溫、光度與光質對茶菁中兒茶素含量的個別效應,將可做為日後因應氣候變遷維持茶菁良好品質管理策略的參考基礎。zh_TW
dc.description.abstractTea quality is determined by the composition of tea shoot content, which is influenced by environmental factors. Climate change has resulted in significant alterations to environmental factors, thereby exerting a substantial impact on tea production. Alishan, a crucial tea-producing region in Taiwan, includes tea fields situated between 800 meters and 1600 meters above sea level, within the cloud belt zone. Variances in altitude and geographical features contribute to distinct microclimates within the same climatic zone. To assess the effects of environmental factors at different altitudes on tea shoot content, this study was conducted in three parts. In the first part, fourteen Alishan tea fields at varying altitudes were selected to analyze soil properties, plant nutrition, and tea shoot components, such as catechins, caffeine, and total free amino acids, during the spring of 2022. Meteorological data, including temperature, photosynthetic photon flux density, and relative humidity, were collected using mini weather stations. The analysis results showed a negative correlation between the total free amino acid content and EGCG in tea shoots (r = -0.68*). The meteorological conditions 21 days before tea shoot picking were found to be a critical period for the composition ratio of catechin isomers in tea shoots. The content of esterified catechins was highly positively correlated with temperature (r = 0.81**), while it showed a negative correlation with relative humidity (r = -0.57*). Cluster analysis was conducted on tea field plots using temperature and daily light integral as parameters, resulting in four clusters. Temperature was identified as the primary clustering factor; in cultivation environments below 20℃, an increase in temperature led to a higher proportion of esterified catechins. The temperature of 18℃ was identified as the critical temperature for the variation in esterified catechin content. Daily light integral was identified as the secondary clustering factor, with sunlight intensity having a less significant impact on catechin content compared to temperature. Clouds and fog are frequently observed in the Alishan tea production area, which can alter temperature and light intensity, increasing the proportion of scattered light and modifying the combination ratio of red and blue light. Therefore, experiments were designed to discuss the effects of different light and temperature conditions. In the second part, experiments were conducted under two day-night temperature regimes, 20/15℃ and 30/25℃, with shading treatments of 0%, 50%, and 80% for 14 days each, to investigate the influence of temperature and light intensity on the contents of tea shoots. Results indicated that plants cultivated at 20℃ had higher total catechin content compared to those at 30℃, with the content decreasing as light intensity decreased. Caffeine was not affected by temperature but accumulated under low light conditions. A synergistic effect of temperature and light intensity was found on catechin accumulation. In the third part, artificial light sources were used in four light quality treatments: pure red light, pure blue light, a red-blue light ratio of 2:1 (RRB), and a red-blue light ratio of 1:2 (RBB), for 7 days. Results demonstrated that the EGC content initially increased with a rise in the proportion of blue light, particularly at the peak of red light 200 μmol∙m-2∙s-1 and blue light 100 μmol∙m-2∙s-1 treatment. Overall, this study provides preliminary insights into the individual effects of temperature, light intensity, and light quality on catechin content in tea shoots, offering valuable strategies for maintaining tea shoot quality under climate change.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-26T16:18:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-26T16:18:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 v
圖次 vii
表次 viii
第一章 前言 1
第二章 文獻回顧 2
第一節 茶樹栽培環境 2
第二節 茶菁內容物組成 3
一、 多元酚類中的黃烷醇 3
二、 酚酸 (phenolic acids)與縮酸類 (depsides) 4
三、 嘌呤類生物鹼 (purine alkaloids) 4
四、 蛋白質與胺基酸 5
第三節 環境因子對茶樹生化代謝之影響 5
一、 光照 5
二、 氣溫 7
三、 水分供給 8
四、 土壤性質 8
五、 海拔與環境因子的關係 9
第三章 材料與方法 10
第一節 試驗材料 10
一、 阿里山茶園樣區茶菁材料 10
二、 光強度與氣溫試驗 10
三、 光質試驗 10
第二節 試驗方法與調查項目 10
試驗一、阿里山茶園樣區環境資料蒐集 10
試驗二、光強度及氣溫對茶菁品質之影響 11
試驗三、紅藍光對茶菁品質之影響 12
第三節 分析方法 12
一、 植體乾燥與均質 12
二、 元素分析 12
三、 兒茶素異構物、沒食子酸及咖啡因分析 14
四、 總游離氨基酸分析 16
第四節 統計方法 17
第四章 結果與討論 18
第一節 阿里山不同海拔茶園樣區之茶菁內容物變化 18
一、 茶園樣區土壤性質調查分析 18
二、 茶樹植體營養分析 19
三、 茶菁主要內容物之關係 20
四、 土壤環境、茶樹養分及茶菁內容物之可能關係 21
五、 茶園氣象因子與茶菁內容物含量 22
六、 光強度及氣溫對阿里山茶園樣區茶菁內容物之影響 23
第二節 光強度與氣溫對茶菁內容物之影響 25
一、 不同光強度與氣溫組合對茶樹光合作用之影響 25
二、 不同光強度與氣溫組合對茶菁內容物含量之影響 27
第三節 紅藍光處理對茶菁內容物之影響 28
第五章 結論 31
圖 33
表 47
參考資料 79
附錄 94
-
dc.language.isozh_TW-
dc.subject氣象因子zh_TW
dc.subject兒茶素zh_TW
dc.subject光質zh_TW
dc.subject光強度zh_TW
dc.subject氣溫zh_TW
dc.subjecttemperatureen
dc.subjectlight intensityen
dc.subjectlight qualityen
dc.subjectcatechinen
dc.subjectmeteorological factoren
dc.title阿里山不同海拔茶菁內容物變化與成因初探zh_TW
dc.titleInvestigating the Changes and Underlying Factors of Tea Leaf Composition at Various Altitude in Alishanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳國任;陳柏安zh_TW
dc.contributor.oralexamcommitteeKuo-Renn Chen;Po-An Chenen
dc.subject.keyword氣溫,光強度,光質,兒茶素,氣象因子,zh_TW
dc.subject.keywordtemperature,light intensity,light quality,catechin,meteorological factor,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202400634-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-03-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2025-08-31-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved