請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92482
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林恭如 | zh_TW |
dc.contributor.advisor | Gong-Ru Lin | en |
dc.contributor.author | 胡冠維 | zh_TW |
dc.contributor.author | Kuan-Wei Hu | en |
dc.date.accessioned | 2024-03-26T16:15:22Z | - |
dc.date.available | 2024-03-27 | - |
dc.date.copyright | 2024-03-26 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-11-08 | - |
dc.identifier.citation | [1] Rivest, Ronald L., Adi Shamir, and Leonard M. Adleman. "Cryptographic communications system and method." U.S. Patent, vol. 4, no. 405, pp. 829, Sep. 1983.
[2] Shor, Peter W. "Algorithms for quantum computation: discrete logarithms and factoring." Proceedings 35th annual symposium on foundations of computer science. Ieee, 1994. [3] Wootters, William K., and Wojciech H. Zurek. "A single quantum cannot be cloned." Nature, vol. 299, pp. 802-803, 1982. [4] Bennett, Charles H., and Gilles Brassard. "Quantum cryptography: Public key distribution and coin tossing." Proc. of IEEE Int. Conf. on Comp. Sys. and Signal Proc., pp. 175-179, 1984. [5] Ekert, Artur K. "Quantum cryptography based on Bell’s theorem." Phys. Rev. Lett., vol. 67, pp. 661, 1991. [6] Bennett, Charles H., Gilles Brassard, and N. David Mermin. "Quantum cryptography without Bell’s theorem." Phys. Rev. Lett., vol. 68, pp. 557, 1992. [7] Bennett, Charles H. "Quantum cryptography using any two nonorthogonal states." Phys. Rev. Lett., vol. 68, pp. 3121, 1992. [8] Inoue, Kyo, Edo Waks, and Yoshihisa Yamamoto. "Differential phase shift quantum key distribution." Phys. Rev. Lett., vol. 89, pp. 3, 2002. [9] Waks, Edo, Hiroki Takesue, and Yoshihisa Yamamoto. "Security of differential-phase-shift quantum key distribution against individual attacks." Phys. Rev. A, vol. 73, pp. 9, 2006. [10] Zhang, L., Wang, Y., Yin, Z., Chen, W., Yang, Y. "Real-time compensation of phase drift for phase-encoded quantum key distribution systems." Chin. Sci. Bull., vol. 56, pp. 2305-2311, 2011. [11] Yue Zhang, Junyue Yin, Huiqing Zhao, Jindong Wang, Ruili Ma, Zihao Liu, Jiahao Wei, Yafei Yu, Zhengjun Wei, and Zhiming Zhang, "Experimental demonstration of a local active phase compensation method for a phase encoding quantum key distribution system." Appl. Optics, vol. 61, pp. 7713-7718, 2022. [12] C. Spiess, L. J. G. M. Del Campo, N. E. T. Villamizar, and F. Steinlechner, "Stabilization of fiber-based interferometer with single photons." CLEO: Fundamental Science. Optica Publishing Group, 2023. [13] Honjo, T., T. Inoue, and K. Inoue. "Influence of light source linewidth in differential-phase-shift quantum key distribution systems." Opt. Commun., vol. 284, pp. 5856-5859, 2011. [14] Di Zhang, Jianyi Zhao, Qi Yang, Wen Liu, Yanfeng Fu, Chao Li, Ming Luo, Shenglei Hu, Qianggao Hu, and Lei Wang, "Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection." Opt. Express, vol. 20, pp. 19670-19682, 2012. [15] Aflatouni, Firooz, and Hossein Hashemi. "Light source independent linewidth reduction of lasers." OFC/NFOEC. IEEE, 2012. [16] Yong, Jae Chul, Luc Thévenaz, and Byoung Yoon Kim. "Brillouin fiber laser pumped by a DFB laser diode." J. Lightwave Technol., vol. 21, pp. 546-554, 2003. [17] Yung-Cheng Chang, Yu-Huang Lin, J. H. Chen, and Gong-Ru Lin, "All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition." Opt. Express, vol. 12, pp. 4449-4456, 2004. [18] Gong-Ru Lin, Hai-Lin Wang, Gong-Cheng Lin, Yin-Hsun Huang, Yi-Hung Lin, and Tzu-Kang Cheng, "Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system." J. Lightwave Technol., vol. 27, pp. 2779-2785, 2009. [19] Yu-Chieh Chi, Yi-Cheng Li, Huai-Yung Wang, Peng-Chun Peng, Hai-Han Lu, and Gong-Ru Lin, "Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode." Opt. Express, vol. 20, pp. 20071-20077, 2012. [20] Min-Chi Cheng, Cheng-Ting Tsai, Yu-Chieh Chi, and Gong-Ru Lin, "Direct QAM-OFDM encoding of an L-band master-to-slave injection-locked WRC-FPLD pair for 28× 20 Gb/s DWDM-PON transmission." J. Lightwave Technol., vol. 32, pp. 2981-2988, 2014 [21] Tsai, Cheng-Ting, Yu-Chieh Chi, and Gong-Ru Lin. "Power fading mitigation of 40-Gbit/s 256-QAM OFDM carried by colorless laser diode under injection-locking." Opt. Express, vol. 23, pp. 29065-29078, 2015. [22] Paraïso, T.K., De Marco, I., Roger, T. et al. "A modulator-free quantum key distribution transmitter chip." npj Quantum Inform., vol. 5, pp. 42, 2019. [23] Woodward, Robert Ian, et al. "Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers." npj Quantum Inform., vol. 7, pp. 58, 2021. [24] B. N. Alajmi, K. H. Ahmed, S. J. Finney and B. W. Williams, "Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system." IEEE Trans. Power Electron., vol. 26, pp. 1022-1030, 2010. [25] L. Richter, H. Mandelberg, M. Kruger and P. McGrath, "Linewidth determination from self-heterodyne measurements with subcoherence delay times." IEEE J. Quantum Electron., vol. 22, pp. 2070-2074, 1986. [26] Zhongan Zhao, Zhenxu Bai, Duo Jin, Yaoyao Qi, Jie Ding, Bingzheng Yan, Yulei Wang, Zhiwei Lu, and Richard P. Mildren, "Narrow laser-linewidth measurement using short delay self-heterodyne interferometry." Opt. Express, vol. 30, pp. 30600-30610, 2022. [27] Shihong Huang, Minggui Wan, Jiayang Wu, Dunke Lu, Bingzhi Zhang, Yanhua Zheng, Cuihong Liu, and Xiaohui Fang, "Precise laser linewidth measurement by feature extraction with short-delay self-homodyne." Appl. Optics, vol. 61, pp. 1791-1796, 2022. [28] Henry, Charles. "Theory of the linewidth of semiconductor lasers." IEEE J. Quantum Electron., vol. 18, pp. 259-264, 1982. [29] Rustu Eke, A. Sertap Kavasoglu, Nese Kavasoglu, "Design and implementation of a low-cost multi-channel temperature measurement system for photovoltaic modules." Measurement, vol. 45, pp. 1499-1509, 2012. [30] Matus, Michael. "Temperature measurement in dimensional metrology–Why the Steinhart-Hart equation works so well." PTB-OAR, 2013. [31] Tanaka, Akihiro, et al. "High-speed quantum key distribution system for 1-Mbps real-time key generation." IEEE J. Quantum Electron., vol. 48, pp. 542-550, 2012. [32] K. J. Gordon, V. Fernandez, P. D. Townsend and G. S. Buller, "A short wavelength gigahertz clocked fiber-optic quantum key distribution system." IEEE J. Quantum Electron., vol. 40, pp. 900-908, 2004. [33] Shannon, Claude Elwood. "A mathematical theory of communication." The Bell Syst. Tech J., vol. 27, pp. 379-423, 1948. [34] Takesue, H., et al. "Differential phase shift quantum key distribution experiment over 105 km fibre." New J. Phys., vol. 7, pp. 232, 2005. [35] T. Honjo, K. Inoue, and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer." Opt. Lett., vol. 29, pp. 2797-2799, 2004. [36] Ma, Lijun, et al. "1310 nm differential-phase-shift QKD system using superconducting single-photon detectors." New J. Phys., vol. 11, pp. 045020, 2009. [37] G. Shaw, S. Sridharan, S. Ranu, F. Shingala, P. Mandayam and A. Prabhakar, "Time-Bin Superposition Methods for DPS-QKD." IEEE Photonics J., vol. 14, pp. 1-7, 2002. [38] Youn-Chang Jeong, Yong-Su Kim, and Yoon-Ho Kim, "An experimental comparison of BB84 and SARG04 quantum key distribution protocols." Laser Phys. Lett., vol. 11, pp. 095201, 2014. [39] Zhang, Yichen, et al. "Continuous-variable QKD over 50 km commercial fiber." Quantum Sci. Technol., vol. 4, pp. 035006, 2019. [40] Liu, Zhixin, and Radan Slavík. "Optical injection locking: From principle to applications." J. Lightwave Technol., vol. 38, pp. 43-59, 2020. [41] Taofiq K. Paraïso, Robert I. Woodward, Davide G. Marangon, Victor Lovic, Zhiliang Yuan, Andrew J. Shields "Advanced laser technology for quantum communications (tutorial review)." Adv. Quantum Technol., vol. 4, pp. 2100062, 2021. [42] Brassard, Gilles, and Louis Salvail. "Secret-key reconciliation by public discussion." Workshop Theory & Appl. Cryptographic Techn. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. [43] Lütkenhaus, Norbert. "Security against individual attacks for realistic quantum key distribution." Phys. Rev. A, vol. 61, pp. 052304, 2000. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92482 | - |
dc.description.abstract | 隨著網際網路的蓬勃發展,行動支付的需求日漸增加,對於行動支付的資安是不可忽視的。由於傳統加密方式最常用的是RSA、AES等等,其安全性依賴於某些數學問題的困難度,例如大質數分解,對於現有電腦其破解速度需要好幾年。但近幾年量子電腦的快速發展,針對特殊問題的運算速度大幅提升,在短時間內破解已非不可能,因此亟需一個具有極高安全性的加密方式,量子密鑰分發正好符合此需求。
在第二章中,本篇論文首先針對商用DFBLD的基本特性進行分析,如P-I-V 曲線、閃爍雜訊、相對強度雜訊以及線寬。閃爍雜訊以及相對強度雜訊影響脈衝調製頻率的選擇範圍,當雷射的偏壓電流操作在7 Ith以上時,脈衝頻率可以操作在200 MHz以上。雷射線寬以及延遲干涉儀的自由光譜範圍大小對於QKD傳輸的影響十分顯著,使用寬線寬雷射進行傳輸,會因為干涉儀兩路輸出互相干擾,使得接收端無法解碼,本章使用線寬為293 kHz的商用DFBLD,其造成量子誤碼率為0.38%。除此之外,溫度改變造成的波長飄移遠大於電流改變造成的波長飄移,因此雷射需要精準的溫度控制,以防止干涉儀輸出擾動。單光子偵測器的各項操作參數也需要最佳化。脈衝產生器的脈衝頻率需要與延遲干涉儀的延遲時間對準,使得兩個脈衝能完全干涉。因為單光子偵測器的休息時間為1 µs,每個密碼之間的間隔時間也需要為1 µs。還有因為光路跟電路的延遲,單光子偵測器的閘門偵測時間需要與脈衝抵達時間對準。 第三章首先分析主雷射和從雷射的基本參數。主雷射在偏壓電流為60 mA時P-I 曲線有一不連續點,會造成線寬拓寬,需要避開此操作點。由於從雷射的線寬以及相對強度雜訊不適合用於傳輸,因此使用注入鎖定技術縮減雷射線寬,從10.62 GHz降低至6.37 MHz。再來分析注入鎖定範圍,使用Q值較低的從雷射可以更容易注入鎖定,但缺點是有較寬的線寬。在注入鎖定前,由於從雷射線寬太寬,3種不同自由光譜範圍之延遲干涉儀皆會因為兩路輸出互相干擾,而無法進行量子密鑰分發解調。在注入鎖定後,線寬大幅下降,因此在這3個延遲干涉儀可以觀察到明顯的干涉輸出,而192 MHz的延遲干涉儀之洩漏率仍有5%以上,其破壞性干涉無法降至sub-mW以下,這對於可見度的影響是劇烈的,除此之外,1.45 GHz的延遲干涉儀洩漏率最低,完全建設性干涉的功率比另外兩個還要大。因為系統的時序顫動,加密長度過長會使得量子誤碼率上升。對於192 MHz的延遲干涉儀,4種加密長度皆無法通過錯誤糾正的標準,而1 GHz和1.45 GHz的延遲干涉儀在128、256、512碼皆能通過標準,但1024碼則會略為超過。 | zh_TW |
dc.description.abstract | With the flourishing development of the Internet, the demand for mobile payments is steadily increasing, making information security in mobile payments an essential consideration. Traditional encryption methods, such as RSA and AES, rely on the difficulty of certain mathematical problems, like prime factorization, to ensure security. For current computers, breaking these encryption methods would take several years. However, the rapid advancement of quantum computers in recent years has significantly increased the computational speed for specific problems, making it feasible to break traditional encryption methods in a relatively short time. Hence, there is an urgent need for an encryption method that offers exceptionally high security, and quantum key distribution (QKD) is perfectly suited to meet this demand.
In Chapter 2, this paper commences by analyzing the fundamental characteristics of commercial distributed feedback laser diode (DFBLD), including P-I-V curves, flicker noise, relative intensity noise (RIN), and linewidth. Flicker noise and RIN influence the selection range for pulse modulation frequencies. When the laser operates at bias currents greater than 7 Ith, the pulse frequency can exceed 200 MHz. The linewidth of the laser and the free spectral range of the delay interferometer significantly impact the transmission of QKD. Using lasers with wide linewidths for transmission can lead to interference between the two output channels of the interferometer, rendering the decoding at the receiver end impossible. In this chapter, a DFBLD with a linewidth of 293 kHz was used, resulting in a quantum bit error rate (QBER) of 0.38%. Furthermore, temperature-induced wavelength drift is much greater than the drift caused by changes in current, necessitating precise temperature control of the laser to prevent disturbances in the interferometer's output. Parameters of single-photon detectors also require optimization. The pulse frequency of the pulse generator must align with the delay time of the delay interferometer (DI), allowing the two pulses to interfere completely. Given the resting time of the single-photon detectors is 1 µs, the interval time between each code must also be 1 µs. Furthermore, due to delays in the optical path and circuits, the gate detection time of the single-photon detectors needs to align with the pulse arrival time. Chapter 3 initiates by analyzing the fundamental parameters of the master and slave lasers. The master laser exhibits a discontinuity point in its P-I curve when biased at 60 mA, resulting in an increase in linewidth. It is advisable to avoid operating at this point. Due to the wide linewidth and RIN of the slave laser, they are unsuitable for transmission. Therefore, the linewidth of the laser was reduced from 10.62 GHz to 6.37 MHz using optical injection locking (OIL). Subsequently, the injection locking range is analyzed, where a slave laser with a lower Q-value is easier to inject lock but comes with a wider linewidth. Before injection locking, the wide linewidth of the slave laser leads to mutual interference between the two output channels of the DI for three different free spectral ranges, making quantum key distribution decryption impossible. However, after injection locking, the linewidth significantly reduces. As a result, clear interference output can be observed in all three delay interferometers. The delay interferometer with an FSR of 192 MHz still has a leakage rate of over 5%, and its destructive interference cannot be reduced to below sub-mW. This significantly impacts visibility. In contrast, the delay interferometer with an FSR of 1.45 GHz has the lowest leakage rate, and the power of fully constructive interference is greater than the other two. Because of system timing jitter, excessively long encryption lengths lead to an increase in quantum error rates. For the 192 MHz DI, none of the four encryption lengths meet the error correction standard. In contrast, for 1 GHz and 1.45 GHz DIs, encryption lengths of 128, 256, and 512 codes meet the standard, but the 1024 code length slightly exceeds it. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-26T16:15:22Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-26T16:15:22Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v CONTENTS viii LIST OF FIGURES x LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Historical review of QKD 1 1.2 Motivation 2 1.3 Thesis architecture 4 Chapter 2 Feedback-controlled DFBLD for DPS-QKD beyond 10 kbit/s over 40-km SMF 6 2.1 Experimental Setup and Flow Chart of Feedback Control 6 2.1.1 Experimental Setup 6 2.1.2 Flow Chart of Different Feedback Control Algorithms 8 2.2 Basic Characteristics of DFBLD 9 2.2.1 P-I-V curve, flicker noise, and RIN spectra 9 2.2.2 Linewidth measurement 10 2.2.3 Wavelength and power stability after DI 12 2.3 DPS-QKD Transmission under Optimization of SPAD Parameters 16 2.3.1 Single SPAD parameters adjustment 16 2.3.2 Calculation and discussion of QBER 19 2.3.3 Feedback control for DPS-QKD transmission 23 2.4 Summary 28 Chapter 3 Injection-locked Dual-mode Broad linewidth Laser for DPS-QKD 31 3.1 Experimental setup 31 3.2 Basic characteristics of master and slave laser 32 3.2.1 P-I curve, optical spectra, and RIN spectra 32 3.2.2 Linewidth measurement 34 3.3 DPS-QKD transmission performance w/o and w/i injection-locking 36 3.4 Summary 48 Chapter 4 Conclusion 50 REFERENCE 52 作者簡介 58 期刊論文與研討會論文投稿及發表紀錄 59 | - |
dc.language.iso | zh_TW | - |
dc.title | 注鎖與回授控制穩頻寬線寬雷射量子密鑰分發 | zh_TW |
dc.title | Injection-locked and Feedback-controlled Frequency Stabilization of Broad-linewidth Laser for Quantum Key Distribution | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳育任;巫朝陽 | zh_TW |
dc.contributor.oralexamcommittee | Yuh-Renn Wu;Jau-Yang Wu | en |
dc.subject.keyword | 量子密鑰分發,差分相位偏移量子密鑰分發,相位補償,PI 迴路,爬山演算法,光學注入鎖定,線寬縮減, | zh_TW |
dc.subject.keyword | quantum key distribution,differential-phase-shift QKD,phase compensation,PI loop,Hill-climbing algorithm,optical injection-locking,linewidth reduction, | en |
dc.relation.page | 60 | - |
dc.identifier.doi | 10.6342/NTU202304380 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-11-09 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
dc.date.embargo-lift | 2026-12-31 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 6.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。