請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92471完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏銘 | zh_TW |
| dc.contributor.advisor | Homer H. Chen | en |
| dc.contributor.author | 滕瑋安 | zh_TW |
| dc.contributor.author | Wei-An Teng | en |
| dc.date.accessioned | 2024-03-22T16:39:41Z | - |
| dc.date.available | 2024-03-23 | - |
| dc.date.copyright | 2024-03-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-22 | - |
| dc.identifier.citation | Adelson, E. H., & Bergen, J. R. (1991). The Plenoptic Function and the Elements of Early Vision. In Computational Models of Visual Processing (pp. 3–20).
Akeley, K., Watt, S. J., Girshick, A. R., & Banks, M. S. (2004). A stereo display prototype with multiple focal distances. ACM Transactions on Graphics, 23(3), 804–813. https://doi.org/10.1145/1015706.1015804 Daniel, F., & Kapoula, Z. (2019). Induced vergence-accommodation conflict reduces cognitive performance in the Stroop test. Scientific Reports, 9(1), 1247. https://doi.org/10.1038/s41598-018-37778-y Edgar, G. K., Pope, J. C. D., & Craig, I. R. (1994). Visual accomodation problems with head-up and helmet-mounted displays? Displays, 15(2), 68–75. https://doi.org/10.1016/0141-9382(94)90059-0 Eiberger, A., Kristensson, P. O., Mayr, S., Kranz, M., & Grubert, J. (2019). Effects of Depth Layer Switching between an Optical See-Through Head-Mounted Display and a Body-Proximate Display. Symposium on Spatial User Interaction, 1–9. https://doi.org/10.1145/3357251.3357588 Fernández, E. J., & Artal, P. (2003). Membrane deformable mirror for adaptive optics: Performance limits in visual optics. Optics Express, 11(9), 1056–1069. https://doi.org/10.1364/OE.11.001056 Gershun, A. (1939). The Light Field. Journal of Mathematics and Physics, 18(1–4), 51–151. https://doi.org/10.1002/sapm193918151 Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. (2008). Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision, 8(3), 33–33. https://doi.org/10.1167/8.3.33 Hua, H., & Javidi, B. (2014). A 3D integral imaging optical see-through head-mounted display. Optics Express, 22(11), 13484–13491. https://doi.org/10.1364/OE.22.013484 Iavecchia, J. H., Iavecchia, H. P., & Roscoe, I., Stanley N. (1988). Eye Accommodation to Head-Up Virtual Images. Human Factors, 30(6), 689–702. Agricultural & Environmental Science Collection; Healthcare Administration Database. https://doi.org/10.1177/001872088803000605 J. L. Gabbard, D. G. Mehra, & J. E. Swan. (2019). Effects of AR Display Context Switching and Focal Distance Switching on Human Performance. IEEE Transactions on Visualization and Computer Graphics, 25(6), 2228–2241. https://doi.org/10.1109/TVCG.2018.2832633 Koetting, R. A. (1970). STEREOPSIS IN PRESBYOPES FITTED WITH SINGLE VISION CONTACT LENSES*. Optometry and Vision Science, 47(7), 557–561. Kuiper, S., & Hendriks, B. H. W. (2004). Variable-focus liquid lens for miniature cameras. Applied Physics Letters, 85(7), 1128–1130. https://doi.org/10.1063/1.1779954 Levoy, M., & Hanrahan, P. (1996). Light Field Rendering. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 31–42. https://doi.org/10.1145/237170.237199 Lippmann, G. (1908). Épreuves réversibles donnant la sensation du relief. J. Phys. Theor. Appl., 7(1), 821–825. https://doi.org/10.1051/jphystap:019080070082100 Ren, H., Fox, D. W., Wu, B., & Wu, S.-T. (2007). Liquid crystal lens with large focal length tunability and low operating voltage. Optics Express, 15(18), 11328–11335. https://doi.org/10.1364/OE.15.011328 Shiwa, S., Omura, K., & Kishino, F. (1996). Proposal for a 3-D display with accommodative compensation: 3DDAC. Journal of the Society for Information Display, 4(4), 255–261. https://doi.org/10.1889/1.1987395 Smith, M., Streeter, J., Burnett, G., & Gabbard, J. L. (2015). Visual search tasks: The effects of head-up displays on driving and task performance. Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 80–87. https://doi.org/10.1145/2799250.2799291 Solman, G. J. F., Allan Cheyne, J., & Smilek, D. (2011). Memory load affects visual search processes without influencing search efficiency. Vision Research, 51(10), 1185–1191. https://doi.org/10.1016/j.visres.2011.03.009 Takashi Shibata, Joohwan Kim, David M. Hoffman, & Martin S. Banks. (2011). Visual discomfort with stereo displays: Effects of viewing distance and direction of vergence-accommodation conflict. 7863. https://doi.org/10.1117/12.872347 Taylor, I. L., & Sumner, F. C. (1945). Actual brightness and distance of individual colors when their apparent distance is held constant. The Journal of Psychology: Interdisciplinary and Applied, 19, 79–85. https://doi.org/10.1080/00223980.1945.9917222 Teng, W.-A., Yeh, S.-L., & Chen, H. H. (2022). Comparison of Virtual-Real Integration Efficiency between Light Field and Conventional Near-Eye AR Displays. 2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR), 246–251. https://doi.org/10.1109/MIPR54900.2022.00051 Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5 Wann, J. P., Rushton, S., & Mon-Williams, M. (1995). Natural problems for stereoscopic depth perception in virtual environments. Vision Research, 35(19), 2731–2736. https://doi.org/10.1016/0042-6989(95)00018-U Watt, S. J., Akeley, K., Ernst, M. O., & Banks, M. S. (2005). Focus cues affect perceived depth. Journal of Vision, 5(10), 7. https://doi.org/10.1167/5.10.7 Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160–168. https://doi.org/10.1016/j.tics.2011.02.005 Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica, 41(1), 67–85. Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psychonomic Bulletin & Review, 28(4), 1060–1092. https://doi.org/10.3758/s13423-020-01859-9 Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual Search Remains Efficient when Visual Working Memory is Full. Psychological Science, 12(3), 219–224. https://doi.org/10.1111/1467-9280.00339 Wu, W., Llull, P., Tosic, I., Bedard, N., Berkner, K., & Balram, N. (2016). Content-adaptive focus configuration for near-eye multi-focal displays. 2016 IEEE International Conference on Multimedia and Expo (ICME), 1–6. https://doi.org/10.1109/ICME.2016.7552965 Yang, T.-H., Hsieh, H.-Y., Lin, T.-H., Sun, W.-Z., & Ouhyoung, M. (2022). A High Frame Rate Affordable Nystagmus Detection Method with Smartphones Used in Outpatient Clinic. SIGGRAPH Asia 2022 Posters, 1–2. https://doi.org/10.1145/3550082.3564164 Yano, S., Ide, S., Mitsuhashi, T., & Thwaites, H. (2002). A study of visual fatigue and visual comfort for 3D HDTV/HDTV images. Displays, 23(4), 191–201. https://doi.org/10.1016/S0141-9382(02)00038-0 Yuuki, A., Itoga, K., & Satake, T. (2012). A new Maxwellian view display for trouble-free accommodation. Journal of the Society for Information Display, 20(10), 581–588. https://doi.org/10.1002/jsid.122 Zou, B., Liu, Y., Guo, M., & Wang, Y. (2015). EEG-Based Assessment of Stereoscopic 3D Visual Fatigue Caused by Vergence-Accommodation Conflict. Journal of Display Technology, 11(12), 1076–1083. https://doi.org/10.1109/JDT.2015.2451087 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92471 | - |
| dc.description.abstract | 現今多數的擴增實境 (AR) 的穿戴型顯示器只有一個固定的焦平面,因此使用者容易受到視覺輻輳調節衝突 (VAC) 的影響。相對地,光場顯示器的使用者不會受到VAC影響,能夠在使用顯示器時對焦在任何的深度上。本篇論文提出了系統性的定量實驗方法,比較近眼的光場AR顯示器與傳統AR顯示器在使用者效能與使用者體驗的差異。受測者在實驗中使用兩種AR眼鏡(光場AR眼鏡與傳統AR眼鏡)在兩種不同的距離(30公分與60公分)與模式(完全虛擬與虛實融合)下做一系列的文字型視覺搜尋任務。實驗結果表明:在虛實融合的模式、30公分的觀看距離下,與傳統AR眼鏡相比,受測者使用光場AR眼鏡的反應速度較快、正確率也較高。另外,從受測者的回饋得知:受測者在使用光場AR眼鏡時,能夠將虛擬與實際的資訊融合得比使用傳統AR眼鏡時更好。並且,光場AR眼鏡的使用者效能與受測者的觀看體驗並不會隨著觀看距離改變。儘管在兩種模式、60公分的觀看距離下,傳統AR眼鏡都獲得了比光場AR眼鏡高的搜索效率跟較快的反應速度,傳統AR眼鏡同時也收到了比光場AR眼鏡更多的負面回饋。總體而言,本研究點出了光場AR眼鏡在擴增實境應用中的優勢。 | zh_TW |
| dc.description.abstract | Most existing wearable displays for augmented reality (AR) have only one fixed focal plane and hence can easily suffer from vergence-accommodation conflict (VAC). In contrast, light field displays allow users to focus at any depth free of VAC. This research presents a series of serial text-based visual search tasks to systematically and quantitatively compare a near-eye light field AR display with a conventional AR display in user performance and user experience. We let all participants complete the tasks with two types of AR glasses: a pair of light field AR glasses and a pair of conventional AR glasses, at two different viewing distances: 30 cm and 60 cm, in two different environments: complete virtual (VR mode) and virtual-real integrated (AR mode) environments. The results show that the light field AR glasses lead to a significantly faster reaction speed and higher accuracy than the conventional AR glasses at 30 cm during the AR mode. Additionally, the participants’ feedback shows that the light field AR glasses better integrate the real and virtual information than the conventional AR glasses. Besides, user performance and experience of the light field AR glasses do not vary with the viewing distance. Although the conventional AR glasses lead to better user performance in search efficiency and reaction speed than the light field AR glasses at 60 cm during both the AR and VR modes, much more negative feedback was received during the use of the conventional AR glasses. To conclude, this research highlights the strength of light field AR glasses for AR applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:39:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-22T16:39:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 國立臺灣大學碩士學位論文口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES viii Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 Vergence-Accommodation Conflict 3 2.2 Conventional 3D Display 4 2.3 Light Field 6 2.4 Visual Search and Related Works 7 Chapter 3 Experiment 9 3.1 Experimental Design 10 3.2 Experimental Procedures 16 3.3 Participants 18 3.4 Apparatus 18 3.5 Independent Variables 19 3.6 Dependent Variables 20 Chapter 4 Results and Discussion 22 4.1 Target-Present Trials 23 4.1.1 Slope 24 4.1.2 Intercept 26 4.1.3 Mean Reaction Time 27 4.1.4 Accuracy 31 4.2 Target-Absent Trials 33 4.3 Fatigue Level 35 4.4 User Experience and Feedback 36 4.4.1 Displayed Text 36 4.4.2 Virtual-Real Integration 38 4.4.3 Vision 39 4.4.4 Symptoms 41 4.5 General Discussions 42 Chapter 5 Conclusion 44 Chapter 6 Future Work 45 REFERENCE 47 | - |
| dc.language.iso | en | - |
| dc.subject | 擴增實境 | zh_TW |
| dc.subject | 光場 | zh_TW |
| dc.subject | 視覺搜尋 | zh_TW |
| dc.subject | 傳統 3D 顯示器 | zh_TW |
| dc.subject | 視覺輻輳調節衝突 | zh_TW |
| dc.subject | vergence-accommodation conflict | en |
| dc.subject | conventional 3D display | en |
| dc.subject | visual search | en |
| dc.subject | augmented reality | en |
| dc.subject | Light field | en |
| dc.title | 光場AR眼鏡與傳統AR眼鏡在使用者效能與經驗的比較 | zh_TW |
| dc.title | Comparison of user performance and experience between light field AR glasses and conventional AR glasses | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉素玲;張文輝;陳建宇;歐陽明 | zh_TW |
| dc.contributor.oralexamcommittee | Su-Ling Yeh;Wen-Whei Chang;Chien-Yu Chen;M Ouhyoung | en |
| dc.subject.keyword | 光場,擴增實境,視覺輻輳調節衝突,傳統 3D 顯示器,視覺搜尋, | zh_TW |
| dc.subject.keyword | Light field,augmented reality,vergence-accommodation conflict,conventional 3D display,visual search, | en |
| dc.relation.page | 51 | - |
| dc.identifier.doi | 10.6342/NTU202300643 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-22 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 10.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
