Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92468
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志鴻zh_TW
dc.contributor.advisorChih-Hung Chenen
dc.contributor.author游宗典zh_TW
dc.contributor.authorZong-Dian Yuen
dc.date.accessioned2024-03-22T16:38:52Z-
dc.date.available2024-12-11-
dc.date.copyright2024-03-22-
dc.date.issued2023-
dc.date.submitted2023-12-12-
dc.identifier.citationH. Tanaka and I. Shimoyama, “Forward flight of swallowtail butterfly with simple flapping motion,” Bioinspiration & biomimetics, vol. 5, no. 2, p. 026 003, 2010.
K. Senda, T. Obara, M. Kitamura, N. Yokoyama, N. Hirai, and M. Iima, “Effects of structural flexibility of wings in flapping flight of butterfly,” Bioinspiration & biomimetics, vol. 7, no. 2, p. 025 002, 2012.
J. Donea, S. Giuliani, and J.-P. Halleux, “An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions,” Computer methods in applied mechanics and engineering, vol. 33, no. 1-3, pp. 689–723, 1982.
J.-W. Nam, “Non-Body Conformal Grid Methods for Large-Eddy Simulations of Compressible Flows and Their Applications in Computational Aeroacoustics,” 2015.
U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier-Stokes equation,” Physical review letters, vol. 56, no. 14, p. 1505, 1986.
Y.-H. Qian, D. d’Humières, and P. Lallemand, “Lattice BGK models for Navier-Stokes equation,” Europhysics letters, vol. 17, no. 6, p. 479, 1992.
P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Physical review, vol. 94, no. 3, p. 511, 1954.
J. Zhang, “Lattice Boltzmann method for microfluidics: models and applications,”Microfluidics and Nanofluidics, vol. 10, pp. 1–28, 2011.
C.-H. Shih, C.-L. Wu, L.-C. Chang, and C.-A. Lin, “Lattice Boltzmann simulations of incompressible liquid–gas systems on partial wetting surfaces,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1945, pp. 2510–2518, 2011.
J. Bernsdorf, G. Brenner, and F. Durst, “Numerical analysis of the pressure drop in porous media flow with lattice Boltzmann (BGK) automata,” Computer physics communications, vol. 129, no. 1-3, pp. 247–255, 2000.
P. Raiskinmäki, A. Koponen, J. Merikoski, and J. Timonen, “Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method,” Computational Materials Science, vol. 18, no. 1, pp. 7–12, 2000.
X. He and L.-S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation,” Physical review E, vol. 56, no. 6, p. 6811, 1997.
P. Lallemand and L.-S. Luo, “Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability,” Physical review E, vol. 61, no. 6, p. 6546, 2000.
M. Krafczyk, J. Tölke, and L.-S. Luo, “Large-eddy simulations with a multiple-relaxation-time LBE model,” International Journal of Modern Physics B, vol. 17, no. 01n02, pp. 33–39, 2003.
M. E. McCracken and J. Abraham, “Multiple-relaxation-time lattice-Boltzmann model for multiphase flow,” Physical Review E, vol. 71, no. 3, p. 036 701, 2005.
K. Suga, Y. Kuwata, K. Takashima, and R. Chikasue, “A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows,” Computers & Mathematics with Applications, vol. 69, no. 6, pp. 518–529, 2015.
C. S. Peskin, “Flow patterns around heart valves: a numerical method,” Journal of computational physics, vol. 10, no. 2, pp. 252–271, 1972.
Z.-G. Feng and E. E. Michaelides, “The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems,” Journal of computational physics, vol. 195, no. 2, pp. 602–628, 2004.
X. Niu, C. Shu, Y. Chew, and Y. Peng, “A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows,” Physics Letters A, vol. 354, no. 3, pp. 173–182, 2006.
H.-Z. Yuan, X.-D. Niu, S. Shu, M. Li, and H. Yamaguchi, “A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow,” Computers & Mathematics with Applications, vol. 67, no. 5, pp. 1039–1056, 2014.
P. Bagchi, “Mesoscale simulation of blood flow in small vessels,” Biophysical journal, vol. 92, no. 6, pp. 1858–1877, 2007.
M. M. Dupin, I. Halliday, C. M. Care, L. Alboul, and L. L. Munn, “Modeling the flow of dense suspensions of deformable particles in three dimensions,” Physical Review E, vol. 75, no. 6, p. 066 707, 2007.
J. Zhang, P. C. Johnson, and A. S. Popel, “An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows,” Physical biology, vol. 4, no. 4, p. 285, 2007.
C. Gong, J. Han, Z. Yuan, Z. Fang, and G. Chen, “Numerical investigation of the effects of different parameters on the thrust performance of three dimensional flapping wings,” Aerospace Science and Technology, vol. 84, pp. 431–445, 2019.
J. Ma, Z. Wang, J. Young, J. C. Lai, Y. Sui, and F.-B. Tian, “An immersed boundary-lattice Boltzmann method for fluid-structure interaction problems involving viscoelastic fluids and complex geometries,” Journal of Computational Physics, vol. 415, p. 109 487, 2020.
Q. Huang, S. Mazharmanesh, F. Tian, J. Young, J. Lai, and S. Ravi, “CFD solver validations for simulating passively pitching tandem wings in hovering flight,” in The 24th International Congress on Modelling and Simulation (MODSIM2021), 2021, pp. 71–77.
W. Li, X. Wei, and A. Kaufman, “Implementing lattice Boltzmann computation on graphics hardware,” The Visual Computer, vol. 19, pp. 444–456, 2003.
J. Tölke, “Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA,” computing and Visualization in Science, vol. 13, no. 1, p. 29, 2010.
J. Tölke and M. Krafczyk, “TeraFLOP computing on a desktop PC with GPUs for 3D CFD,” International Journal of Computational Fluid Dynamics, vol. 22, no. 7, pp. 443–456, 2008.
E. Riegel, T. Indinger, and N. A. Adams, “Implementation of a Lattice–Boltzmann method for numerical fluid mechanics using the nVIDIA CUDA technology,” Computer Science-Research and Development, vol. 23, pp. 241–247, 2009.
H.-W. Chang, P.-Y. Hong, L.-S. Lin, and C.-A. Lin, “Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units,” Computers & Fluids, vol. 88, pp. 866–871, 2013.
W. Xian and A. Takayuki, “Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster,” Parallel Computing, vol. 37, no. 9, pp. 521–535, 2011.
C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux, “Scalable lattice Boltzmann solvers for CUDA GPU clusters,” Parallel Computing, vol. 39, no. 6-7, pp. 259–270, 2013.
S. Wolfram, “Cellular automaton fluids 1: Basic theory,” Journal of statistical physics, vol. 45, pp. 471–526, 1986.
M. C. Modena, “Analysis and optimization of multiple-relaxation lattice Boltzmann methods for under-resolved flow simulations,” Ph.D. dissertation, Ph. D. Thesis, Universidad Politécnica de Madrid, 2019.
W. G. Vincenti, C. H. Kruger Jr, and T. Teichmann, “Introduction to physical gas dynamics,” 1966.
U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, “Lattice gas hydrodynamics in two and three dimensions,” in Lattice Gas Methods for Partial Differential Equations, CRC Press, 2019, pp. 77–136.
D. O. Martinez, W. H. Matthaeus, S. Chen, and D. Montgomery, “Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics,” Physics of Fluids, vol. 6, no. 3, pp. 1285–1298, 1994.
K. Timm, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. Viggen, “The lattice Boltzmann method: principles and practice,” Cham, Switzerland: Springer International Publishing AG, 2016.
T. I. Gombosi and A. Gombosi, “Gaskinetic theory,” no. 9, 1994.
S. Ubertini, P. Asinari, and S. Succi, “Three ways to lattice Boltzmann: a unified time-marching picture,” Physical Review E, vol. 81, no. 1, p. 016 311, 2010.
S. Chapman and T. G. Cowling, “The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases,” 1990.
S. Geller, M. Krafczyk, J. Tölke, S. Turek, and J. Hron, “Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows,” Computers & fluids, vol. 35, no. 8-9, pp. 888–897, 2006.
J. Latt, B. Chopard, O. Malaspinas, M. Deville, and A. Michler, “Straight velocity boundaries in the lattice Boltzmann method,” Physical Review E, vol. 77, no. 5, p. 056 703, 2008.
A. R. Harwood, “GPU-powered, interactive flow simulation on a peer-to-peer group of mobile devices,” Advances in Engineering Software, vol. 133, pp. 39–51, 2019.
X. He, Q. Zou, L.-S. Luo, and M. Dembo, “Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model,” Journal of Statistical Physics, vol. 87, pp. 115–136, 1997.
P. Skordos, “Initial and boundary conditions for the lattice Boltzmann method,” Physical Review E, vol. 48, no. 6, p. 4823, 1993.
G. Zhao-Li, Z. Chu-Guang, and S. Bao-Chang, “Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method,” Chinese physics, vol. 11, no. 4, p. 366, 2002.
Q. Zou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Physics of fluids, vol. 9, no. 6, pp. 1591–1598, 1997.
J. C. Verschaeve, “Analysis of the lattice Boltzmann Bhatnagar-Gross-Krook no-slip boundary condition: ways to improve accuracy and stability,” Physical Review E, vol. 80, no. 3, p. 036 703, 2009.
Y. Cai, S. Li, and J. Lu, “An improved immersed boundary-lattice Boltzmann method based on force correction technique,” International Journal for Numerical Methods in Fluids, vol. 87, no. 3, pp. 109–133, 2018.
C. S. Peskin, “The immersed boundary method,” Acta numerica, vol. 11, pp. 479–517, 2002.
Y. Cheng, L. Zhu, and C. Zhang, “Numerical study of stability and accuracy of the immersed boundary method coupled to the lattice Boltzmann BGK model,” Communications in Computational Physics, vol. 16, no. 1, pp. 136–168, 2014.
G. A. Buxton, R. Verberg, D. Jasnow, and A. C. Balazs, “Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice-spring models,” Physical Review E, vol. 71, no. 5, p. 056 707, 2005.
T.-H. Wu, R.-S. Guo, G.-W. He, Y.-M. Liu, and D. Qi, “Simulation of swimming of a flexible filament using the generalized lattice-spring lattice-Boltzmann method,” Journal of theoretical biology, vol. 349, pp. 1–11, 2014.
Z. Guo and T. Zhao, “Lattice Boltzmann model for incompressible flows through porous media,” Physical review E, vol. 66, no. 3, p. 036 304, 2002.
V. Thambawita, R. Ragel, and D. Elkaduwe, “To use or not to use: Graphics processing units for pattern matching algorithms,” arXiv preprint arXiv:1412.7789, 2014.
Y. Cheng and H. Zhang, “Immersed boundary method and lattice Boltzmann method coupled FSI simulation of mitral leaflet flow,” Computers & Fluids, vol. 39, no. 5, pp. 871–881, 2010.
R. Van Der Sman, “Galilean invariant lattice Boltzmann scheme for natural convection on square and rectangular lattices,” Physical Review E, vol. 74, no. 2, p. 026 705, 2006.
S. D. Walsh, H. Burwinkle, and M. O. Saar, “A new partial-bounceback lattice-Boltzmann method for fluid flow through heterogeneous media,” Computers & Geosciences, vol. 35, no. 6, pp. 1186–1193, 2009.
M. Provansal, C. Mathis, and L. Boyer, “Bénard-von Kármán instability: transient and forced regimes,” Journal of Fluid Mechanics, vol. 182, pp. 1–22, 1987.
D. Chatterjee and S. Garai, “Estimation of critical rotation rates for suppression of steady separation bubble behind a circular cylinder,” Sādhanā, vol. 46, no. 2, p. 62, 2021.
M. Daneshi, “Numerical investigation of the fluid flow around and past a circular cylinder by ANSYS simulation,” Int. J. Adv. Sci. Technol, vol. 92, pp. 49–58, 2016.
R. Surmas, L. O. dos Santos, and P. C. Philippi, “Lattice Boltzmann simulation of the flow interference in bluff body wakes,” Future Generation Computer Systems, vol. 20, no. 6, pp. 951–958, 2004.
M. Hammache and M. Gharib, “An experimental study of the parallel and oblique vortex shedding from circular cylinders,” Journal of Fluid Mechanics, vol. 232, pp. 567–590, 1991.
C. H. Williamson, “Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers,” Journal of Fluid Mechanics, vol. 206, pp. 579–627, 1989.
S. G. Hinch and P. S. Rand, “Optimal swimming speeds and forward-assisted propulsion: energy-conserving behaviours of upriver-migrating adult salmon,” Canadian journal of fisheries and aquatic sciences, vol. 57, no. 12, pp. 2470–2478, 2000.
J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Triantafyllou, “Fish exploiting vortices decrease muscle activity,” Science, vol. 302, no. 5650, pp. 1566–1569, 2003.
J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Triantafyllou, “The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street,” Journal of experimental biology, vol. 206, no. 6, pp. 1059–1073, 2003.
J. Zhang, S. Childress, A. Libchaber, and M. Shelley, “Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind,” Nature, vol. 408, no. 6814, pp. 835–839, 2000.
L. Rayleigh, “On the instability of jets,” Proceedings of the London mathematical society, vol. 1, no. 1, pp. 4–13, 1878.
S. Ghosh, “Immersed boundary simulations of fluid shear-induced deformation of a cantilever beam,” Mathematics and Computers in Simulation, vol. 185, pp. 384– 402, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92468-
dc.description.abstract流固耦合是描述流體力學與結構力學之間的多物理場相互作用,不管是大自然或是各種領域中都有廣泛的應用,其中一項重要的應用是以模仿昆蟲與鳥類的拍撲翼飛行模式所設計的微飛行器,比起傳統定翼更加靈活。而近年來有研究指出,適度的翅膀形變,在飛行時能夠提高升力與降低阻力,並能更精確的反映真實的昆蟲飛行,因此將翅膀作為一種彈性結構在相關流固耦合問題中是不可忽視的。然而現階段基於body-conformal網格的數值方法在處理複雜幾何邊界的形變與移動時,會有網格生成而增加計算成本、翅膀交疊使網格過密導致數值耗散等等挑戰,因此本研究旨在開發一套能解決複雜邊界上流固耦合之數值模型,藉由高速圖形處理器平行加速運算進行大規模數值計算,以模擬細長彈性體與周圍流體之交互作用。流體流動使用晶格波茲曼法,與傳統計算流體力學如有限元素法相比更簡單快速且具高度可平行化;彈性體使用沉浸邊界法,通過引入邊界變形力來模擬固體對流體的影響以克服複雜界面網格建置之困難。這兩種方法並用稱為沉浸邊界-晶格波茲曼法,沒有對流體與固體重新劃分網格,克服了網格生成的局限性。
模型驗證的首先模擬了二維通道的層流流動,與解析解和COMSOL模擬軟體比對,能夠捕捉流場正確趨勢。其次驗證二維圓柱體周圍流動,驗證結果得到模型發生卡門渦街的臨界雷諾數與實驗數據接近。彈性體雙向耦合模擬結果分為兩部分,第一部分在圓柱後方連接一條細長彈性體,發現彈性體的振幅與楊氏模數成反比,且當楊氏模數為1.0 [N/mm²]時可以從圓柱後方的渦流中提取到最多的能量。第二部分在均勻流場中放置一條細長彈性體,其上游端固定並改變長度與楊氏模數,發現彈性體存在伸直與拍打雙穩態,可由臨界長度 41 [mm]與臨界楊氏模數0.6 [N/mm²]來控制,最後嘗試兩條細長彈性體,平行放置並研究兩者間距對於其流力作用的影響。
zh_TW
dc.description.abstractFluid-structure coupling describes the multi-physical field interaction between fluid mechanics and structural mechanics, and has a wide range of applications in nature and in various fields. One of its important applications is the design of micro air vehicles that mimic the flapping flight patterns of insects and birds, which are more flexible than traditional fixed wings. In recent years, it has been pointed out that moderate wing deformation can improve lift and reduce drag during flight, and can more accurately reflect the real insect flight, so the wing as an elastic structure in the related fluid-structure coupling problem can not be ignored. However, at this stage, the body-conformal lattice-based numerical method has the challenges of increasing the computational cost due to lattice generation and dissipating the value due to overlapping of wings, when dealing with the deformation and movement of complex geometric boundaries. Therefore, this study aims to develop a numerical model that can solve the fluid-solid coupling on complex boundaries, and perform large-scale numerical calculations by parallel accelerated computing with high-speed graphics processors to simulate the interaction between the elastic object and the surrounding fluid. The lattice Boltzmann method is used for fluid flow, which is simpler, faster and more parallelizable than traditional computational fluid mechanics such as the finite element method; the immersion boundary method is used for elastic objects, which introduces boundary deformation forces to simulate the effect of solids on the fluid to overcome the difficulties of complex interface lattice construction.
These two methods are used together as the immersed boundary-lattice Boltzmann method, which does not redistribute the lattice between the fluid and the solid, overcoming the limitations of lattice generation.
The model validation first simulates the laminar flow in a 2D channel and is able to capture the correct trend of the flow field when compared with the analytical solution and COMSOL simulation software.Next, the flow around the two-dimensional cylinder is verified, and the critical Reynolds number for the occurrence of Karman vortex street in the model is close to the experimental data.The results of the two-way coupling simulation of the elastic object are divided into two parts. In the first part, a slender elastic object is connected behind the cylinder and it is found that the amplitude of the elastic object is inversely proportional to the Young's modulus and the most energy can be extracted from the vortex behind the cylinder when the Young's modulus is 1.0 [N/mm²]. In the second part, a slender elastic object was placed in a uniform flow field with its upstream end fixed and the length and Young's modulus were varied. It was found that the elastic object existed in a bistable state of rest and flapping, which could be controlled by a critical length of 41 [mm] and a critical Young's modulus of 0.6 [N/mm²].Finally, we try to place two slender elastic object in parallel and study the effect of the distance between them on their flow forces.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:38:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-22T16:38:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iv
Abstract vi
目錄 ix
圖目錄 xii
表目錄 xv
第一章 緒論 1
1.1 研究動機與對象 1
1.2 文獻回顧 4
1.2.1 晶格玻茲曼法 4
1.2.2 沉浸邊界-晶格玻茲曼法 4
1.2.3 平行化計算 5
1.3 晶格玻茲曼法的簡介 6
第二章 研究方法 10
2.1 晶格玻茲曼法 10
2.1.1 玻茲曼方程與 BGK 近似 10
2.1.2 玻茲曼方程的離散化 13
2.1.3 Chapman-Enskog 分析 17
2.1.4 算法實現 21
2.1.5 邊界條件 23
2.2 沉浸邊界法 26
2.2.1 統御方程式 26
2.2.2 核函數 28
2.3 通用晶格彈簧模型 29
2.4 沉浸邊界-晶格玻茲曼法之模型實現 31
2.4.1 GPU 與平行化計算 31
2.4.2 模型之算法流程 32
第三章 模擬結果討論 35
3.1 流場驗證 35
3.1.1 二維通道流動 35
3.1.2 二維圓柱體周圍流動 37
3.2 細長彈性體之流力作用 41
3.2.1 圓柱後方連接細長彈性體 41
3.2.2 上游端固定於均勻流場之細長彈性體 46
3.2.2.1 改變彈性體之長度 49
3.2.2.2 改變彈性體之彈性係數 51
3.2.2.3 兩條細長彈性體平行放置 53
第四章 結論與未來展望 58
4.1 結論 58
4.2 未來展望 59
參考文獻 61
-
dc.language.isozh_TW-
dc.title利用沉浸邊界-晶格玻茲曼法探討細長彈性體與周遭流體間力學的交互作用zh_TW
dc.titleStudy of the Force Interaction between Slender Elastic Objects and Surrounding Fluid Using Immersed Boundary–Lattice Boltzmann Methoden
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李雨;周逸儒;詹楊皓zh_TW
dc.contributor.oralexamcommitteeU Lei;Yi-Ju Chou;Yang-hao Chanen
dc.subject.keyword流固耦合,晶格波茲曼法,沉浸邊界法,彈性體,zh_TW
dc.subject.keywordFluid-solid interaction,Lattice Boltzmann method,Immersed boundary method,Elastic object,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202304427-
dc.rights.note未授權-
dc.date.accepted2023-12-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
8.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved