請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92463完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于宏燦 | zh_TW |
| dc.contributor.advisor | Hon-Tsen Yu | en |
| dc.contributor.author | 許雅淳 | zh_TW |
| dc.contributor.author | Ya-Chun Hsu | en |
| dc.date.accessioned | 2024-03-22T16:37:29Z | - |
| dc.date.available | 2024-03-23 | - |
| dc.date.copyright | 2024-03-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-05 | - |
| dc.identifier.citation | 1. Slik, J., Poulsen, A.D., Ashton, P., Cannon, C.H., Eichhorn, K., Kartawinata, K., Lanniari, I., Nagamasu, H., Nakagawa, M., and Van Nieuwstadt, M., A Floristic Analysis of the Lowland Dipterocarp Forests of Borneo. Journal of Biogeography, 2003. 30(10): p. 1517-1531.
2. Ashton, P.S., Dipterocarpaceae. Vol. 9. 1982: Springer Netherlands. 3. Ghazoul, J., Dipterocarp Biology, Ecology, and Conservation. 2016: Oxford University Press. 4. Augspurger, C.K. and Franson, S.E., Wind Dispersal of Artifical Fruits Varying in Mass, Area, and Morphology. Ecology, 1987. 68(1): p. 27-42. 5. Osada, N., Takeda, H., Furukawa, A., and Awang, M., Fruit Dispersal of Two Dipterocarp Species in a Malaysian Rain Forest. Journal of Tropical Ecology, 2001. 17(6): p. 911-917. 6. Harata, T., Nanami, S., Yamakura, T., Matsuyama, S., Chong, L., Diway, B.M., Tan, S., and Itoh, A., Fine‐Scale Spatial Genetic Structure of Ten Dipterocarp Tree Species in a Bornean Rain Forest. Biotropica, 2012. 44(5): p. 586-594. 7. Tamme, R., Götzenberger, L., Zobel, M., Bullock, J.M., Hooftman, D.A., Kaasik, A., and Pärtel, M., Predicting Species'' Maximum Dispersal Distances from Simple Plant Traits. Ecology, 2014. 95(2): p. 505-513. 8. Smith, J.R., Bagchi, R., Ellens, J., Kettle, C.J., Burslem, D.F., Maycock, C.R., Khoo, E., and Ghazoul, J., Predicting Dispersal of Auto-Gyrating Fruit in Tropical Trees: A Case Study from the Dipterocarpaceae. Ecology & Evolution, 2015. 5(9): p. 1794-801. 9. Lentink, D., Dickson, W.B., Van Leeuwen, J.L., and Dickinson, M.H., Leading-Edge Vortices Elevate Lift of Autorotating Plant Seeds. Science, 2009. 324(5933): p. 1438-1440. 10. Azuma, A. and Yasuda, K., Flight Performance of Rotary Seeds. Journal of Theoretical Biology, 1989. 138(1): p. 23-53. 11. Augspurger, C.K., Morphology and Dispersal Potential of Wind‐Dispersed Diaspores of Neotropical Trees. American Journal of Botany, 1986. 73(3): p. 353-363. 12. Smith, J.R., Bagchi, R., Kettle, C.J., Maycock, C., Khoo, E., and Ghazoul, J., Predicting the Terminal Velocity of Dipterocarp Fruit. Biotropica, 2016. 48(2): p. 154-158. 13. Fauli, R.A., Rabault, J., and Carlson, A., Effect of Wing Fold Angles on the Terminal Descent Velocity of Double-Winged Autorotating Seeds, Fruits, and Other Diaspores. Physical Review E, 2019. 100(1-1): p. 013108. 14. Rabault, J., Fauli, R.A., and Carlson, A., Curving to Fly: Synthetic Adaptation Unveils Optimal Flight Performance of Whirling Fruits. Physical Review Letters, 2019. 122(2): p. 024501. 15. Green, D.S., The Terminal Velocity and Dispersal of Spinning Samaras. American Journal of Botany, 1980. 67(8): p. 1218-1224. 16. 蔡青芳, 種子傳播機制之探討—以風力傳播與開裂傳播為例. 工學院機械工程學研究所, 國立臺灣大學, 2022. 17. Harms, K.E., Wright, S.J., Calderón, O., Hernandez, A., and Herre, E.A., Pervasive Density-Dependent Recruitment Enhances Seedling Diversity in a Tropical Forest. Nature, 2000. 404(6777): p. 493-495. 18. Nathan, R., Katul, G.G., Horn, H.S., Thomas, S.M., Oren, R., Avissar, R., Pacala, S.W., and Levin, S.A., Mechanisms of Long-Distance Dispersal of Seeds by Wind. Nature, 2002. 418(6896): p. 409-413. 19. Nathan, R., Long-Distance Dispersal of Plants. Science, 2006. 313(5788): p. 786-788. 20. Minami, S. and Azuma, A., Various Flying Modes of Wind-Dispersal Seeds. Journal of theoretical biology, 2003. 225(1): p. 1-14. 21. Azuma, A. and Okuno, Y., Flight of a Samara, Alsomitra Macrocarpa. Journal of Theoretical Biology, 1987. 129(3): p. 263-274. 22. Cummins, C., Seale, M., Macente, A., Certini, D., Mastropaolo, E., Viola, I.M., and Nakayama, N., A Separated Vortex Ring Underlies the Flight of the Dandelion. Nature, 2018. 562(7727): p. 414-418. 23. Casseau, V., De Croon, G., Izzo, D., and Pandolfi, C., Morphologic and Aerodynamic Considerations Regarding the Plumed Seeds of Tragopogon Pratensis and Their Implications for Seed Dispersal. PLoS ONE, 2015. 10(5): p. e0125040. 24. Limacher, E. and Rival, D.E., On the Distribution of Leading-Edge Vortex Circulation in Samara-Like Flight. Journal of Fluid Mechanics, 2015. 776: p. 316-333. 25. Ashton, P., Morley, R., Heckenhauer, J., and Prasad, V., The Magnificent Dipterocarps: Précis for an Epitaph? Kew Bulletin, 2021. 76(2): p. 87-125. 26. Christenhusz, M.J. and Byng, J.W., The Number of Known Plants Species in the World and Its Annual Increase. Phytotaxa, 2016. 261(3): p. 201–217-201–217. 27. Ashton, P., Dipterocarpaceae, in Flowering Plants· Dicotyledons: Malvales, Capparales and Non-Betalain Caryophyllales. 2003, Springer. p. 182-197. 28. Bansal, M., Morley, R.J., Nagaraju, S.K., Dutta, S., Mishra, A.K., Selveraj, J., Kumar, S., Niyolia, D., Harish, S.M., and Abdelrahim, O.B., Southeast Asian Dipterocarp Origin and Diversification Driven by Africa-India Floristic Interchange. Science, 2022. 375(6579): p. 455-460. 29. Kenzo, T., Ichie, T., Ninomiya, I., and Koike, T., Photosynthetic Activity in Seed Wings of Dipterocarpaceae in a Masting Year: Does Wing Photosynthesis Contribute to Reproduction? Photosynthetica, 2003. 41: p. 551-557. 30. Appanah, S. and Turnbull, J.M., A Review of Dipterocarps: Taxonomy, Ecology, and Silviculture. 1998: The Netherlands. 31. Fox, J.E.D., The Natural Vegetation of the Sabah and Natural Regeneration of the Dipterocarp Forests. 1972: Bangor University (United Kingdom). 32. Chan, H. and Appanah, S., Reproductive Biology of Some Malaysian Dipterocarps. I: Flowering Biology. Malaysian Forester, 1980. 43(2): p. 132-143. 33. Tamari, C. and Jacalne, D., Fruit Dispersal of Dipterocarps. Bulletin of FFPRI, 1984. 34. Suzuki, E. and Ashton, P.S., Sepal and Nut Size Ratio of Fruits of Asian Dipterocarpaceae and Its Implications for Dispersal. Journal of Tropical Ecology, 1996. 12(6): p. 853-870. 35. Itoh, A., Yamakura, T., Ogino, K., Seng Lee, H., and Ashton, P.S., Spatial Distribution Patterns of Two Predominant Emergent Trees in a Tropical Rainforest in Sarawak, Malaysia. Plant Ecology, 1997. 132: p. 121-136. 36. Wang, X., Guo, X., Ye, J., Zheng, N., Kohli, P., Choi, D., Zhang, Y., Xie, Z., Zhang, Q., and Luan, H., Freestanding 3d Mesostructures, Functional Devices, and Shape‐Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. Advanced Materials, 2019. 31(2): p. 1805615. 37. Kim, B.H., Li, K., Kim, J.T., Park, Y., Jang, H., Wang, X., Xie, Z., Won, S.M., Yoon, H.J., Lee, G., Jang, W.J., Lee, K.H., Chung, T.S., Jung, Y.H., Heo, S.Y., Lee, Y., Kim, J., Cai, T., Kim, Y., Prasopsukh, P., Yu, Y., Yu, X., Avila, R., Luan, H., Song, H., Zhu, F., Zhao, Y., Chen, L., Han, S.H., Kim, J., Oh, S.J., Lee, H., Lee, C.H., Huang, Y., Chamorro, L.P., Zhang, Y., and Rogers, J.A., Three-Dimensional Electronic Microfliers Inspired by Wind-Dispersed Seeds. Nature, 2021. 597(7877): p. 503-510. 38. Yoon, H.-J., Lee, G., Kim, J.-T., Yoo, J.-Y., Luan, H., Cheng, S., Kang, S., Huynh, H.L.T., Kim, H., and Park, J., Biodegradable, Three-Dimensional Colorimetric Fliers for Environmental Monitoring. Science Advances, 2022. 8(51): p. eade3201. 39. Thompson, D.A.W., On Growth and Form. 1917: Cambridge, UK: Cambridge University Press. 40. Pantin, C., Problems of Relative Growth. 1932, Nature Publishing Group UK London. 41. Packard, G.C., Julian Huxley, Uca Pugnax and the Allometric Method. Journal of Experimental Biology, 2012. 215(4): p. 569-573. 42. Kleiber, M., Body Size and Metabolism. Hilgardia, 1932. 6(11): p. 315-353. 43. West, G.B., Brown, J.H., and Enquist, B.J., A General Model for the Origin of Allometric Scaling Laws in Biology. Science, 1997. 276(5309): p. 122-126. 44. Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M., and Charnov, E.L., Effects of Size and Temperature on Metabolic Rate. science, 2001. 293(5538): p. 2248-2251. 45. Iwaniuk, A.N., Dean, K.M., and Nelson, J.E., Interspecific Allometry of the Brain and Brain Regions in Parrots (Psittaciformes): Comparisons with Other Birds and Primates. Brain Behavior and Evolution, 2004. 65(1): p. 40-59. 46. Whitehead, S.C., Beatus, T., Canale, L., and Cohen, I., Pitch Perfect: How Fruit Flies Control Their Body Pitch Angle. Journal of Experimental Biology, 2015. 218(21): p. 3508-3519. 47. Meng, X., Liu, Y., and Sun, M., Aerodynamics of Ascending Flight in Fruit Flies. Journal of Bionic Engineering, 2017. 14(1): p. 75-87. 48. Bergou, A.J., Ristroph, L., Guckenheimer, J., Cohen, I., and Wang, Z.J., Fruit Flies Modulate Passive Wing Pitching to Generate in-Flight Turns. Physical Review Letters, 2010. 104(14): p. 148101. 49. Arranz, G., Moriche, M., Uhlmann, M., Flores, O., and Garcia-Villalba, M., Kinematics and Dynamics of the Auto-Rotation of a Model Winged Seed. Bioinspir Biomim, 2018. 13(3): p. 036011. 50. Kundu, P.K., Cohen, I.M., and Dowling, D.R., Fluid Mechanics. 2015: Academic press. 51. Park, J.H. and Yoon, K.-J., Designing a Biomimetic Ornithopter Capable of Sustained and Controlled Flight. Journal of Bionic Engineering, 2008. 5(1): p. 39-47. 52. Liu, H. and Aono, H., Size Effects on Insect Hovering Aerodynamics: An Integrated Computational Study. Bioinspiration & Biomimetics, 2009. 4(1): p. 015002. 53. Nagai, H., Isogai, K., Fujimoto, T., and Hayase, T., Experimental and Numerical Study of Forward Flight Aerodynamics of Insect Flapping Wing. AIAA journal, 2009. 47(3): p. 730-742. 54. Abas, M.F.B., Rafie, A.S.B.M., Yusoff, H.B., and Ahmad, K.A.B., Flapping Wing Micro-Aerial-Vehicle: Kinematics, Membranes, and Flapping Mechanisms of Ornithopter and Insect Flight. Chinese Journal of Aeronautics, 2016. 29(5): p. 1159-1177. 55. Carruthers, A.C., Walker, S.M., Thomas, A.L., and Taylor, G.K., Aerodynamics of Aerofoil Sections Measured on a Free-Flying Bird. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2010. 224(8): p. 855-864. 56. Norberg, R.Å., Autorotation, Self‐Stability, and Structure of Single‐Winged Fruits and Seeds (Samaras) with Comparative Remarks on Animal Flight. Biological Reviews, 1973. 48(4): p. 561-596. 57. Leishman, J.G., Introduction to Aerospace Flight Vehicles. 2023: Embry-Riddle Aeronautical University. 58. Taylor, G.K., Nudds, R.L., and Thomas, A.L., Flying and Swimming Animals Cruise at a Strouhal Number Tuned for High Power Efficiency. Nature, 2003. 425(6959): p. 707-711. 59. Ortega-Jimenez, V.M., Kim, N.S.-W., and Dudley, R., Superb Autorotator: Rapid Decelerations in Impulsively Launched Samaras. Journal of The Royal Society Interface, 2019. 16(150): p. 20180456. 60. Soule, A.J., Decker, L.E., and Hunter, M.D., Effects of Diet and Temperature on Monarch Butterfly Wing Morphology and Flight Ability. Journal of Insect Conservation, 2020. 24: p. 961-975. 61. Alerstam, T., Rosén, M., Bäckman, J., Ericson, P.G.P., and Hellgren, O., Flight Speeds among Bird Species: Allometric and Phylogenetic Effects. PLoS biology, 2007. 5(8): p. e197. 62. Jeong, J. and Hussain, F., On the Identification of a Vortex. Journal of Fluid Mechanics, 1995. 285: p. 69-94. 63. Hunt, J.C., Wray, A.A., and Moin, P., Eddies, Streams, and Convergence Zones in Turbulent Flows, in Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program. 1988. 64. Le, T.Q., Truong, T.V., Tran, H.T., Park, S.H., Ko, J.H., Park, H.C., and Byun, D., How Could Beetle’s Elytra Support Their Own Weight During Forward Flight? Journal of Bionic Engineering, 2014. 11(4): p. 529-540. 65. Dagur, R., Singh, V., Grover, S., Sethi, N., and Arora, B., Design of Flying Wing Uav and Effect of Winglets on Its Performance. International Journal of Emerging Technology and Advanced Engineering, 2018. 8(3). 66. Zhu, W. and Gao, H., A Numerical Investigation of a Winglet-Propeller Using an Les Model. Journal of Marine Science and Engineering, 2019. 7(10): p. 333. 67. Yuan, M., Zhang, W., Liu, G., Zhang, X., Yousif, M.Z., Song, J., and Lim, H., Performance Study of Spiral Finned Tubes on Heat Transfer and Wake Flow Structure. International Journal of Heat and Mass Transfer, 2022. 196: p. 123278. 68. Lerner, J.C. and Boldes, U., Wind Tunnels and Experimental Fluid Dynamics Research. 2011: BoD–Books on Demand. 69. Cook, M.V., Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control. 2012: Butterworth-Heinemann. 70. Dejoan, A. and Leschziner, M., Large Eddy Simulation of a Plane Turbulent Wall Jet. Physics of Fluids, 2005. 17(2). 71. Tucker, V.A. and Parrott, G.C., Aerodynamics of Gliding Flight in a Falcon and Other Birds. Journal of Experimental Biology, 1970. 52(2): p. 345-367. 72. Butler, P.J., West, N., and Jones, D., Respiratory and Cardiovascular Responses of the Pigeon to Sustained, Level Flight in a Wind-Tunnel. Journal of Experimental Biology, 1977. 71(1): p. 7-26. 73. Hedrick, T.L., Tobalske, B.W., and Biewener, A.A., Estimates of Circulation and Gait Change Based on a Three-Dimensional Kinematic Analysis of Flight in Cockatiels (Nymphicus Hollandicus) and Ringed Turtle-Doves (Streptopelia Risoria). Journal of Experimental Biology, 2002. 205(10): p. 1389-1409. 74. Ward, S., Bishop, C., Woakes, A., and Butler, P., Heart Rate and the Rate of Oxygen Consumption of Flying and Walking Barnacle Geese (Branta Leucopsis) and Bar-Headed Geese (Anser Indicus). Journal of Experimental Biology, 2002. 205(21): p. 3347-3356. 75. Ward, S., Moller, U., Rayner, J., Jackson, D., Bilo, D., Nachtigall, W., and Speakman, J., Metabolic Power, Mechanical Power and Efficiency During Wind Tunnel Flight by the European Starling Sturnus Vulgaris. Journal of Experimental Biology, 2001. 204(19): p. 3311-3322. 76. Bruderer, L., Liechti, F., and Bilo, D., Flexibility in Flight Behaviour of Barn Swallows (Hirundo Rustica) and House Martins (Delichon Urbica) Tested in a Wind Tunnel. Journal of Experimental Biology, 2001. 204(8): p. 1473-1484. 77. Pennycuick, C.J., A Wind-Tunnel Study of Gliding Flight in the Pigeon Columba Livia. Journal of Experimental Biology, 1968. 49(3): p. 509-526. 78. Tobalske, B.W., Puccinelli, L.A., and Sheridan, D.C., Contractile Activity of the Pectoralis in the Zebra Finch According to Mode and Velocity of Flap-Bounding Flight. Journal of Experimental biology, 2005. 208(15): p. 2895-2901. 79. Eldredge, J.D. and Jones, A.R., Leading-Edge Vortices: Mechanics and Modeling. Annual Review of Fluid Mechanics, 2019. 51: p. 75-104. 80. Jones, A. and Babinsky, H., Unsteady Lift Generation on Rotating Wings at Low Reynolds Numbers. Journal of Aircraft, 2010. 47(3): p. 1013-1021. 81. Ellington, C.P., Van Den Berg, C., Willmott, A.P., and Thomas, A.L., Leading-Edge Vortices in Insect Flight. Nature, 1996. 384(6610): p. 626-630. 82. Willmott, A.P. and Ellington, C.P., The Mechanics of Flight in the Hawkmoth Manduca Sexta Ii. Aerodynamic Consequences of Kinematic and Morphological Variation. Journal of Experimental Biology, 1997. 200(21): p. 2723-2745. 83. Willmott, A.P., Ellington, C.P., and Thomas, A.L., Flow Visualization and Unsteady Aerodynamics in the Flight of the Hawkmoth, Manduca Sexta. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1997. 352(1351): p. 303-316. 84. Usherwood, J.R. and Ellington, C.P., The Aerodynamics of Revolving Wings I. Model Hawkmoth Wings. Journal of Experimental biology, 2002. 205(11): p. 1547-1564. 85. Dickinson, M.H., Lehmann, F.-O., and Sane, S.P., Wing Rotation and the Aerodynamic Basis of Insect Flight. Science, 1999. 284(5422): p. 1954-1960. 86. Lei, M. and Li, C., The Aerodynamic Performance of Passive Wing Pitch in Hovering Flight. Physics of Fluids, 2020. 32(5). 87. Lentink, D. and Dickinson, M.H., Rotational Accelerations Stabilize Leading Edge Vortices on Revolving Fly Wings. Journal of Experimental Biology, 2009. 212(16): p. 2705-2719. 88. Manar, F., Mancini, P., Mayo, D., and Jones, A.R., Comparison of Rotating and Translating Wings: Force Production and Vortex Characteristics. AIAA journal, 2016. 54(2): p. 519-530. 89. Birch, J.M. and Dickinson, M.H., Spanwise Flow and the Attachment of the Leading-Edge Vortex on Insect Wings. Nature, 2001. 412(6848): p. 729-733. 90. Senda, K., Obara, T., Kitamura, M., Yokoyama, N., Hirai, N., and Iima, M., Effects of Structural Flexibility of Wings in Flapping Flight of Butterfly. Bioinspiration & Biomimetics, 2012. 7(2): p. 025002. 91. Addo-Akoto, R., Han, J.-S., and Han, J.-H., Roles of Wing Flexibility and Kinematics in Flapping Wing Aerodynamics. Journal of Fluids and Structures, 2021. 104: p. 103317. 92. Tam, D., Flexibility Increases Lift for Passive Fluttering Wings. Journal of Fluid Mechanics, 2015. 765. 93. Forouzesh, E., Goel, A., Mackenzie, S.A., and Turner, J.A., In Vivo Extraction of Arabidopsis Cell Turgor Pressure Using Nanoindentation in Conjunction with Finite Element Modeling. The Plant Journal, 2013. 73(3): p. 509-520. 94. 許雅淳, 以跨領域視角分析三翅果的飛行力學與演化─以龍腦香科植物為例. 生命科學學院生命科學系, 國立臺灣大學, 2022. 95. Peyton, B., Advanced Origami Hats and Gifts. 2022: Nicolas Terry. 96. Caldichoury, I., Paz, R., and Del Pin, F., Icfd Theory Manual Incompressible Fluid Solver in Ls-Dyna. Livermore Software Technology Corp.: San Francisco, CA, USA, 2014. 97. Haufe, A., Weimar, K., and Göhner, U., Advanced Airbag Simulation Using Fluid-Structure-Interaction and the Eulerian Method in Ls-Dyna. Proceedings of the LS-DYNA Anwenderforum, 2004. 98. Smagorinsky, J., General Circulation Experiments with the Primitive Equations: I. The Basic Experiment. Monthly weather review, 1963. 91(3): p. 99-164. 99. Deardorff, J.W., A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers. Journal of Fluid Mechanics, 1970. 41(2): p. 453-480. 100. Ashton, P.S., Dipterocarp Biology as a Window to the Understanding of Tropical Forest Structure. Annual Review of Ecology and Systematics, 1988. 19(1): p. 347-370. 101. International, A., Astm D638-14: Standard Test Method for Tensile Properties of Plastics. 102. Sakai, S., General Flowering in Lowland Mixed Dipterocarp Forests of South-East Asia. Biological Journal of the Linnean Society, 2002. 75(2): p. 233-247. 103. SONY, Sony RX10 IV Specifications. Available: https://www.imaging-resource.com/PRODS/sony-rx10-iv/sony-rx10-ivDAT.HTM. 104. SONY, Sony A7R IV Specifications. Available: https://www.imaging-resource.com/PRODS/sony-a7r-iv/sony-a7r-ivDAT.HTM. 105. Testo, Testo 425熱線式風速計. Available: https://www.testotaiwan.com/product_detail.html?id=119. 106. Tsilingiris, P., Thermophysical and Transport Properties of Humid Air at Temperature Range between 0 and 100 C. Energy Conversion and Management, 2008. 49(5): p. 1098-1110. 107. Whitaker, D., The Biomechanics of Ballistochory in Impatiens Pallida, in Physics & Astronomy. 2008, Claremont Colleges. 108. Smith, J.R., Seed Dispersal, Spatial Aggregation and Fine-Scale Genetic Structure in the Dipterocarpaceae. 2016, ETH Zurich. 109. Livemore Software Texhnology Corporation, Ls-Dyna Keyword User''s Manual 2018: Livermore, California. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92463 | - |
| dc.description.abstract | 種子傳播對種子植物的基因擴散扮演重要角色,而不同於動物的靈活性,植物需要依靠樹木與果實等形態的變化與適應來達成不同的傳播形式。而現今氣候變遷與溫室效應加劇的情況下,了解森林地區的植物傳播機制,不僅有利於生態的維護與繁衍,亦可將其應用於仿生工程上。
前人研究主要以幾何單純的單翅果或雙翅果作為研究對象,並聚焦於錐角、曲率與摺角變化與翼荷比對擴散潛力的影響,幾何更為複雜的三翅果則鮮少有人研究。至今,多翅果的俯仰角對於擴散潛力之影響尚無人探討,並且二、三翅果的終端速度受翼荷比所影響的程度差異亦尚無人分析。因此,本研究以熱帶低地雨林地區的代表物種龍腦香科植物作為探討對象,蒐集了23種天然翅果的幾何參數,比較二、三翅果的異速縮放法則。並透過高速攝影機拍攝翅果落下過程,以自由落下實驗觀察了3個物種的擴散潛力,以及二翅果的失水現象與有無俯仰角對擴散潛力的改變。並且,透過摺紙與PET材料打造仿生翅果,以自由落下實驗分析仿生翅果在0°與20°俯仰角下的落下速度、旋轉頻率與飛行軌跡的差異,再以有限元素模擬分析兩俯仰角之紙摺翅果的周圍流場結構。最後,透過垂直風洞裝置分析PET二、三翅果隨著翼荷比的提升下,其終端速度與旋轉頻率的變化,以探討不同翅數的翼荷比對擴散潛力的影響。 在異速縮放法則中,龍腦香科二、三翅果在種間之種子的生長速率大於翅膀生長速率,但此異速縮放在二、三翅果中無顯著差異;而在三翅果Shorea roxburghii的種內觀察中,發現在尺寸變化上,不論種子還是翅膀皆以「長度」為主要縮放依據,並且尺寸變大的過程中,種子的生長速率大於翅膀。透過自由落下實驗,觀察到二翅果Dipterocarpus zeylanicus乾燥後的擴散潛力表現得不如新鮮翅果,儘管樣本數量有限,但此結果仍可作為翅果柔性探討的參考價值。此外,本研究觀察到有無俯仰角的二翅果Hopea odorata之擴散潛力存在差異,並且藉由仿生翅果發現在與0°俯仰角翅果具有相同翼荷比的情況下,具有20°俯仰角的仿生翅果之終端速度與0°俯仰角的幾乎相同,但旋轉頻率則為0°俯仰角的0.67倍,並且相對於採螺旋運動的0°俯仰角之仿生翅果,而20°俯仰角翅果的飛行軌跡更為筆直,上述差異可能與翅果翅膀表面的渦漩集中位置不同所致。最後,本研究發現PET二、三翅果的旋轉頻率與翼荷比無顯著關係,可能是受翅果形態所決定;而兩者的終端速度與翼荷比平方根的關係則為線性關係,其中,三翅果的終端速度隨翼荷比平方根變大而提升的數值更多,表示三翅果的終端速度更易受翼荷比的影響,而此現象似乎與天然三翅果的翼荷比範圍相對二翅果受限有關。 | zh_TW |
| dc.description.abstract | Seed dispersal is essential for the genetic spread of seed plants. Unlike the agility of animals, plants rely on various morphological changes such as trees and fruits to achieve dispersal. Given the current scenario of climate change and greenhouse effects, it is crucial to understand the mechanisms of seed dispersal in forest areas. This understanding is beneficial not only for ecological maintenance and reproduction but can also be applied to biomimetic engineering.
Previous research studies have primarily focused on simple geometrically shaped single-winged or two-winged fruits. These studies have examined the effects of variations in cone angles, curvature, and folding angles on the dispersal potential of the winged fruits. However, there has been limited research on more complexly shaped fruits, such as three-winged fruits. To date, the impact of pitch angles on the dispersal potential of multi-winged fruits has not been explored. Also, the extent to which the terminal velocity of two- and three-winged fruits is influenced by wing-loading remains unanalyzed. Therefore, this study examines the process of seed dispersal in representative species of the tropical lowland rainforest, specifically the Dipterocarpaceae family. To accomplish this, the study collected geometric parameters of 23 natural winged fruits and compared the allometric scaling rules of two- and three-winged fruits. High-speed cameras were used to capture the falling process of winged fruits while conducting free fall experiments to observe the dispersal potential of three species. The study also looked at the effects of wing dehydration and pitch angle on the dispersal potential of two-winged fruits. To analyze the differences in falling velocity, rotational frequency, and flight trajectory of biomimetic winged fruits at 0° and 20° pitch angles, the study designed biomimetic winged fruits using origami paper and PET material. Also, finite element simulation was employed to analyze the surrounding flow field structure of origami winged fruits at both pitch angles. Finally, a vertical wind tunnel was used to analyze the variation in terminal velocity and rotational frequency of PET two- and three-winged fruits with increasing wing-loading, to investigate the effect of wing number differences on dispersal potential. The study examined the growth rate of seeds and wings in Dipterocarp fruits with two- and three-winged fruits. The seed growth rate was found to exceed the wing growth rate in both types of fruits. However, there was no significant difference in allometric scaling between two- and three-winged fruits. In the case of Shorea roxburghii (three-winged fruits), both seeds and wings primarily increased in "length" during size changes, with the seed growth rate surpassing that of the wings. The study also observed that the dispersal potential of dried two-winged fruits (Dipterocarpus zeylanicus) was lower than that of green-winged fruits. Although the sample size was limited, this result still holds value as a reference for the flexibility of winged fruits. Additionally, this study found differences in the dispersal potential of two-winged fruits (Hopea odorata) with and without pitch angles. Biomimetic winged fruits showed that under the same wing-loading, winged fruits with a 20° pitch angle had nearly the same terminal velocities as winged fruits with a 0° pitch angle, but had a 0.67-fold rotational frequency. The study also found that PET two- and three-winged fruits did not have a significant relationship between the rotational frequency and wing-loading, possibly due to the morphology of the winged fruits. The terminal velocity of PET two- and three-winged fruits increased linearly with the square root of the wing-loading. The terminal velocity of three-winged fruits increases more significantly with the square root of the wing-loading, suggesting that the terminal velocity of three-winged fruits is more influenced by the wing-loading, which may be related to the relatively restricted wing-loading range of natural three-winged fruits compared to two-winged fruits. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:37:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-22T16:37:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract IV 目次 VII 圖次 XI 表次 XVI 符號表 XVII 第一章 緒論 1 1.1論文架構 1 1.2 研究動機與目的 2 第二章 文獻回顧與相關機制 4 2.1 翅果相關的背景知識 4 2.1.1 風力傳播機制 4 2.1.2 龍腦香科植物(Dipterocarpaceae Family) 6 2.1.3 龍腦香翅果的形態 8 2.1.4 異速縮放法則(Allometric scaling law) 10 2.2 空氣動力學的相關知識 12 2.2.1 基本名詞 12 2.2.2 攻角(Angle of attack)與俯仰角(Pitch angle) 13 2.2.3 雷諾數(Reynolds number) 14 2.2.4 史特豪數(Strouhal number) 16 2.2.5 翼荷比(Wing-loading) 17 2.2.6 Q準則(Q-criterion) 18 2.2.7 紊流強度(Turbulence intensity) 19 2.3 生物力學的相關機制 21 2.3.1 前緣渦漩(Leading edge vortex) 21 2.3.2 翼尖渦漩(Wingtip vortex) 24 2.3.3 翅果的力學研究 24 2.3.4 翼片柔性 27 2.3.5 實驗室研究回顧 29 2.4 有限元素模擬的相關知識 31 2.4.1 不可壓縮流求解 31 2.4.2 流固耦合(Fluid-structure interaction) 33 2.4.3 大渦流模擬(Large eddy simulation) 35 第三章 實驗方法與儀器設備 37 3.1 實驗樣本 37 3.1.1 天然翅果(Natural winged fruit) 37 3.1.2 仿生翅果(Biomimetic winged fruit) 45 3.2 自由落下之拍攝與分析 52 3.2.1 實驗儀器與架設 52 3.2.2 實驗流程與分析方法 55 3.3 垂直風洞之拍攝與分析 58 3.3.1 實驗儀器與架設 58 3.3.2實驗流程與分析方法 61 3.3.3流場均勻度與紊流強度量測 64 3.4 仿生翅果翅膀變形之拍攝與分析 65 3.4.1 實驗儀器與架設 65 3.4.2 實驗流程與分析方法 67 3.5 有限元素模擬模型之建立 68 3.5.1 紙摺三翅果模型 68 3.5.2 幾何參數與材料參數 69 3.5.3 其他條件設定 70 第四章 結果與討論 73 4.1 天然翅果的異速縮放法則 73 4.2 天然翅果的擴散潛力與比較 77 4.2.1 多物種的幾何參數與擴散潛力 77 4.2.2 三翅果的異速縮放法則 80 4.2.3 二翅果的失水現象 83 4.2.4 二翅果的俯仰角有無比較 88 4.3 仿生翅果的擴散潛力:俯仰角比較 91 4.3.1 自由落下實驗之速度、旋轉頻率以及軌跡分析 91 4.3.2 雷諾數與史特豪數計算 98 4.3.3 翅膀變形的形態分析 101 4.3.4 有限元素模擬與流場結構分析 104 4.4 仿生翅果的擴散潛力:翅數比較 110 4.4.1 垂直風洞的流場分析 110 4.4.2 垂直風洞實驗與自由落下實驗之比較 114 4.4.3翼荷比對終端速度與旋轉頻率的影響 116 4.4.4 翅膀變形的形態分析 119 4.5 紙摺與PET翅果之翅膀變形分析 121 第五章 結論與未來展望 124 5.1 結論 124 5.2 未來展望 127 參考文獻 128 附錄 136 著作目錄 136 S1. 紙摺翅果摺法 137 S2. 翅果LS-DYNA keyword 140 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 翼荷比 | zh_TW |
| dc.subject | 擴散潛力 | zh_TW |
| dc.subject | 異速縮放法則 | zh_TW |
| dc.subject | 仿生翅果 | zh_TW |
| dc.subject | 種子傳播 | zh_TW |
| dc.subject | 前緣渦漩 | zh_TW |
| dc.subject | wing-loading | en |
| dc.subject | seed dispersal | en |
| dc.subject | biomimetic winged fruit | en |
| dc.subject | allometric scaling law | en |
| dc.subject | dispersal potential | en |
| dc.subject | leading-edge vortex | en |
| dc.title | 以仿生翅果分析形態差異對擴散潛力的影響 ──以龍腦香科植物為例 | zh_TW |
| dc.title | Analyzing the Effect of Morphology in Biomimetic Winged Fruit on Dispersal Potential: A Case Study of Dipterocarp Trees | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 莊嘉揚 | zh_TW |
| dc.contributor.coadvisor | Jia-Yang Juang | en |
| dc.contributor.oralexamcommittee | 黃美嬌;江明哲;Shawn Kaihekulani Yamauchi Lum | zh_TW |
| dc.contributor.oralexamcommittee | Mei-Jiau Huang;Ming-Zhe Jiang;Shawn Kaihekulani Yamauchi Lum | en |
| dc.subject.keyword | 種子傳播,仿生翅果,異速縮放法則,擴散潛力,前緣渦漩,翼荷比, | zh_TW |
| dc.subject.keyword | seed dispersal,biomimetic winged fruit,allometric scaling law,dispersal potential,leading-edge vortex,wing-loading, | en |
| dc.relation.page | 145 | - |
| dc.identifier.doi | 10.6342/NTU202400022 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-01-05 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| dc.date.embargo-lift | 2029-01-04 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 9.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
