Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92443
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳岳隆zh_TW
dc.contributor.advisorYueh-Lung Wuen
dc.contributor.author呂昀恆zh_TW
dc.contributor.authorYun-Heng Luen
dc.date.accessioned2024-03-22T16:31:53Z-
dc.date.available2024-03-23-
dc.date.copyright2024-03-22-
dc.date.issued2024-
dc.date.submitted2024-01-24-
dc.identifier.citation1. Ollerton, J., R. Winfree, and S. Tarrant, How many flowering plants are pollinated by animals? Oikos, 2011. 120(3): p. 321-326.
2. Chalcoff, V.R., M.A. Aizen, and L. Galetto, Nectar concentration and composition of 26 species from the temperate forest of South America. Annals of botany, 2006. 97(3): p. 413-421.
3. Kretschmar, J.A. and T.W. Baumann, Caffeine in Citrus flowers. Phytochemistry, 1999. 52(1): p. 19-23.
4. Kessler, D., et al., Unpredictability of nectar nicotine promotes outcrossing by hummingbirds in Nicotiana attenuata. The Plant Journal, 2012. 71(4): p. 529-538.
5. Schoonhoven, L.M., J.J. Van Loon, and M. Dicke, Insect-plant biology. 2005: Oxford University Press on Demand.
6. Stevenson, P.C., S.W. Nicolson, and G.A. Wright, Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Functional Ecology, 2017. 31(1): p. 65-75.
7. Wright, G.A., et al., Caffeine in floral nectar enhances a pollinator''s memory of reward. Science, 2013. 339(6124): p. 1202-4.
8. Couvillon, M.J., et al., Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors. Current Biology, 2015. 25(21): p. 2815-2818.
9. Thomson, J.D., M.A. Draguleasa, and M.G. Tan, Flowers with caffeinated nectar receive more pollination. Arthropod-Plant Interactions, 2015. 9(1): p. 1-7.
10. Arnold, S.E.J., et al., Bumble bees show an induced preference for flowers when primed with caffeinated nectar and a target floral odor. Current Biology, 2021. 31(18): p. 4127-+.
11. Baracchi, D., et al., Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Scientific Reports, 2017. 7.
12. Koch, H. and P.C. Stevenson, Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa). Biology Letters, 2017. 13(9).
13. Nepi, M., D.A. Grasso, and S. Mancuso, Nectar in Plant-Insect Mutualistic Relationships: From Food Reward to Partner Manipulation. Frontiers in Plant Science, 2018. 9.
14. Strachecka, A., et al., Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). Biochemistry (Mosc), 2014. 79(11): p. 1192-201.
15. Motta, E.V.S., R.L.W. Arnott, and N.A. Moran, Caffeine Consumption Helps Honey Bees Fight a Bacterial Pathogen. Microbiol Spectr, 2023: p. e0052023.
16. Balieira, K.V.B., et al., Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine. Apidologie, 2018. 49(5): p. 562-572.
17. Bernklau, E., et al., Dietary Phytochemicals, Honey Bee Longevity and Pathogen Tolerance. Insects, 2019. 10(1).
18. Fiani, B., et al., The neurophysiology of caffeine as a central nervous system stimulant and the resultant effects on cognitive function. Cureus, 2021. 13(5).
19. Fisone, G., A. Borgkvist, and A. Usiello, Caffeine as a psychomotor stimulant: mechanism of action. Cellular and Molecular Life Sciences CMLS, 2004. 61: p. 857-872.
20. Simons, S.B., et al., Caffeine-induced synaptic potentiation in hippocampal CA2 neurons. Nature neuroscience, 2012. 15(1): p. 23-25.
21. Chen, J.-F., et al., The role of the D2 dopamine receptor (D2R) in A2A adenosine receptor (A2AR)-mediated behavioral and cellular responses as revealed by A2A and D2 receptor knockout mice. Proceedings of the National Academy of Sciences, 2001. 98(4): p. 1970-1975.
22. Lopes, J.P., A. Pliássova, and R.A. Cunha, The physiological effects of caffeine on synaptic transmission and plasticity in the mouse hippocampus selectively depend on adenosine A1 and A2A receptors. Biochemical Pharmacology, 2019. 166: p. 313-321.
23. Costenla, A.R., R.A. Cunha, and A. De Mendonça, Caffeine, adenosine receptors, and synaptic plasticity. Journal of Alzheimer''s Disease, 2010. 20(s1): p. S25-S34.
24. De Mendonça, A. and J.A. Ribeiro, Adenosine and synaptic plasticity. Drug development research, 2001. 52(1‐2): p. 283-290.
25. Prediger, R.D., L.C. Batista, and R.N. Takahashi, Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats: involvement of adenosine A1 and A2A receptors. Neurobiology of aging, 2005. 26(6): p. 957-964.
26. Jones, P. and A.A. Agrawal, Caffeine and ethanol in nectar interact with flower color impacting bumblebee behavior. Behavioral Ecology and Sociobiology, 2022. 76(7): p. 103.
27. Donlea, J.M., et al., Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science, 2011. 332(6037): p. 1571-1576.
28. Sugimachi, S., et al., Effects of caffeine on olfactory learning in crickets. Zoological science, 2016. 33(5): p. 513-519.
29. Perisse, E., et al., Early calcium increase triggers the formation of olfactory long-term memory in honeybees. BMC biology, 2009. 7(1): p. 1-10.
30. O''Leary, N.A., et al., Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res, 2016. 44(D1): p. D733-45.
31. Chen, P., et al., Deformed wing virus infection affects the neurological function of Apis mellifera by altering extracellular adenosine signaling. Insect Biochem Mol Biol, 2021. 139: p. 103674.
32. Yu, T., et al., Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene, 2017. 36(15): p. 2131-2145.
33. Sun, R., et al., Androgen receptor stimulates hexokinase 2 and induces glycolysis by PKA/CREB signaling in hepatocellular carcinoma. Digestive diseases and sciences, 2021. 66: p. 802-813.
34. Zhang, X., et al., Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proceedings of the National Academy of Sciences, 2005. 102(12): p. 4459-4464.
35. Kiya, T. and T. Kubo, Dance type and flight parameters are associated with different mushroom body neural activities in worker honeybee brains. PLoS One, 2011. 6(4): p. e19301.
36. Singh, A., A. Shah, and A. Brockmann, Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway. Insect molecular biology, 2018. 27(1): p. 90-98.
37. Wen, A.Y., K.M. Sakamoto, and L.S. Miller, The Role of the Transcription Factor CREB in Immune Function. Journal of Immunology, 2010. 185(11): p. 6413-6419.
38. Troha, K., et al., Comparative transcriptomics reveals CrebA as a novel regulator of infection tolerance in D-melanogaster. Plos Pathogens, 2018. 14(2).
39. Gao, J., et al., Identification and function of cAMP response element binding protein in Oak silkworm Antheraea pernyi. Journal of Invertebrate Pathology, 2018. 151: p. 14-20.
40. Chang, Y., et al., Snellenius manilae bracovirus suppresses the host immune system by regulating extracellular adenosine levels in Spodoptera litura. Scientific Reports, 2020. 10(1).
41. Martin, S.J., B.V. Ball, and N.L. Carreck, Prevalence and persistence of deformed wing virus (DWV) in untreated or acaricide-treated Varroa destructor infested honey bee (Apis mellifera) colonies. Journal of Apicultural Research, 2010. 49(1): p. 72-79.
42. Highfield, A.C., et al., Deformed Wing Virus Implicated in Overwintering Honeybee Colony Losses. Applied and Environmental Microbiology, 2009. 75(22): p. 7212-7220.
43. Ferreira, A.G., et al., The Toll-Dorsal Pathway Is Required for Resistance to Viral Oral Infection in. Plos Pathogens, 2014. 10(12).
44. Avadhanula, V., et al., A Novel System for the Launch of Alphavirus RNA Synthesis Reveals a Role for the Imd Pathway in Arthropod Antiviral Response. Plos Pathogens, 2009. 5(9).
45. Wright, G.A., et al., Caffeine in Floral Nectar Enhances a Pollinator''s Memory of Reward. Science, 2013. 339(6124): p. 1202-1204.
46. Chakrabarti, P., et al., Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction. Scientific Reports, 2015. 5.
47. Søvik, E., et al., Neuropharmacological manipulation of restrained and free-flying honey bees, Apis mellifera. JoVE (Journal of Visualized Experiments), 2016(117): p. e54695.
48. Froger, A. and J.E. Hall, Transformation of plasmid DNA into E. coli using the heat shock method. JoVE (Journal of visualized experiments), 2007(6): p. e253.
49. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p. 402-8.
50. Brutscher, L.M., A.J. McMenamin, and M.L. Flenniken, The Buzz about Honey Bee Viruses. Plos Pathogens, 2016. 12(8).
51. Ehrlich, B.E., et al., THE PHARMACOLOGY OF INTRACELLULAR CA2+-RELEASE CHANNELS. Trends in Pharmacological Sciences, 1994. 15(5): p. 145-149.
52. Nehlig, A., J.L. Daval, and G. Debry, Caffeine and the Central-Nervous-System - Mechanisms of Action, Biochemical, Metabolic and Psychostimulant Effects. Brain Research Reviews, 1992. 17(2): p. 139-169.
53. Bonaventura, J., et al., Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer. Proceedings of the National Academy of Sciences, 2015. 112(27): p. E3609-E3618.
54. Ferré, S., et al., G protein–coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacological reviews, 2014. 66(2): p. 413-434.
55. Smith, N.J. and G. Milligan, Allostery at G protein-coupled receptor homo-and heteromers: uncharted pharmacological landscapes. Pharmacological reviews, 2010. 62(4): p. 701-725.
56. Ferré, S., et al., Building a new conceptual framework for receptor heteromers. Nature chemical biology, 2009. 5(3): p. 131-134.
57. Kucerova, L., et al., Characterization of the Drosophila adenosine receptor: the effect of adenosine analogs on cAMP signaling in Drosophila cells and their utility for in vivo experiments. Journal of neurochemistry, 2012. 121(3): p. 383-395.
58. Kandel, E.R., Neuroscience - The molecular biology of memory storage: A dialogue between genes and synapses. Science, 2001. 294(5544): p. 1030-1038.
59. Horrigan, L.A., J.P. Kelly, and T.J. Connor, Caffeine suppresses TNF-α production via activation of the cyclic AMP/protein kinase A pathway. International Immunopharmacology, 2004. 4(10): p. 1409-1417.
60. Wu, M.N., et al., The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor. Journal of Neuroscience, 2009. 29(35): p. 11029-11037.
61. Sutherland, E.W. and T.W. Rall, Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem, 1958. 232(2): p. 1077-91.
62. Choi, O.H., et al., Caffeine and theophylline analogues: Correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sciences, 1988. 43(5): p. 387-398.
63. Fredholm, B.B., Adenosine, adenosine receptors and the actions of caffeine. Pharmacology & toxicology, 1995. 76(2): p. 93-101.
64. Ribeiro, J.A. and A.M. Sebastião, Caffeine and Adenosine. Journal of Alzheimer''s Disease, 2010. 20: p. S3-S15.
65. Morishima, I., Cyclic-Amp Phosphodiesterase Activity during Development of Silkworm, Bombyx-Mori. Journal of Insect Physiology, 1973. 19(11): p. 2261-2265.
66. Odesser, D.B., M.S. Schechter, and D.K. Hayes, Phosphodiesterase Activity in Pupae and Diapausing and Non-Diapausing Larvae of European Corn Borer, Ostrinia-Nubilalis. Journal of Insect Physiology, 1972. 18(6): p. 1097-+.
67. Fredholm, B.B., et al., Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological Reviews, 1999. 51(1): p. 83-133.
68. Amezian, D., R. Nauen, and G. Le Goff, Transcriptional regulation of xenobiotic detoxification genes in insects-An overview. Pesticide Biochemistry and Physiology, 2021. 174: p. 104822.
69. Yang, X., et al., MAPK-directed activation of the whitefly transcription factor CREB leads to P450-mediated imidacloprid resistance. Proceedings of the National Academy of Sciences, 2020. 117(19): p. 10246-10253.
70. Cao, C., et al., Physiological functions of a methuselah-like G protein coupled receptor in Lymantria dispar Linnaeus. Pesticide biochemistry and physiology, 2019. 160: p. 1-10.
71. Ma, Z., et al., The role of G protein‐coupled receptor‐related genes in cytochrome P450‐mediated resistance of the house fly, Musca domestica (Diptera: Muscidae), to imidacloprid. Insect molecular biology, 2020. 29(1): p. 92-103.
72. Li, T. and N. Liu, Role of the G-protein-coupled receptor signaling pathway in insecticide resistance. International journal of molecular sciences, 2019. 20(17): p. 4300.
73. Li, T. and N. Liu, Regulation of P450-mediated permethrin resistance in Culex quinquefasciatus by the GPCR/Gαs/AC/cAMP/PKA signaling cascade. Biochemistry and Biophysics Reports, 2017. 12: p. 12-19.
74. Chang, Z.-T., et al., Transcriptome-level assessment of the impact of deformed wing virus on honey bee larvae. Scientific Reports, 2021. 11(1): p. 15028.
75. Richardson, L.L., M.D. Bowers, and R.E. Irwin, Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness. Ecology, 2016. 97(2): p. 325-337.
76. Wu, Y.F., et al., Honey Bee Suppresses the Parasitic Mite Vitellogenin by Antimicrobial Peptide. Frontiers in Microbiology, 2020. 11.
77. Murayama, M., et al., Effect of caffeine on the multiplication of DNA and RNA viruses. Molecular Medicine Reports, 2008. 1(2): p. 251-255.
78. Mariot, P., et al., Evidence of functional ryanodine receptor involved in apoptosis of prostate cancer (LNCaP) cells. The Prostate, 2000. 43(3): p. 205-214.
79. Sheng, M., M.A. Thompson, and M.E. Greenberg, CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science, 1991. 252(5011): p. 1427-1430.
80. Clapham, D.E., Calcium signaling. Cell, 1995. 80(2): p. 259-268.
81. Nicolson, S.W., Sweet solutions: nectar chemistry and quality. Philos Trans R Soc Lond B Biol Sci, 2022. 377(1853): p. 20210163.
82. Adler, L.S. and R.E. Irwin, Ecological costs and benefits of defenses in nectar. Ecology, 2005. 86(11): p. 2968-2978.
83. Kessler, D., K. Gase, and I.T. Baldwin, Field experiments with transformed plants reveal the sense of floral scents. Science, 2008. 321(5893): p. 1200-1202.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92443-
dc.description.abstract植物產生之次級代謝物具有防禦的功能,在植物的葉子或種子中大量累積,以阻止草食性動物的侵害。有趣的是,次級代謝物也被產生在植物的花蜜中,能被協助植物授粉的昆蟲所攝取,使得次級代謝物在生態中扮演的角色出現矛盾。諸多研究認為植物利用次級代謝物來吸引授粉昆蟲,片面增加植物本身的授粉率,而降低了回饋的蜜源品質。然而,相對較少有研究探討次級代謝物在授粉昆蟲的作用機制,使得「次級代謝物剝削說」忽略了授粉昆蟲所能得到的益處。本研究以西方蜜蜂作為模式物種,並以植物次級代謝物——咖啡因作為研究材料,以西方蜜蜂生理學角度切入,探討咖啡因在西方蜜蜂與植物的交互作用中扮演的角色,最終以生態的角度解釋研究結果。我們調查咖啡因對蜜蜂大腦中腺苷(adenosine,Ado)路徑的影響,研究了下游二次信使(secondmessenger)環狀腺苷酸(cyclicAMP,cAMP)以調查配體-受體(ligand-receptor)相互作用。在咖啡因處理後,進一步研究生理和行為結果,如能量代謝、基因表達、神經活動和記憶功能。還檢驗了蜜蜂對食源的偏好,以更好地理解蜜蜂是否總是會選擇含咖啡因的花蜜。cAMP測量結果顯示,咖啡因在蜜蜂大腦中與其配體競爭對手Ado發揮協同作用(synergisticeffects)。啟動cAMP/PKA/CREB路徑,有助於ATP生產、基因表達和大腦中的鈣離子活動,包括增強的長期記憶。於抗病毒的實驗中,我們亦證實餵食咖啡因能增強蜜蜂的免疫相關基因表現,並降低病毒在蜜蜂體內的複製量。蜜蜂對糖水的偏好性測試結果顯示,含咖啡因的花蜜並不總是蜜蜂的首選,表明咖啡因作為植物的片面利用工具效果有限。我們的研究從生理和行為角度提供了關於蜜蜂有效利用咖啡因的觀點。以咖啡因與蜜蜂的例子,次級代謝物的確可以在周圍蜜源養分含量相當的情況下,為植物帶來更高的吸引力,然而授粉昆蟲並不會一昧的被植物的次級代謝物吸引,相反的,他們偏好挑選養分含量較高的蜜源。取食到咖啡因的蜜蜂也並不會單純被植物剝削,而是利用了咖啡因提升自身的生理、行為與抗病的表現,而其作用即是透過強化cAMP/PKA/CREB路徑。我們總結,花蜜中的咖啡因應為加強植物-傳粉者共生關係的互利共生工具,植物與授粉昆蟲皆能從咖啡因獲得相應的益處。未來,更多的次級代謝物與授粉昆蟲能個別納入研究與討論,為花蜜中的次級代謝物提出更完整的生態地位。zh_TW
dc.description.abstractPlants produce secondary metabolites as a defending strategy. Interestingly, plants also produce those phytochemicals in nectar, which is generally a reward for pollinators. Previous studies suggested this phenomenon might be ‘pollinator manipulation,’ that plants used secondary metabolites to influence the foraging decision of pollinators regardless the nutrition quality. However, few studies focused on pollinators’ perspectives of the positive effects brought by these secondary metabolites in nectar and their physiological mechanisms. In the present study, pollinating insect, honey bees, and common phytochemical in nectar, caffeine, were used as our model. The caffeine mechanisms were focused on the interactions with adenosine receptors of honey bee. Both results in vitro and in vivo experiments suggested that caffeine synergistically enhanced the down-stream signaling of adenosine pathway. The enhancements on ATP production, gene expression, and memory ability were also examined after caffeine treatments. The other possible caffeine mechanisms already known in previous studies such as ryanodine receptor agonism were also explored, and the results showed negative. The benefits of consuming caffeine were confirmed in honey bee’s immune responses and antiviral effects. The results of foraging preference tests indicated that sugar content was a more important factor to influence the decision of foragers for searching food. Finally, our results supported that caffeine in nectar might strengthen the plant-pollinator mutualism, rather than unilateral exploitation, since both plants and pollinators could potentially benefit from the secondary metabolites in nectar.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:31:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-22T16:31:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
目次 v
前言 1
材料方法 6
實驗用蜜蜂之來源、飼養與取樣 6
生物性實驗用藥品 6
針對蜜蜂腦部之藥劑施加 6
古典制約行為實驗 (Proboscis extension reflex, PER) 7
蜜蜂大腦Cyclic AMP含量測定 7
質體的萃取與轉染 (Transfection) 8
CHO-K1細胞cAMP含量測定 9
蛋白質萃取、西方墨點法與其結果分析 10
蜜蜂腦組織或全身RNA萃取 11
互補DNA片段合成 11
定量聚合酶連鎖反應及分析 (Quantitative polymerase chain reaction, qPCR) 12
病毒萃取、定量與感染 12
鈣離子影像 13
蜜蜂大腦麩氨酸 (Glutamate)含量測定 14
蜜蜂大腦三磷酸腺苷 (ATP)含量測定 14
外勤蜂之糖水偏好性行為實驗 14
統計分析與作圖 15
結果 16
咖啡因與Ado協同在表現AmAdoR之CHO-K1細胞中促使cAMP累積量上升 16
施加咖啡因於蜜蜂大腦提升cAMP累積量並強化氣味長期記憶 (Olfactory long-term memory) 16
咖啡因強化cAMP/PKA/CREB 路徑使ATP含量與CREB下游基因表現量上升 17
餵食咖啡因後上升的免疫相關基因表現與病毒複製抵抗表現 18
咖啡因在花蜜中可發現的濃度下增強麩氨酸 (Glutamate)含量和鈣離子活性 (Calcium ion activity)且非由於魚尼丁受體 (Ryanodine receptor, RyR)的誘導 19
當蜜蜂在進行蜜源的選擇時咖啡因並非決定性因素而是糖水濃度 20
討論 21
圖說 26
圖1、咖啡因與Ado協同增強CHO-K1細胞表達AmAdoR的cAMP反應 26
圖2、蜜蜂大腦中的cAMP反應與咖啡因或腺苷處理的長期記憶表現相關。 32
圖3、咖啡因增強 cAMP/PKA/CREB 途徑及下游基因表達。 38
圖4、餵食咖啡因後蜜蜂的免疫相關基因表現與體內病毒複製量 45
圖5、餵食咖啡因進行PER訓練使蜜蜂大腦中神經傳導物質和鈣離子活動增強。 50
圖6、蜜蜂訪花的動機是糖濃度重要於咖啡因。 54
圖7、研究總結圖。 60
附表 62
表1、蛋白質電泳凝膠製作配方 62
表2、本研究使用之所有引子對。F: forward; R: reverse 63
參考資料 67
發表 76
中文發表: 76
國際期刊發表(第一作者或共同第一作者以灰色網底表示): 76
-
dc.language.isozh_TW-
dc.subject植物-授粉者互利共生zh_TW
dc.subject腺苷受體zh_TW
dc.subject記憶學習zh_TW
dc.subject西方蜂zh_TW
dc.subject咖啡因zh_TW
dc.subjectWestern honey beeen
dc.subjectCaffeineen
dc.subjectAdenosine receptoren
dc.subjectLearning and memoryen
dc.subjectPlant-pollinator mutualismen
dc.title探討花蜜之咖啡因在生態扮演之角色 – 以西方蜂之生理學角度切入zh_TW
dc.titleInvestigation of the ecological role of caffeine in nectar on the perspective of western honey bee physiologyen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee林書葦;陳虹樺;黃榮南;乃育昕;吳明城;陳美娥zh_TW
dc.contributor.oralexamcommitteeSue-Wei Lin;Hong-Hwa Chen;Rong-Nan Huang;Yu-Shin Nai;Ming-Cheng Wu;Mei-Er Chenen
dc.subject.keyword西方蜂,咖啡因,腺苷受體,記憶學習,植物-授粉者互利共生,zh_TW
dc.subject.keywordWestern honey bee,Caffeine,Adenosine receptor,Learning and memory,Plant-pollinator mutualism,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202400198-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-25-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept昆蟲學系-
dc.date.embargo-lift2026-01-23-
Appears in Collections:昆蟲學系

Files in This Item:
File SizeFormat 
ntu-112-1.pdf
  Until 2026-01-23
7.05 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved