Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92413
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信樹zh_TW
dc.contributor.advisorHsin-Shu Chenen
dc.contributor.author陳佳宜zh_TW
dc.contributor.authorChia-Yi Chenen
dc.date.accessioned2024-03-22T16:23:35Z-
dc.date.available2024-03-23-
dc.date.copyright2024-03-22-
dc.date.issued2023-
dc.date.submitted2023-12-08-
dc.identifier.citation[ 1 ] Y. Lei, W. Liu and R. C. N. Pilawa-Podgurski, "An Analytical Method to Evaluate and Design Hybrid Switched-Capacitor and Multilevel Converters," in IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2227-2240, March 2018
[ 2 ] W. Liu, P. Assem, Y. Lei, P. K. Hanumolu and R. Pilawa-Podgurski, "10.3 A 94.2%-peak-efficiency 1.53A direct-battery-hook-up hybrid Dickson switched-capacitor DC-DC converter with wide continuous conversion ratio in 65nm CMOS," 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 182-183
[ 3 ] A. Abdulslam and P. P. Mercier, "A Symmetric Modified Multilevel Ladder PMIC for Battery-Connected Applications," in IEEE Journal of Solid-State Circuits, vol. 55, no. 3, pp. 767-780, March 2020
[ 4 ] A. Stillwell, C. N. Robert and Pilawa-Podgurski, "A 5-level flying capacitor multi-level converter with integrated auxiliary power supply and start-up," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 2932-2938
[ 5 ] Y. Lei, R. May, and R. Pilawa-Podgurski, “Split-phase control: Achieving complete soft-charging operation of a dickson switched-capacitor converter,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 770–782, Jan. 2016
[ 6 ] G. -S. Seo, R. Das and H. -P. Le, "A 95%-Efficient 48V-to-1V/10A VRM Hybrid Converter Using Interleaved Dual Inductors," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 3825-3830
[ 7 ] S. -J. Lee et al., "30.5 A 95.3% 5V-to-32V Wide Range 3-Level Current Mode Boost Converter with Fully State-based Phase Selection Achieving Simultaneous High-Speed VCF Balancing and Smooth Transition," 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2023, pp. 446-448
[ 8 ] D. Reusch, F. C. Lee and M. Xu, "Three level buck converter with control and soft startup," 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 2009, pp. 31-35
[ 9 ] V. Yousefzadeh, E. Alarcon and D. Maksimovic, "Three-level buck converter for envelope tracking applications," in IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 549-552, March 2006
[ 10 ] X. Liu, P. K. T. Mok, J. Jiang and W. -H. Ki, "Analysis and Design Considerations of Integrated 3-Level Buck Converters," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 5, pp. 671-682, May 2016
[ 11 ] W. Kim, D. Brooks and G. -Y. Wei, "A Fully-Integrated 3-Level DC-DC Converter for Nanosecond-Scale DVFS," in IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 206-219, Jan. 2012
[ 12 ] J. Xue and H. Lee, "A 2 MHz 12–100 V 90% Efficiency Self-Balancing ZVS Reconfigurable Three-Level DC-DC Regulator With Constant-Frequency Adaptive-On-Time V2 Control and Nanosecond-Scale ZVS Turn-On Delay," in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2854-2866, Dec. 2016
[ 13 ] X. Liu, C. Huang and P. K. T. Mok, "A High-Frequency Three-Level Buck Converter With Real-Time Calibration and Wide Output Range for Fast-DVS," in IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 582-595, Feb. 2018
[ 14 ] Y. Karasawa, T. Fukuoka and K. Miyaji, "A 92.8% Efficiency Adaptive-On/Off-Time Control 3-Level Buck Converter for Wide Conversion Ratio with Shared Charge Pump Intermediate Voltage Regulator," 2018 IEEE Symposium on VLSI Circuits, 2018
[ 15 ] S. Pan and P. K. T. Mok, "A 25 MHz Fast Transient Adaptive-On/Off-Time Controlled Three-Level Buck Converter," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 6, pp. 2601-2613, June 2022
[ 16 ] J. -I. Seo, B. -M. Lim, W. -J. Choi, Y. -S. Noh and S. -G. Lee, "A 95.1% Efficiency Hybrid Hysteretic Reconfigurable 3-Level Buck Converter With Improved Load Transient Response," in IEEE Transactions on Power Electronics, vol. 37, no. 12, pp. 14916-14925, Dec. 2022
[ 17 ] Byungcho Choi, “Pulsewidth Modulated DC-to-DC Power Conversion Circuits, Dynamics, and Control Designs”, Copyright 2013
[ 18 ] Ke-Horng Chen, “Power Management Techniques for Integrated Circuit Design”, 2016
[ 19 ] R. Redl and J. Sun, "Ripple-Based Control of Switching Regulators—An Overview," in IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2669-2680, Dec. 2009
[ 20 ] E. Sackinger and W. Guggenbuhl, "A versatile building block: the CMOS differential difference amplifier," in IEEE Journal of Solid-State Circuits, vol. 22, no. 2, pp. 287-294, April 1987
[ 21 ] C. -J. Chen, D. Chen, C. -W. Tseng, C. -T. Tseng, Y. -W. Chang and K. Wang, "A novel ripple-based constant on-time control with virtual inductor current ripple for Buck converter with ceramic output capacitors," 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 2011, pp. 1488-1493
[ 22 ] I-Chieh Wei, Dan Chen, Yu-Cheng Lin and Ching-Jan Chen, "The stability modeling of ripple-based constant on-time control schemes used in the converters operating in DCM," 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, 2012, pp. 1-8
[ 23 ] Phillip E. Allen, CMOS Analog Circuit Design, 3rd ed. Oxford University
Press, 2011
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92413-
dc.description.abstract隨著可攜式電子產品的普及,對於高效率、小體積的電源管理晶片的需求日益增長。傳統的降壓式轉換器雖然已能實現不錯的效率,但其在效率和功率密度上仍有更加提升的空間。近年來的文獻中,混合型轉換器被廣泛研究,結合不同種類的傳統轉換器,使其兼具各自的優點。
三階降壓型轉換器是一種混合型轉換器,結合了切換式電容與切換式電感轉換器,優化功率密度以及使其效率在一些操作條件下優於傳統降壓式轉換器。然而,其架構中的飛電容電壓需要穩在一半的輸入電壓值,才能達到上述提及的優點。過去文獻有提出調節飛電容電壓的控制方法,然而在輸入瞬態發生時,飛電容電壓的反應時間會需要幾個操作週期。這在轉換器操作在不連續導通模式而周期延長的情況下,飛電容電壓的反應時間也會因而延長。
本論文提出了一款應用於可攜式電子裝置,使用漣波調變定導通時間控制的三階降壓型轉換器,並融入了快速飛電容電壓充電校準技術,該技術將電容偵測電路和充電機制納入控制策略中。當穿戴式裝置的輸入電壓從鋰離子電池切換至充電器時,在飛電容尚未穩至新的輸入電壓的一半時,電力級的開關會因此超過額定電壓,造成可靠性問題。而透過本論文提出的快速飛電容電壓充電校準控制方法,能使其在瞬態反應發生時,快速校準飛電容電壓。
此晶片透過台積電0.18μm 1P6M Mixed Signal CMOS製程實現,根據實驗結果,在輸出負載為20毫安培(mA)時,輸入電壓從2.8伏切換至5伏的輸入瞬態發生時,飛電容電壓的暫態反應時間小於20μs,優於未使用快速飛電容電壓充電校準方法時的暫態響應時間3000μs。本晶片輸入電壓為2.8到5伏,輸出電壓操作在1伏,負載電流範圍從1毫安培(mA)到500毫安培(mA),最高效率在輸入電壓3伏且負載為100毫安培(mA)時為94.8%,提出的控制方法有效的減少輸入切換時的飛電容電壓的暫態反應時間,改善了系統的可靠度。
zh_TW
dc.description.abstractWith the growth of portable electronic devices, the demand for high-efficiency, compact power management ICs has surged. While traditional buck converters have achieved commendable efficiency, there remains room for improvement in both efficiency and power density. In recent years, hybrid converters, combining different types of traditional converters, have been extensively researched, utilizing the benefits of each.
Three-level buck converter, a hybrid converter combining Switched-Capacitor and Switched-Inductor converters, optimizes power density and exhibits better efficiency under certain operating conditions compared to conventional buck converters. Its flying capacitor voltage ( ) must stabilize at half of the input voltage for the advantages to be realized. Previous works of literature have proposed control methods to regulate . However, the settling time of requires a few cycles when a line transient occurs. In cases where the converter's operating cycle is prolonged in Discontinuous Conduction Mode (DCM), the transient response time of also increases.
This thesis proposes a Ripple-based constant on time (RBCOT) controlled Three-Level Buck Converter for portable electronic devices with Fast V_CF Charging Calibration (FVCC) technique, which incorporates a detection circuit and charging mechanism into the control strategy. When transitioning the input voltage from a Li-ion battery to an adaptor in a portable device, the power MOSFETs exceed their rated voltage due to not yet settling to half of the new input voltage. The proposed control method of the FVCC technique in this thesis accelerates the calibration of when a line transient occurs.
The proposed chip is fabricated in TSMC 0.18 μm 1P6M Mixed-Signal CMOS process. Experimental results demonstrate that with an output load of 20 mA, when the input voltage switches from 2.8 V to 5 V, the transient response time of is less than 20μs compared to the case without the FVCC technique, where the transient response time was 3000μs. The proposed Three-Level Buck can provide an output voltage of 1 V at the load current range of 1 mA to 500 mA when the input voltage is 2.8 V to 5 V, and achieves a peak efficiency of 94.8% at an input voltage of 3 V and a load current of 100mA. The proposed control method effectively reduces the transient response time of during a line transient, thereby enhancing system reliability.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:23:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-22T16:23:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
致謝 ii
摘要 vi
ABSTRACT viii
CONTENTS x
LIST OF FIGURES xiv
LIST OF TABLES xx
Chapter 1 Introduction 1
1.1 Motivation 4
1.2 Thesis Organization 6
Chapter 2 Fundamentals of Switched-Inductor DC-DC Converter 7
2.1 Power Stage Topology 7
2.2 Small-Signal Analysis 10
2.2.1 State-Space Average Model 11
2.2.2 Loop Gain Equation 15
2.3 Control Methods 18
2.3.1 Pulse Width Modulation (PWM) 18
2.3.1.1 Voltage-Mode Control 18
2.3.1.2 Current-Mode Control 20
2.3.2 Pulse Frequency Modulation (PFM) 21
2.3.2.1 Ripple-Based Control 22
Chapter 3 Analysis of the Three-Level Buck (3L-Buck) Converter 24
3.1 Introduction 24
3.1.1 Architecture 24
3.1.1.1 Hybrid Switched-Capacitor Converter 24
3.1.1.2 Three-Level Buck Converter 25
3.1.2 Operation Principle 26
3.1.3 Analysis of Characteristics 28
3.1.3.1 Extended Loop Gain Bandwidth 29
3.1.3.2 Increased Power Density and Slew Rate 30
3.1.3.3 Half-Rated Power MOSFETs 30
3.1.3.4 Auxiliary Power Supply 31
3.1.3.5 The Requirement of Regulating 𝑉CF to 1/2𝑉IN 31
3.2 Control Techniques to Regulate Flying Capacitor Voltage (𝑉CF) 32
3.2.1 Current-Mode Control 34
3.2.2 Ripple-Based Control 36
3.2.3 Voltage-Mode Control with 𝑉EA Calibration Block 37
Chapter 4 Proposed Ripple-Based Constant On Time (RBCOT) Controlled 3L-Buck Converter with Fast 𝑉CF Charging Calibration (FVCC) Technique 40
4.1 Design Goal 40
4.2 Proposed Fast 𝑉CF Charging Calibration (FVCC) Technique 42
4.3 Operation Principle 44
4.4 Proposed Architecture 46
4.5 Circuit Implementation 48
4.5.1 Proposed Fast 𝑉CF Charging Calibration (FVCC) Circuit 49
4.5.2 Power Stage 50
4.5.3 Differential Difference Comparator (DDC) 51
4.5.4 Constant On-Time (COT) Generator 54
4.5.4.1 Two-Stage Comparator 56
4.5.4.2 Delay Generator 58
4.5.5 Duty Divider 59
4.5.6 Level Shifters 60
4.5.7 Zero Current Detector (ZCD) 61
4.6 Simulation Results 63
4.6.1 Simulations of the Architecture-Level Circuit Model 63
4.6.1.1 Steady-State Waveforms 64
4.6.1.2 Line Transient Waveforms 65
4.6.2 Simulations of the Transistor-Level Circuit Model 66
4.6.2.1 Steady-State Waveforms 67
4.6.2.2 Line Transient Waveforms 69
4.6.2.3 Power Efficiency 71
4.6.2.4 Summary of Simulations 73
Chapter 5 Experimental Results 74
5.1 Chip Micrograph 74
5.2 Experimental Environment Setup 75
5.3 Measurement Results 77
5.3.1 Steady-State Waveforms 77
5.3.2 Line Transient Waveforms 79
5.3.3 𝑉CF Regulation 80
5.3.4 Power Efficiency 81
5.4 Performance Summary 82
Chapter 6 Conclusion and Future Work 85
6.1 Conclusions 85
6.2 Future Work 85
REFERENCE 87
-
dc.language.isoen-
dc.subject混合型轉換器zh_TW
dc.subject飛電容電壓校準zh_TW
dc.subject漣波控制zh_TW
dc.subject不連續導通模式操作zh_TW
dc.subject三階降壓型轉換器zh_TW
dc.subjectDCM operationen
dc.subjectFlying capacitor voltage calibrationen
dc.subjectHybrid converteren
dc.subjectThree-level buck converteren
dc.subjectRippled-based controlen
dc.title一個應用於可攜式裝置在輸入瞬態有快速飛電容電壓充電校準的三階降壓式轉換器zh_TW
dc.titleA Three-Level Buck DC-DC Converter with Fast Flying Capacitor Voltage Charging Calibration in Line Transient for Portable Deviceen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳文中;鄭文隆zh_TW
dc.contributor.oralexamcommitteeWen-Jong Wu;Wen-Lung Chengen
dc.subject.keyword三階降壓型轉換器,混合型轉換器,飛電容電壓校準,漣波控制,不連續導通模式操作,zh_TW
dc.subject.keywordThree-level buck converter,Hybrid converter,Flying capacitor voltage calibration,Rippled-based control,DCM operation,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202304490-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-12-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2028-12-08-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
4.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved