Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92410
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恭如zh_TW
dc.contributor.advisorGong-Ru Linen
dc.contributor.author錢子群zh_TW
dc.contributor.authorTzu-Chun Chienen
dc.date.accessioned2024-03-22T16:22:42Z-
dc.date.available2024-03-23-
dc.date.copyright2024-03-22-
dc.date.issued2023-
dc.date.submitted2023-12-13-
dc.identifier.citationT. Shi, T.-I. Su, N. Zhang, C.-Y. Hong and D. Pan, "Silicon Photonics Platform for 400G Data Center Applications," in Optical Fiber Communications Conference, (Optical Society of America, 2018), p. M3F.4.
L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Device to Systems (Cambridge University Press, 2015).
Cisco, Cisco Annual Internet Report (2018–2023) White Paper (Cisco, 2020).
IEEE, "IEEE Standard for Ethernet - Amendment 11: Physical Layers and Management Parameters for 100 Gb/s and 400 Gb/s Operation over Single-Mode Fiber at 100 Gb/s per Wavelength," IEEE Std 802.3cu-2021, 1-87 (2021).
IEEE, "IEEE Standard for Ethernet - Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation," IEEE Std 802.3bs-2017, 1-372(2017).
W. J. Tomlinson, R. H. Stolen, and C. V. Shank, "Compression of optical pulses chirped by self-phase modulation in fibers," J. Opt. Soc. Am. B 1(2), 139-149 (1984).
G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59(7), 771-773 (1991).
M. L. Farwell, W. S. C. Chang, and D. R. Huber, "Increased linear dynamic range by low biasing the Mach-Zehnder modulator," IEEE Photonics Technol. Lett. 5(7), 779-782 (1993).
C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, "Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm," Appl. Phys. Lett. 67(17), 2448-2449 (1995).
B. Li, Z. Jiang, X. Zhang, X. Wang, J. Wan, G. Li, and E. Liu, "SiGe/Si Mach–Zehnder interferometer modulator based on the plasma dispersion effect," Appl. Phys. Lett. 74(15), 2108-2109 (1999).
P. Dainesi, A. Küng, M. Chabloz, A. Lagos, Ph Flückiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated Mach–Zehnder interferometer in SOI technology," IEEE Photonics Technol. Lett. 12(6), 660–662 (2000).
M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Express 15, 17106-17113 (2007).
H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T.Chu, Y. Yu, and J. Yu, "High-speed silicon Mach-Zehnder modulator based on interleaved PN junctions," Opt. Express 20, 15093-15099 (2012).
A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, "A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system," IEEE Photon. J. 7, 7901413 (2015).
B. -Y. Lee, C. -T. Tsai, H. -S. Lin, S. -C. Kao, P. Chiang, H. -C. Lee, T. -T. Shih, H. -C. Kuo, and G. -R. Lin, "Si Mach-Zehnder Modulator for PAM-4, QAM-OFDM, and DMT Transmission at C-Band," IEEE J. Sel. Top. Quantum Electron 29(6), 1-12 (2023).
C. Henry, "Theory of the linewidth of semiconductor lasers," IEEE J. Quantum Electron. 18(2), 259-264(1982).
P. Flandrin, "Time frequency and chirps," Wavelet Applications VIII 4391, 161-175 (2001).
N. Fouad, T. Mohamed, and A. Mahmoud, "Impact of linewidth enhancement factor and gain suppression on chirp characteristics of high-speed laser diode and performance of 40 Gbps optical fiber links," Appl. Phys. B 128(3), 1-11 (2022).
F. Koyama and K. Iga, "Frequency chirping in external modulators," Journal of Lightwave Technology 6(1), 87-93(1988).
A.-H. Gnauck, S.-K. Korotky, J.-J. Veselka, J. Nagel, C.-T. Kemmerer, W.-J. Minford and D.-T. Moser, "Dispersion penalty reduction using an optical modulator with adjustable chirp," IEEE Photonics Technol. Lett. 3(10), 916-918 (1991).
A. Djupsjobacka, "Residual chirp in integrated-optic modulators," IEEE Photonics Technol. Lett. 4(1), 41-43 (1992).
S. Walklin and J. Conradi, "Effect of Mach-Zehnder modulator DC extinction ratio on residual chirp-induced dispersion in 10-Gb/s binary and AM-PSK duobinary lightwave systems," IEEE Photonics Technol. Lett. 9(10), 1400-1402 (1997).
H. Kim and A.-H. Gnauck, "Chirp characteristics of dual-drive. Mach-Zehnder modulator with a finite DC extinction ratio," IEEE Photonics Technol. Lett. 14(3), 298-300 (2002).
Y. Wei, Y. Zhao, J. Yang, M. Wang, and X. Jiang, "Chirp Characteristics of Silicon Mach–Zehnder Modulator Under Small-Signal Modulation," J. Lightwave Technol. 29(7), 1011-1017 (2011).
M. Osinski and J. Buus, "Linewidth broadening factor in semiconductor lasers—An overview,", IEEE J. Quantum Electron. 23(1), 9-29 (1987).
C. Harder, K. Vahala, and A. Yariv, "Measurement of the linewidth enhancement factor α of semiconductor lasers," Appl. Phys. Lett. 42(4),328-330 (1983).
F. Devaux, Y. Sorel and J.-F. Kerdiles, "Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter," J. Lightwave Technol. 11(12), 1937-1940 (1993).
J.-G. Provost and F. Grillot, "Measuring the Chirp and the Linewidth Enhancement Factor of Optoelectronic Devices with a Mach–Zehnder Interferometer," IEEE Photonics J. 3(3), 476-488 (2011).
H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μ m wavelength," Appl. Phys. Lett. 80(3), 416-418 (2002).
E. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. 5(9), 454-458 (1969).
L. Zhang, Y. Li, J. -Y. Yang, M. Song, R. G. Beausoleil and A. E. Willner, "Silicon-Based Microring Resonator Modulators for Intensity Modulation," IEEE J. Sel. Top. Quantum Electron. 16(1), 149-158 (2010).
K. Goi, K. Oda, H. Kusaka, A. Oka, Y. Terada, K. Ogawa, T. Y. Liow, X. Tu, G. Q. Lo, and D. L. Kwong "Characterization of Silicon Mach-Zehnder Modulator in 20-Gbps NRZ-BPSK Transmission," IEICE Trans. Electron. 96(7), 974-980 (2013).
D. Petousi, L. Zimmermann, K. Voigt, J. Kreissl, and K. Petermann, "Comparison of InP and Silicon Mach-Zehnder modulators in terms of chirp," in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), p. 1-3.
A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel and D. V. Plant, "A Silicon Photonic PAM-4 Modulator Based on Dual-Parallel Mach–Zehnder Interferometers," IEEE Photonics J. 8(1), 1-10 (2016).
Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, H. Ishihara, K. Goi, and K. Ogawa, "130-Gbps DMT Transmission using Silicon Mach-Zehnder Modulator with Chirp Control at 1.55-μm," in Optical Fiber Communication Conference, (Optica Publishing Group, 2015), p. Th4A.1.
Z. Zhou, Q. Deng, T. Li, and X. Li, "New approaches for energy saving in silicon photonics," Silicon Photonics XI 9752, 95-97 (2016).
G.-P. Agrawal, Nonlinear Fiber Optics. (Springer Press, 2000)
R. Soref and B. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23(1), 123-129 (1987).
G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, "Silicon optical modulators," Nat. Photonics 4, 518–526 (2010).
E.-L. Wooten, K.-M. Kissa, A. Yi-Yan, E.-J. Murphy, D.-A. Lafaw, P.-F. Hallemeier, D. Maack, D.-V. Attanasio, D.-J. Fritz, G.-J. McBrie, D.-E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6(1), 69-82 (2000).
M. Kobayashi and N. Sawada, "Analysis and synthesis of tapered microstrip transmission lines," IEEE Trans. Microwave Theory Tech. 40(8), 1642-1646 (1992).
J. Witzens, T. Baehr-Jones, and M. Hochberg, "Design of transmission line is driven slot waveguide Mach-Zehnder interferometers and application to analog optical links," Opt. Express 18(16), 16902-16928 (2010).
Z.-Y. Ciou, K.-F. Chung, S.-C. Kao, C.-H. Cheng, D.-W. Huang and G.-R. Lin, "Beyond 60-Gbit/s Modulation of Impedance Mismatched Silicon MZI Modulator," in IEEE 17th International Conference on Group IV Photonics (GFP) (2021).
Xu, Hao, X.-Y. Li, Xi Xiao, Zhi-Yong Li, Yu-De Yu, and Jin-Zhong Yu. "High-speed and broad optical bandwidth silicon modulator," Chin. Phys. B 22(11), 114212 (2013).
H.-W. Chen, J. D. Peters, and J. E. Bowers, "Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp," Opt. Express 19, 1455-1460 (2011).
L. Chen, P. Dong, and Y. Chen, "Chirp and Dispersion Tolerance of a Single-Drive Push–Pull Silicon Modulator at 28 Gb/s," IEEE Photonics Technol. Lett. 24(11), 936-938 (2012).
Y. Kotaki and H. Soda, "Time-resolved chirp measurement of modulator-integrated DFB LD by using a fiber interferometer," in Optical Fiber Communications Conference, (Optica Publishing Group, 1995), p. FC4.
B. K. Saravanan, "Frequency chirping properties of electroabsorption modulators integrated with laser diodes," PhD diss., Universität Ulm (2006).
B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S. K. Selvaraja, S. Massar, R. M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M. J. Green, and G. Roelkens, "Nonlinear optical interactions in silicon waveguides," Nanophotonics 6(2), 377-392 (2017).
K. Goi, H. Kusaka, A. Oka, Y. Terada, K. Ogawa, T. Liow, X. Tu, G. Lo, and D. Kwong, "20-Gb/s DPSK Transmission with 550-ps/nm Dispersion Tolerance using Silicon Mach-Zehnder Modulator," in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (Optica Publishing Group, 2013), p. OW4J. 5.
B. Wohlfeil, N. Eiselt, P. Rito, A. Dochhan, G. R. Mehrpoor, D. Rafique, D. Petousi, I. Lopez, S. Lischke, Di. Kissinger, L. Zimmermann, M. Eiselt, H. Griesser, J. Elbers, "First Demonstration of Fully Integrated Segmented Driver and MZM in 0.25−μm SiGe BiCMOS employing 112 Gb/s PAM4 over 60 km SSMF," in European Conference on Optical Communication (ECOC, 2018), p. 1-3
P. Maine, D. Strickland, P. Bado, M. Pessot and G. Mourou, "Generation of ultrahigh peak power pulses by chirped pulse amplification," IEEE Journal of Quantum Electronics 24(2), 398-403 (1988).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92410-
dc.description.abstract對於未來的數據中心內通信,矽光子和線性調頻和色散補償技術在光通信中將發揮重要作用。馬赫曾德調製器(MZM)是其中關鍵的電光調製器,而光纖補償色散技術較少在O-波段中被討論,我們利用MZM中的線性調頻特性和光纖的色散,此補償技術可以被用在未來的光纖傳輸應用中。
第二章從理論上分析了矽p-n接面的等離子色散效應、等離子吸收效應、變容特性以及信號啁啾公式,將矽馬赫-曾德調製器(MZM) 上的操作電壓歸納於啁啾信號公式。在調製 MZM 以測量線性調頻 α 參數之前,量測此MZM 的基本特性以便於優化傳輸,包括 35.8 GHz 的 3 dB 元件頻率響應、電/光折射率約為 6.4 和 4.5、傳輸功率與偏置電壓曲線(P-V 曲線),以及由於施加射頻信號而導致的P-V 曲線偏移。54 Gbit/s NRZ-OOK信號可以在telecom 錯碼率(BER)標準(< 10^-9)下進行調製,顯示出此元件在400GBASE IEEE標準下的傳輸能力。結合上面的方程,並在 MZM 上調製 100 ps 脈寬信號,然後通過傳統的線性調頻頻率分析儀測量線性調頻 α 參數。實驗獲得的chirp α參數的平均值為-0.24/-1.21(上升/下降時間)且和時間相關,這顯示chirp參數 C具有更高的時間階項。
第三章對矽p-n接面波導MZM中的線性調頻和色散補償進行了模擬和實驗。在模擬中,同時參考了第 2 章中的脈衝展寬方程和線性調頻 α 參數。模擬脈衝補償比表明,脈衝寬度越小和線性調頻參數的絕對值越大,會使補償效果越明顯。且模擬同時也顯示單模光纖 (SMF) 中 不同波長1270 nm 和 1350 nm 的正色散符號和負色散符號導致信號脈衝寬度壓縮和展寬。模擬中也考慮了矽波導色散,但2μm的色散相互作用長度相對短於單模光纖距離的公里量級,且模擬顯示矽波導提供補償的僅造成公分級的單模光纖長度差異。為了增強補償效果,通過更換最先進的任意波形發生器(AWG)且使用預補償(pre-emphasis)技術,對 MZM 上施加的電驅動信號進行了優化,將上升/下降時間縮短至 7.75/4.61 ps。由於O波段波長附近的色散值較小,加上10 ps短脈寬的簡單one-bit信號,在波長為1270 nm的1/2/4/10 km的光纖長度時,量測到下降時間以0.91/0.83/0.8/0.74的比例壓縮;而在波長為1350 nm處的1/2/4/10 km光纖長度時,下降時間以1.07/1.14/1.3/1.48擴張。根據下降時間變化計算出的信號訊雜比 (SNR)加上光纖本身的損耗,模擬出在 1270 nm波長1/2/10 km單模光纖長度,和SNR相對於背對背傳輸變化了0.068/ +0.163/ -1.834 dB。而在傳輸數據中心內光纖距離內的50 Gbaud16-QAM-DMT信號,1/2 km單模光纖傳輸長度信噪比性能比背靠背傳輸好0.05/0.13 dB。 證明了數據中心內部通信中矽 MZM 和 單模光纖上的線性調頻和色散補償的信號改善。
zh_TW
dc.description.abstractFor future intra-data center communication, the silicon photonics and chirp and dispersion compensation technique take important role in optical communications. Mach-Zender modulator (MZM) are the key device for electro-optic modulator. Chirp and dispersion compensation is seldomly discussed in O-band, but with chirp characteristic from MZM and dispersion from fiber, the compensation could be use on future optical fiber transmission application.
In chapter 2, by theoretically analyzing the plasma dispersion effect, plasma absorption effect, varicap characteristic in the silicon p-n junction depletion region, and the signal chirp equation, the chirp in silicon Mach-Zehnder modulator (MZM) could be summarized into equations with operating voltage on MZM. Before modulating the MZM for measuring the chirp α-parameter, the basic characteristic of this MZM, such as 35.8 GHz of 3-dB bandwidth, electrical/optical refractive index around 6.4 and 4.5, transmission power to bias voltage curve (P-V curve), and the P-V curve shift due to applied RF signal. The 54 Gbit/s NRZ-OOK signal could be modulated under telecom BER performance (< 10^-9), showed the ability of transmission under IEEE standard of 400GBASE. And the chirp α-parameter was then measured by the conventional chirp frequency analyzer, combing the equation above, and modulating a 100 ps pulsewidth signal on MZM. The chirp α-parameter experimentally obtained with the average value of -0.24/-1.21 (rise/fall time) and time-dependent characteristics, which led to higher time order in chirp C.
In chapter 3, the chirp and dispersion compensation was simulated and experimentally achieved in silicon p-n junction waveguide MZM. In the simulation, the pulse broadening equation and the chirp α-parameter from chapter 2 also took into consideration. The simulated pulse compensation ratio showed the smaller pulsewidth and bigger the absolute value of chirp parameter led to much obvious compensation effect. And positive and negative dispersion sign in 1270 nm and 1350 nm wavelength in single mode fiber (SMF) led to compression and broadening in signal pulsewidth. The silicon waveguide dispersion also considered in simulation, but the dispersion interaction length of 2 m was relatively shorter than km scale of SMF distance. The simulation showed the attribution the silicon waveguide provided only made cm scale of SMF difference. In order to enhance the compensation effect, the electrical driving signal applied on MZM was optimized to shorter rise/fall time to 7.75/4.61 ps by changing to state-of-art arbitrary waveform generator (AWG) and using pre-emphasis technique. With the small dispersion value around O-band wavelength and simple one-bit signal of 10 ps short pulsewidth, the fall time compressed with the ratio of 0.91/0.83/0.8/0.74 for 1/2/4/10 km of SMF in 1270 nm, while the broadened ratio of 1.07/1.14/1.3/1.48 for 1/2/4/10 km of SMF in 1350 nm. The SNR improvement calculated from transition time was 0.068/0.163/-1.83 dB in 1270 nm (1/2/10 km). The intra-data center fiber distance 50 Gbaud16-QAM-DMT signal was transmitted, and the SNR performance was 0.05/0.13 dB better than back-to-back transmission. Proved the signal improvement of chirp and dispersion compensation on silicon MZM and SMF in intra-data center communication.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:22:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-22T16:22:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT vi
CONTENTS viii
LIST OF FIGURES x
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Historical review of chirp and dispersion on Si MZM 1
1.1.1 Silicon modulator development in optical communication 1
1.1.2 Chirp characteristic in silicon modulator with free carrier absorption/dispersion 4
1.1.3 Chirp and dispersion compensation in optical fiber transmission 7
1.2 Motivation 9
1.3 Thesis architecture 10
Chapter 2 Chirp Management with Free Carrier Dispersion/Absorption Effect in Si Waveguide Mach-Zehnder Modulator 13
2.1 Chirp in Silicon Modulator with Free Carrier Dispersion/Absorption 13
2.1.1 Principle and Analysis 13
2.1.2 Device design and fabrication 22
2.2 Experimental setup of Testing Platform for the Chirp parameter measurement by the Si waveguide MZM 24
2.3 Result and Discussion 26
2.4 Summary 41
Chapter 3 Chirp/Dispersion Management of Si Waveguide Mach-Zehnder Modulator for O-Band Data-Center Link 42
3.1 Optimizing MZM signal output for chirp and dispersion compensation transmission 43
3.1.1 Experimental setup 43
3.1.2 Optimizing the driving signal 46
3.2 Result and Discussion 54
3.2.1 One-bit signal under chirp and dispersion compensation 54
3.2.2 DMT signal with chirp and dispersion compensation 62
3.2.3 Comparison 68
3.3 Summary 72
Chapter 4 Conclusion 74
REFERENCE 79
作者簡介 86
期刊論文與研討會論文投稿及發表紀錄 87
-
dc.language.isoen-
dc.subjectO 波段zh_TW
dc.subject矽光子zh_TW
dc.subject自由載子色散吸收效應zh_TW
dc.subject馬赫曾德爾調製器 (MZM)zh_TW
dc.subject線性調頻和色散補償zh_TW
dc.subject光纖色散zh_TW
dc.subjectQAM-DMTzh_TW
dc.subjectQAM-DMTen
dc.subjectOptical fiber dispersionen
dc.subjectO-banden
dc.subjectSilicon photonicsen
dc.subjectFree carrier dispersion/absorptionen
dc.subjectMach-Zehnder modulator (MZM)en
dc.subjectChirp and dispersion compensationen
dc.title可補償O-波段數據傳輸光纖色散的自由載子相關啁啾矽波導馬赫任德調製器zh_TW
dc.titleSingle-Mode Fiber Dispersion Management with Free-Carrier-Dependent Chirp of Silicon Mach-Zehnder Modulator for O-Band Data Transmissionen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳育任;黃勝廣zh_TW
dc.contributor.oralexamcommitteeYuh-Renn Wu;Sheng-Kwang Hwangen
dc.subject.keywordO 波段,矽光子,自由載子色散吸收效應,馬赫曾德爾調製器 (MZM),線性調頻和色散補償,光纖色散,QAM-DMT,zh_TW
dc.subject.keywordO-band,Silicon photonics,Free carrier dispersion/absorption,Mach-Zehnder modulator (MZM),Chirp and dispersion compensation,Optical fiber dispersion,QAM-DMT,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202304491-
dc.rights.note未授權-
dc.date.accepted2023-12-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
3.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved