請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92404
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳尚澤 | zh_TW |
dc.contributor.advisor | Shang-Tse Chen | en |
dc.contributor.author | 王俊傑 | zh_TW |
dc.contributor.author | Jun-Jie Wang | en |
dc.date.accessioned | 2024-03-22T16:20:58Z | - |
dc.date.available | 2024-03-23 | - |
dc.date.copyright | 2024-03-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-12-13 | - |
dc.identifier.citation | Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J.-P. Vert, and F. Bach. Learning with differentiable pertubed optimizers. Advances in neural information processing systems, 33:9508–9519, 2020.
S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq. Algorithmic decision making and the cost of fairness. In Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and data mining, pages 797–806, 2017. P. G. Di Stefano, J. M. Hickey, and V. Vasileiou. Counterfactual fairness: removing direct effects through regularization. arXiv preprint arXiv:2002.10774, 2020. C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pages 214–226, 2012. X. Gao, J. Zhai, S. Ma, C. Shen, Y. Chen, and Q. Wang. Fairneuron: improving deep neural network fairness with adversary games on selective neurons. In Proceedings of the 44th International Conference on Software Engineering, pages 921–933, 2022. A. Gronowski, W. Paul, F. Alajaji, B. Gharesifard, and P. Burlina. Achieving utility, fairness, and compactness via tunable information bottleneck measures. arXiv preprint arXiv:2206.10043, 2022. A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja. Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues. Array, 10:100057, 2021. M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. Advances in neural information processing systems, 29, 2016. V. Iosifidis, B. Fetahu, and E. Ntoutsi. Fae: A fairness-aware ensemble framework. In 2019 IEEE International Conference on Big Data (Big Data), pages 1375–1380. IEEE, 2019. F. Kamiran and T. Calders. Data preprocessing techniques for classification without discrimination. Knowledge and information systems, 33(1):1–33, 2012. D. Khurana, A. Koli, K. Khatter, and S. Singh. Natural language processing: State of the art, current trends and challenges. Multimedia tools and applications, 82(3):3713–3744, 2023. D. E. King. Dlib-ml: A machine learning toolkit. The Journal of Machine Learning Research, 10:1755–1758, 2009. J. Kleinberg, S. Mullainathan, and M. Raghavan. Inherent trade-offs in the fair determination of risk scores. arXiv preprint arXiv:1609.05807, 2016. K. Kärkkäinen and J. Joo. Fairface: Face attribute dataset for balanced race, gender, and age for bias measurement and mitigation. In 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1547–1557, 2021. Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015. P. K. Lohia, K. N. Ramamurthy, M. Bhide, D. Saha, K. R. Varshney, and R. Puri. Bias mitigation post-processing for individual and group fairness. In Icassp 2019-2019 ieee international conference on acoustics, speech and signal processing (icassp), pages 2847–2851. IEEE, 2019. S. Lohr. Facial recognition is accurate, if you’re a white guy. In Ethics of Data and Analytics, pages 143–147. Auerbach Publications, 2022. B. T. Luong, S. Ruggieri, and F. Turini. k-nn as an implementation of situation testing for discrimination discovery and prevention. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 502–510, 2011. S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1765–1773, 2017. S. Park, J. Lee, P. Lee, S. Hwang, D. Kim, and H. Byun. Fair contrastive learning for facial attribute classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10389–10398, 2022. D. Pessach and E. Shmueli. A review on fairness in machine learning. ACM Comput. Surv., 55(3), feb 2022. G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger. On fairness and calibration. Advances in neural information processing systems, 30, 2017. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, pages 618–626, 2017. M. Shehab, L. Abualigah, Q. Shambour, M. A. Abu-Hashem, M. K. Y. Shambour, A. I. Alsalibi, and A. H. Gandomi. Machine learning in medical applications: A review of state-of-the-art methods. Computers in Biology and Medicine, 145:105458, 2022. M. A. Sheikh, A. K. Goel, and T. Kumar. An approach for prediction of loan approval using machine learning algorithm. In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), pages 490–494, 2020. S. Shekhar, G. Fields, M. Ghavamzadeh, and T. Javidi. Adaptive sampling for minimax fair classification. Advances in Neural Information Processing Systems, 34:24535–24544, 2021. P. Tschandl, C. Rosendahl, and H. Kittler. The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data, 5(1):1–9, 2018. Z. Wang, X. Dong, H. Xue, Z. Zhang, W. Chiu, T. Wei, and K. Ren. Fairness-aware adversarial perturbation towards bias mitigation for deployed deep models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10379–10388, 2022. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92404 | - |
dc.description.abstract | 隨著深度學習為基礎的演算法被導入各式各樣不同的應用領域,確保它們的預測公平性以符合社會正義將會變得越來越重要。為了提升模型的公平性,我們將公平性標準與通用對抗攻擊相結合來解決這一問題。我們的目標是給定一個訓練好的模型,在不改變模型的權重與架構下,以資料前處理的方式提升模型的公平性。具體地來說我們的前處理是使用通用對抗攻擊來產生單一擾動,並將其與所有輸入圖片相結合,來提升資料集上的不同群體之間的預測公平性。我們設計了三種架構來產生擾動:以可微分方式近似公平性標準並進行優化、以動態方式掩蔽原始訓練函數的特定族群、以及導入擾動優化器解決公平性標準中的不連續性等。此外,我們也將此基於對抗攻擊的前處理方法擴展到其他種形式上,比如將人臉加上特別產生的眼鏡,或將照片套入特別產生的相框。如此能將此模型公平性技術的使用場景從數位領域擴展到現實的物理世界。透過在CelebA和FairFace數據集上的大量實驗結果,我們驗證了我們方法的有效性,並且證明該方法有潛力在現實世界中部屬以保障深度學習應用的公平性。 | zh_TW |
dc.description.abstract | As deep learning based algorithms penetrates into various fields, there is a growing imperative to ensure their fairness and ethical accountability. In this paper, we address model fairness by integrating fairness criteria with the universal adversarial attack technique. Our objective is to enhance the fairness of a pretrained model without modifying its weights or structure, by utilizing data pre-processing techniques. Specifically, our pre-processing uses universal adversarial attack to generate a single perturbation, which is then combined with all the input images. We propose three objectives: approximating the fairness criteria for optimization, dynamically masking the original training loss for specific groups, and employing a perturbed optimizer to address the discontinuity in fairness criteria, thereby optimizing fairness more effectively. Furthermore, we extend our attack into various forms, including adding specially crafted eyeglasses to faces or encasing images within uniquely designed photo frames. Such extensions allow the fairness-improving technique to migrate from the digital domain into the real, physical world. To demonstrate the effectiveness of our method, we conduct extensive experiments on the CelebA and FairFace datasets. The results show our method’s potential for real-world deployment to ensure fairness in deep learning. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:20:58Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-22T16:20:58Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Figures viii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Preliminaries 6 2.1 Fairness 6 2.2 Notation 7 2.3 Universal adversarial attack 7 Chapter 3 Methodology 9 3.1 Direct fairness attack 9 3.2 Classification loss masking attack 11 3.3 Perturbed optimizer fairness attack 12 3.4 Maintaining model usefulness 15 Chapter 4 Experiments 17 4.1 Experimental results 18 4.2 Multi-class prediction model 19 4.3 Attacks on other forms 22 4.4 Qualitative evaluation 25 Chapter 5 Conclusion 28 References 29 Appendix A — Supplementary performance metrics 33 | - |
dc.language.iso | en | - |
dc.title | 透過通用對抗攻擊提升影像分類模型之公平性 | zh_TW |
dc.title | Improving fairness on image classification via universal adversarial attack | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 鄭文皇;陳駿丞 | zh_TW |
dc.contributor.oralexamcommittee | Wen-Huang Cheng;Jun-Cheng Chen | en |
dc.subject.keyword | 通用對抗攻擊,公平性,前處理,擾動優化器,機器學習,分類問題, | zh_TW |
dc.subject.keyword | universal adversarial attack,fairness,pre-processing,perturbed optimizer,machine learning,classification, | en |
dc.relation.page | 35 | - |
dc.identifier.doi | 10.6342/NTU202304513 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-12-14 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | - |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 6.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。