請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92397完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李翔傑 | zh_TW |
| dc.contributor.advisor | Hsiang-Chieh Lee | en |
| dc.contributor.author | 陳薪方 | zh_TW |
| dc.contributor.author | Hsin-Fang Chen | en |
| dc.date.accessioned | 2024-03-22T16:18:53Z | - |
| dc.date.available | 2024-03-23 | - |
| dc.date.copyright | 2024-03-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-08 | - |
| dc.identifier.citation | Lu, C.D., et al. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt Express. 2013.5(1): p. 293-311.
Li, K., et al. Low-cost, ultracompact handheld optical coherence tomography probe for in vivo oral maxillofacial tissue imaging. J Biomed Opt. 2020.25(4): p. 1-13. Lee, M., et al. Confocal laser endomicroscope with distal MEMS scanner for real-time histopathology. Sci Rep. 2022.12(1): p. 20155. Boni, N., et al. Quasi-static PZT actuated MEMS mirror with 4x3mm2 reflective area and high robustness. In: MOEMS and Miniaturized Systems XX. SPIE, 2021. p. 42-52. Wang, W., et al. A bi-directional large-stroke electrothermal MEMS mirror with minimal thermal and temporal drift. In: 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2017. p. 331-334. Torres, D., et al. Modeling of MEMS Mirrors Actuated by Phase-Change Mechanism. Micromachines. 2017. 8(5): p. 138. Mitsui, T, et al. A 2-axis optical scanner driven nonresonantly by electromagnetic force for OCT imaging. Journal of Micromechanics and Microengineering 2006.16(11): p. 2482. Xiao, Z., et al. Pull-in study for round double-gimbaled electrostatic torsion actuators. Journal of micromechanics and microengineering. 2002.12(1): p. 77. Sadhukhan, D., et al. Design of electrostatic actuated MEMS biaxial scanning micro-mirror with serpentine structure. Materials Today: Proceedings 2022.65: p. 229-234. Jung, W., et al. Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror. Applied physics letters, 2006. 88(16). Hah, D., et al. A self-aligned vertical comb-drive actuator on an SOI wafer for a 2D scanning micromirror. journal of micromechanics and microengineering, 2004. 14(8): p. 1148. Pham, D., et al. Position sensing and electrostatic actuation circuits for 2-D scanning MEMS micromirror. In: 2011 Defense Science Research Conference and Expo (DSR). IEEE, 2011. p. 1-4. Hofmann, U., et al. High-Q MEMS resonators for laser beam scanning displays. Micromachines, 2012. 3(2): p. 509-528. Xu, B., et al. Piezoelectric MEMS Mirror with Lissajous Scanning for Automobile Adaptive Laser Headlights. Micromachines. 2022. 13(7): p. 996. Shi, X., et al. A Resonant Pressure Sensor Based upon Electrostatically Comb Driven and Piezoresistively Sensed Lateral Resonators. Micromachines (Basel). 2019.10(7): p. 460. Agudelo, C.G., et al. Nonlinear control of an electrostatic micromirror beyond pull-in with experimental validation. Journal of Microelectromechanical Systems, 2009. 18(4): p. 914-923. Wang, C., et al. Implementation of phase-locked loop control for MEMS scanning mirror using DSP. Sensors and Actuators A: Physical, 2007. 133(1): p. 243-249. Xia, C., et al. A position feedback solution based on the acoustic signal produced by electrostatically driven MEMS scanning mirror. In: 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2017. p. 558-561. Schroedter, R., et al. Capacitive charge-based self-sensing for resonant electrostatic MEMS mirrors. IFAC-PapersOnLine, 2020. 53(2): p. 8553-8558. Dai, C.L., et al. Design and fabrication of CMOS optical modulator. Sensors and Actuators A: Physical, 2001. 95(1): p. 69-74. Qiu, Z., et al. MEMS-based medical endomicroscopes. IEEE Journal of selected topics in quantum electronics, 2015. 21(4): p. 376-391. Xia, C., et al. A time division capacitive feedback method of electrostatic MEMS mirror driven by PWM signal. Sensors and Actuators A: Physical, 2021. 322: p. 112631. Sandner, T., et al. Microscanner with vertical out of plane combdrive. In: 16th International Conference on Optical MEMS and Nanophotonics. IEEE, 2011. p. 33-34. Ataman, C., et al. Modeling and characterization of comb-actuated resonant microscanners. Journal of Micromechanics and Microengineering, 2005. 16(1): p. 9. Amor, G., et al. Multiple MEMS mirrors synchronization techniques, modeling, and applications. In: MOEMS and Miniaturized Systems XX. SPIE, 2021. p. 76-88. Schroedter, R., et al. Silicone Oil Damping for Quasi-static Micro Scanners with Electrostatic Staggered Vertical Comb Drives. IFAC-PapersOnLine, 2019. 52(15): p. 37-42. Milanović, V., et al. Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications. In: Laser Radar Technology and Applications XXII. SPIE, 2017. p. 157-169. Borovic, B., et al. Open-loop versus closed-loop control of MEMS devices: choices and issues. Journal of Micromechanics and Microengineering, 2005. 15(10): p. 1917. Cagdaser, B., et al. Capacitive sense feedback control for MEMS beam steering mirrors. In: Proc. 2004 Solid-State Sensor and Actuator Workshop. 2004. p. 348-51. Schroedter, R., et al. Model-based motion tracking for quasistatic microscanners. Proc. of the Fachtagung Mechatronik 2013, 2013. p. 141-146. Ameur, H., et al. Suppressing residual vibrations in comb-drive electrostatic actuators: A command shaping technique adapted to nomadic applications. Sensors and Actuators A: Physical, 2022. 334: p. 113366. Schroedter, R., et al. Jerk and current limited flatness-based open loop control of foveation scanning electrostatic micromirrors. IFAC Proceedings Volumes, 2014, 47(3): p. 2685-2690. Liu, T., et al. Scanning optimization of an electrothermally-actuated MEMS mirror for applications in optical coherence tomography endoscopy. Sensors and Actuators A: Physical, 2022, 335: p. 113377. Schroedter, R., et al. Flatness-based open-loop and closed-loop control for electrostatic quasi-static microscanners using jerk-limited trajectory design. Mechatronics, 2018. 56: p. 318-331. Dhanabalan, G., et al. Scan Time Reduction of PLCs by Dedicated Parallel-Execution Multiple PID Controllers Using an FPGA. Sensors, 2022. 22(12): p. 4584. Schroedter, R., et al. Microcontroller based closed-loop control of a 2D quasi-static/resonant microscanner with on-chip piezo-resistive sensor feedback. In: MOEMS and Miniaturized Systems XVI. SPIE, 2017. p. 22-32. Brunner, D., et al. Self-sensing control of resonant MEMS scanner by comb-drive current feedback. Mechatronics, 2021. 78: p. 102631. Huang, D., et al. Optical coherence tomography. science, 1991. 254(5035): p. 1178-1181. Vujosevic, S., et al. Optical coherence tomography as retinal imaging biomarker of neuroinflammation/neurodegeneration in systemic disorders in adults and children. Eye, 2023. 37(2): p. 203-219. Ulrich, M., et al. Dynamic optical coherence tomography in dermatology. Dermatology, 2016. 232(3): p. 298-311. Schneider, H., et al. Dental applications of optical coherence tomography (OCT) in cariology. Applied Sciences, 2017. 7(5): p. 472. Izatt, J.A., et al. Theory of optical coherence tomography. In: Optical Coherence Tomography: Technology and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. p. 47-72. Drexler, W., et al. Optical coherence tomography today: speed, contrast, and multimodality. Journal of biomedical optics, 2017. 19(7): p. 071412-071412. Zavareh, A., et al. Systems and methods for the spectral calibration of swept source optical coherence tomography systems. Diss. Texas A&M University, 2019. Fercher, A.F., et al. Measurement of intraocular distances by backscattering spectral interferometry. Optics communications, 1995. 117.(1-2): p. 43-48. Makita, S., et al. Optical coherence angiography. Optics Express, 2006. 14(17): p. 7821-7840. Chiu, Y., et al. Micro knife-edge optical measurement device in a silicon-on-insulator substrate. Optics express, 2007. 15(10): p. 6367-6373. Wang, X., et al. Analysis of distortion based on 2d mems micromirror scanning projection system. Micromachines, 2021. 12(7): p. 818. Izawa, T., et al. Scanning micro-mirror with an electrostatic spring for compensation of hard-spring nonlinearity. Micromachines, 2017, 8.(8): p. 240. Jingang, L. I., et al. Study on sinusoidal estimation deviation of electrostatic actuated MEMS mirror torsion angle. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2023. 41(2): p. 338-343. Meleppat, R., et al. Optical frequency domain imaging with a rapidly swept laser in the 1300nm bio-imaging window. In: International Conference on Optical and Photonic Engineering (icOPEN 2015). SPIE, 2015. p. 721-729. Semma, A., et al. Feature learning and encoding for multi-script writer identification. International Journal on Document Analysis and Recognition (IJDAR), 2022. 25(2): p. 79-93. Volleberg, R., et al. Optical coherence tomography and coronary revascularization: from indication to procedural optimization. Trends in Cardiovascular Medicine, 2021. Kim, K., et al. Two-axis crosstalk analysis of gimbal-less MEMS scanners with consideration of rotational alignment. Measurement 171, 2021. p. 108785. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92397 | - |
| dc.description.abstract | 最近,隨著微型光學元件商業市場的擴大,以及在臨床應用中對於靈活性和手動操作的需求增加,手持式光學同調斷層掃描術(Opticalcoherencetomography,OCT)的開發正迅速進行。已經證實了基於多種掃描技術的手持式OCT,它們可以應用於各種廣泛的情境。低成本、便攜且易於使用的OCT系統對於在護理環境中廣泛應用至關重要,同時必須確保它們提供了足夠的成像性能,以滿足臨床檢測病灶的需求。對於即時診斷,OCT系統應該是可攜式且低成本的,同時仍保持高效能系統提供的必要靈敏度和對比。
雖然OCT系統在高解析度、非侵入性和高精確度等方面具有優勢,但它仍然受到體積、重量和成本等方面的限制,這些因素限制了可攜式且低成本的OCT系統之發展。因此,本文著重於傳統掃描設備中使用的較大的掃描振鏡(Galvanometerscanner)對於手持系統的限制,為了克服這些限制,我們決定採用微機電系統(Microelectromechanicalsystem,MEMS)掃描鏡作為系統的掃描元件。相較於傳統的掃描振鏡,MEMS掃描鏡更輕巧,能夠實現高精確度的掃描,同時佔用更少的空間。 本研究所使用的MEMS掃描鏡替代了傳統的掃描振鏡,有效縮小了手持設備的大小及複雜度。目前大多數所使用的MEMS掃描鏡為開迴路(Openloop)控制,在微型化的同時可能會犧牲掃描的準確性,為了優化MEMS掃描鏡的表現,我們結合了現場可程式化邏輯閘陣列(Fieldprogrammablegatearray,FPGA)以開迴路(Openloop)及閉迴路(Closeloop)的方式來驅動靜電MEMS掃描鏡,所架設系統的光源中心波長為1310nm,光源頻寬為100nm,掃描頻率為400kHz,最大掃描範圍為4.5mm×3.0mm,在空氣中的軸向解析度與橫向解析度分別為19.58μm和30.11μm。 本篇所使用的MEMS掃描鏡在驅動方面有開迴路及閉迴路的選擇,為了比較兩者之設計與成效,設計了一系列的驗證方法,以優化最終成像結果,包括不同入射角(22.5°、45°)的樣品端手持式緊湊性設計、利用位置感測器(Positionsensitivedetector,PSD)所接收的光點移動軌跡進行相似度及頻譜分析,以及相鄰B-scan的時間差來驗證重複掃描的穩定性,及利用哈里斯邊角偵測(HarrisCornerDetector)的方式直接從Gridtarget的OCT影像上量化失真(Distortion)程度。最後針對人類手指進行OCT血管攝影術(OCTangiography,OCTA)的成像掃描來作為開迴路及閉迴路影像穩定性的比較,可以藉此驗證是否有MEMS掃描鏡驅動控制本身的不自主運動引起的偽影,阻礙了組織微血管系統的可視化。 基於本論文所提供的測試方法,可以提供後續在MEMS掃描鏡的開迴路及閉迴路控制電路的設計上做有效的測試依據,當我們使用分析方法來評估開迴路及閉迴路驅動時,FPGA的可定制性使其成為解決閉迴路驅動問題的理想選擇。FPGA可以根據需要即時調整控制算法和參數,並且內部的DSP模塊可以有效地執行複雜的控制算法和實時數據處理,此外,極低的控制延遲以確保控制訊號能夠及時傳達到MEMS掃描鏡,使控制系統能夠快速且準確地做出反應。 | zh_TW |
| dc.description.abstract | Recently, with the expansion of the commercial market for micro-optical devices and the increasing demand for flexibility and manual operation in clinical applications, the development of handheld Optical Coherence Tomography (OCT) probes is rapidly progressing. Various scanning-based handheld OCT probes have been proven effective for a wide range of applications. Low-cost, portable, and user-friendly OCT systems are crucial for widespread use in healthcare environments, while ensuring that they provide sufficient imaging performance to meet the requirements of clinical lesion detection. For real-time diagnostics, OCT systems should be portable and cost-effective while maintaining the necessary sensitivity and contrast provided by high-performance systems.
In this work, a MEMS scanning mirror was used to replace traditional Galvanometer (Galvo), effectively reducing the size and complexity of handheld devices. It was combined with a Field-Programmable Gate Array (FPGA) for both open-loop and closed-loop control of the electrostatic MEMS scanning mirror. The system utilized a light source with a center wavelength of 1310nm, a bandwidth of 100nm, a scanning frequency of 400 kHz, and a maximum scanning range of 4.5 mm×3.0 mm. The axial and lateral resolutions in air were 19.58 μm and 30.11 μm , respectively. For MEMS drive control, there was a choice between open-loop and closed-loop control. To compare the design and performance of both approaches, a series of validation methods were designed to optimize the final imaging results. This included a compact handheld design with different incident angles (22.5° and 45°) at the sample end, similarity and spectrum analysis of the trajectory of the received light spots using a Position-Sensitive Detector (PSD), verification of the stability of repeated scans using the time difference between adjacent B-scans, and quantifying distortion directly from OCT images of a grid target using the Harris Corner Detector. Finally, OCTA imaging scans of the human finger were performed to compare the stability of open-loop and closed-loop images, aiming to verify whether any artifacts caused by involuntary motion of the MEMS scanning mirror control hindered the visualization of the microvascular system in tissues. Based on the testing methods provided in this thesis, effective testing criteria can be established for the design of open-loop and closed-loop control circuits for MEMS scanning mirrors. When evaluating open-loop and closed-loop drive control using analytical methods, the FPGA''s customizability makes it an ideal choice for addressing closed-loop drive control issues. The FPGA can adjust control algorithms and parameters in real-time as needed, and its internal DSP modules can effectively execute complex control algorithms and real-time data processing. Additionally, the extremely low control latency ensures that control signals are delivered to the MEMS scanning mirror in a timely manner, allowing the control system to respond quickly and accurately. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:18:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-22T16:18:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT v 目錄 vii 圖目錄 x 表目錄 xv Chapter 1 簡介 1 1.1 微機電系統(Microelectromechanical system, MEMS)掃描鏡在微型化手持 式OCT系統上之應用發展 1 1.2 微機電系統(Microelectromechanical system, MEMS)掃描鏡 4 1.3 MEMS 掃描鏡驅動方式 7 1.4 研究動機 9 1.5 論文範疇 10 Chapter 2 光學同調斷層掃描術理論 11 2.1 光學同調斷層掃描術簡介 11 2.2 光學同調斷層掃描術之基本原理 12 2.2.1低同調干涉術(Low coherence interferometry, LCI) 12 2.2.2時域光學同調斷層掃描術 (Time-domain OCT, TD-OCT) 16 2.2.3傅立葉域光學同調斷層掃描術(Fourier-domain OCT, FD-OCT) 17 2.3 光學同調斷層掃描術系統特性 21 2.3.1軸向解析度(Axial resolution) 21 2.3.2橫向解析度(Lateral resolution) 21 2.3.3景深(Depth of field, DOF) 22 2.3.4成像範圍(Field of view, FOV) 23 2.3.5靈敏度滾降(Sensitivity roll off) 24 2.4 光學同調斷層掃描血管攝影術(Optical Coherence Tomography Angiography, OCTA) 25 Chapter 3 實驗架構及方法 27 3.1 光學同調斷層掃描系統特性 27 3.2 掃頻式光學同調斷層掃描術系統介紹 31 3.3 樣品端光學系統設計 33 3.3.1 MEMS掃描鏡入射角設計 33 3.3.2樣品端手持式模型設計 39 3.3.3 MEMS掃描鏡驅動設備 41 3.4 OCT系統訊號同步設計 44 Chapter 4 實驗結果 46 4.1開迴路驅動與閉迴路驅動MEMS掃描鏡 46 4.1.1 MEMS掃描鏡運動軌跡分析 46 4.1.2頻譜(Spectrogram)分析 49 4.1.3畸變(Distorion)分析 53 4.1.4相鄰B-scan時間差分析 56 4.1.5二維掃描影像結果 59 4.1.6 OCTA影像結果對不同驅動模式之比較 60 Chapter 5 結論與未來展望 63 5.1 結論 63 5.2 未來展望 64 參考文獻 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 光學同調斷層掃描術 | zh_TW |
| dc.subject | 閉迴路控制 | zh_TW |
| dc.subject | 開迴路控制 | zh_TW |
| dc.subject | 微機電掃描技術 | zh_TW |
| dc.subject | 手持式 OCT 系統 | zh_TW |
| dc.subject | handheld OCT system | en |
| dc.subject | open-loop control | en |
| dc.subject | Optical Coherence Tomography (OCT) | en |
| dc.subject | closed-loop control | en |
| dc.subject | Microelectromechanical system (MEMS) scanning technology | en |
| dc.title | 利用二維 MEMS 掃描振鏡於手持式光學同調斷層掃 描成像系統開發之可行性研究 | zh_TW |
| dc.title | Feasibility Study on the Development of Handheld Optical Coherence Tomography Imaging System Using Two-Dimensional MEMS Scanning Mirror | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡睿哲;孫家偉 | zh_TW |
| dc.contributor.oralexamcommittee | Jui-che Tsai;Chia-Wei Sun | en |
| dc.subject.keyword | 光學同調斷層掃描術,手持式 OCT 系統,微機電掃描技術,開迴路控制,閉迴路控制, | zh_TW |
| dc.subject.keyword | Optical Coherence Tomography (OCT),handheld OCT system,Microelectromechanical system (MEMS) scanning technology,open-loop control,closed-loop control, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202400018 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-01-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2029-01-04 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 6.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
