請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92384
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳琪芳 | zh_TW |
dc.contributor.advisor | Chi-Fang Chen | en |
dc.contributor.author | 戴健翔 | zh_TW |
dc.contributor.author | Chien-Hsiang Tai | en |
dc.date.accessioned | 2024-03-22T16:15:12Z | - |
dc.date.available | 2024-03-23 | - |
dc.date.copyright | 2024-03-22 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-17 | - |
dc.identifier.citation | 4C Offshore, “Global Offshore Wind Speeds Rankings,” [Online]. Available: https://www.4coffshore.com/windfarms/windspeeds.aspx (accessed September 2023).
經濟部能源局,〝離岸風力發電規劃場址申請作業要點〞,能技字第10404015571號,2015。 經濟部,〝離岸風力發電區塊開發場址規劃申請作業要點〞,經能字第11004602920號,2021。 海洋委員會,〝中華白海豚野生動物重要棲息環境之類別及範圍〞,海保字第10900069941號,2020。 S. Rodrigues, C. Restrepo, E. Kontos, R.T. Pinto, and P. Bauer, “Trends of offshore wind projects,” Renewable and Sustainable Energy Reviews, 49, 1114–1135, 2015. doi: 10.1016/j.rser.2015.04.092. L. Ramírez, D. Fraile, and G. Brindley, “Offshore Wind in Europe - Key Trends and Statistics 2020,” WindEurope Technical Report, Brussels, Belgium, 2021. Wind Energy - The Facts, “Offshore Support Structures,” [Online]. Available: http://www.wind-energy-the-facts.org/offshore-support-structures.html (accessed September 2023). J. Tougaard, L. Hermannsen, and P. T. Madsen, “How Loud Is The Underwater Noise From Operating Offshore Wind Turbines?,” The Journal of The Acoustical Society of America, 148, 2885-2893, 2020. doi: 10.1121/10.0002453. Z. Jiang, “Installation of Offshore Wind Turbines: A Technical Review,” Renewable and Sustainable Energy Reviews, 139, 110576, 2021. doi: 10.1016/j.rser.2020.110576. Z. Xu, J. Wei, S. Zhang, Z. Liu, X. Chen, Q. Yan, and J. Guo, “A State-of-the-art review of the vibration and noise of wind turbine drivetrains,” Sustainable Energy Technologies and Assessments, 48, 101629, 2021. doi: 10.1016/j.seta.2021.101629. N.D. Merchant, “Underwater noise abatement: Economic factors and policy options,” Environmental Science & Policy, 92, 116-123, 2019. doi: 10.1016/j.envsci.2018.11.014. A. Tsouvalas, and A.V. Metrikine, “Structure-Borne Wave Radiation by Impact and Vibratory Piling in Offshore Installations: From Sound Prediction to Auditory Damage,” Journal of Marine Science and Engineering, 4, 44, 2016. doi: 10.3390/jmse4030044. A. Tsouvalas, “Underwater Noise Emission Due to Offshore Pile Installation: A Review,” Energies, 13, 3037, 2020. doi: 10.3390/en13123037. C. Erbe, “Underwater passive acoustic monitoring & noise impacts on marine fauna - A workshop report,” Acoustics Australia, 41, 113–119, 2013. JNCC, “The protection of marine European Protected Species from injury and disturbance: Guidance for the marine area in England and Wales and the UK offshore marine area,” [Online]. Available: https://jncc.gov.uk/our-work/marine-mammals-and-offshore-industries/, 2010 (accessed December 2023). Department of Heritage, Arts and the Gaeltacht (DAHG), “Guidance to Manage the Risk to Marine Mammals from Man-made Sound Sources in Irish Waters,” [Online]. Available: https://www.npws.ie/sites/default/files/general/Underwater%20sound%20guidance_Jan%202014.pdf, 2014 (accessed December 2023). NOAA Technical Memorandum NMFS-OPR-59, “Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing - Underwater Thresholds for Onset of Permanent and Temporary Threshold Shifts,” [Online]. Available: https://www.sprep.org/attachments/VirLib/Global/technical-guidance-assessing-effects-anthropogenic-sound-marine-mammal-hearing-noaa.pdf, 2016 (accessed December 2023). A. A. Rodger, and G. S. Littlejohn, “A study of vibratory driving in granular soils,” Géotechnique, 30, 269–293, 1980. doi: 10.1680/geot.1980.30.3.269. M. Achmus, K.A. Schmoor, V. Herwig, and B. Matlock, “Lateral bearing behaviour of vibro- and impact-driven large-diameter piles in dense sand,” Geotechnik, 43, 147–159, 2020. doi: 10.1002/gete.202000006. S.S. Gómez, and A.V. Metrikine, “Shaker for gentle driving of piles,” [Online]. Available: https://patentscope.wipo.int/search/en/search.jsf (accessed November 2023). S.S. Gómez, A. Tsetas, and A.V. Metrikine, “Energy flux analysis for quantification of vibratory pile driving efficiency,” Journal of Sound and Vibration, 541, 117299, 2022. doi: 10.1016/j.jsv.2022.117299. 王煒傑、吳誌豪、陳琪芳、陳乃菖、李宏道、黃維信,〝離岸風機打樁噪音量測及實海域氣球幕減噪測試〞,第38屆海洋工程研討會暨科技部計畫成果發表會,2016。 王煒傑,〝離岸風機打樁噪音量測及減噪機制研究〞,國立臺灣大學工程科學及海洋工程學研究所學位論文,2018。 劉岱樺,〝離岸風機打樁與營運之水下噪音模擬及量測分析〞,國立臺灣大學工程科學及海洋工程學研究所學位論文,2018。 P. H. Dahl, D. R. Dall’Osto, and D. M. Farrell, “The underwater sound field from vibratory pile driving,” The Journal of the Acoustical Society of America, 137, 3544–3554, 2015. doi: 10.1121/1.4921288. S. Lippert, M. Nijhof, T. Lippert, D. Wilkes, A. Gavrilov, K. Heitmann, M. Ruhnau, O. von Estorff, A. Schäfke, I. Schäfer, and et al., “COMPILE – A Generic Benchmark Case for Predictions of Marine Pile-Driving Noise,” IEEE Journal of Oceanic Engineering, 41, 1061–1071, 2016. doi: 10.1109/JOE.2016.2524738. PACSYS, “FEA/BEM Solutions,” [Online]. Available: http://www.pafec.info/pafec (accessed September 2023). ABAQUS, “FEA for Mechanical Engineering and Civil Engineering,” [Online]. Available: https://www.3ds.com/products-services/simulia/products/abaqus (accessed September 2023). COMSOL, “COMSOL Multiphysics Software Version 5.5,” [Online]. Available: https://www.comsol.com (accessed September 2023). A.O. MacGillivray, “Finite difference computational modeling of marine impact pile driving,” The Journal of the Acoustical Society of America, 136, 2206, 2015. doi: 10.1121/1.4900002. A. Tsouvalas, Y. Peng, and A. Metrikine, “Underwater Noise Generated By Offshore Pile Driving: A Pile-Soil-Water Vibroacoustic Model Based On A Mode Matching Method,” in: Proceedings of the 5th Underwater Acoustics Conference and exhibition 2019 (UACE2019), Hersonissos, Crete, Greece, 2019, pp. 667-674. A.J. Deeks, and M. F. Randolph, “Analytical modelling of hammer impact for pile driving,” International Journal for Numerical and Analytical Methods in Geomechanics, 17, 279-302, 1993. doi: 10.1002/nag.1610170502. M.B. Fricke, and R. Rolfes, “Towards a complete physically based forecast model for underwater noise related to impact pile driving,” The Journal of the Acoustical Society of America, 137, 1564-1575, 2015. doi: 10.1121/1.4908241. S. Lippert, O. von Estorff, M. J. J. Nijhof, and T. Lippert, “COMPILE II - A benchmark of pile driving noise models against offshore measurements,” in: Proceedings of the INTER-NOISE 2018 - 47th International Congress and Exposition on Noise Control Engineering: Impact of Noise Control Engineering, Chicago, IL, USA, 2018. 宋秉融,〝打樁噪音模擬分析〞,國立臺灣大學工程科學及海洋工程學研究所學位論文,2018。 Y. Y. Fang, P. J. Sung, W. C. Hu, and C. F. Chen, “Underwater Noise Simulation of Impact Pile Driving For Offshore Wind Farm In Taiwan,” Journal of Theoretical and Computational Acoustics, 28, 1950009, 2020. doi: 10.1142/S2591728519500099. 黃晉德,〝離岸風電打樁水下噪音模擬與統計分析〞,國立臺灣大學工程科學及海洋工程學研究所學位論文,2022。 A. Tsetas, A. Tsouvalas, S.S. Gómez, F. Pisanò, E. Kementzetzidis, T. Molenkamp, A.S.K. Elkadi, and A. V. Metrikine, “Gentle Driving of Piles (GDP) at a sandy site combining axial and torsional vibrations: Part I - installation tests,” Ocean Engineering, 270, 113453, 2023. doi: 10.1016/j.oceaneng.2022.113453. E. Kementzetzidis, F. Pisanò, A.S.K. Elkadi, A. Tsouvalas, and A. V. Metrikine, “Gentle Driving of Piles (GDP) at a sandy site combining axial and torsional vibrations: Part II - cyclic/dynamic lateral loading tests,” Ocean Engineering, 270, 113452, 2023. doi: 10.1016/j.oceaneng.2022.113452. A. Tsetas, A. Tsouvalas, and A.V. Metrikine, “A non-linear three-dimensional pile-soil model for vibratory pile installation in layered media,” International Journal of Solids and Structures, 269, 112202, 2023. doi: 10.1016/j.ijsolstr.2023.112202. T. Molenkamp, A. Tsouvalas, and A.V. Metrikine, “The influence of contact relaxation on underwater noise emission and seabed vibrations due to offshore vibratory pile installation,” Frontiers in Marine Science, 10, 1118286, 2023. doi: 10.3389/fmars.2023.1118286. S. G. Johnson, “Notes on Perfectly Matched Layers (PMLs),” arXiv, https://doi.org/10.48550/arXiv.2108.05348, 2021 (accessed September 2023). A.E. Holeyman, “Soil behavior under vibratory driving,” in: Proceedings of the International Conference on Vibratory Pile Driving and Deep Soil Compaction - Transvib 2002, Louvain-La Neuve, Belgium, 2002, pp. 3–19. K. Viking, “Vibro-Driveability - A Field Study of Vibratory Driven Sheet Piles in Non-Cohesive Soils,” Ph.D. Thesis, Department of Civil and Architectural Engineering Royal Institute of Technology (KTH), 2002. H.T. Hill, “Frictional resistance in vibratory pile driving,” Ph.D. Thesis, Princeton University, 1966. O.A. Savionov, and A.Y. Luskin, “Vibration pile driving and its application in construction practice,” Moscow, 1960. S. P. Robinson, P. A. Lepper, and R. A. Hazelwood, “Good Practice Guide for Underwater Noise Measurement,” National Measurement Office, Marine Scotland, The Crown Estate Teddington, England, ISSN 1368 - 6550, 2014. Dieseko Group B.V., “Low underwater sound levels with PVE 500M,” [Online]. Available: https://www.diesekogroup.com/low-underwater-sound-levels-with-pve-500m (accessed September 2023). Deep BV Hydrography & Geophysics, and WaterProof Marine Consultancy & Services B.V., “Underwater sound measurements Windpark Lely - Analyses report,” Deep BV Hydrography & Geophysics, 2016. Dominion Energy, and Tetra Tech, “Dominion Energy Coastal Virginia Offshore Wind Commercial Project,” Dominion Energy, 2022. CAPE Holland, “Monopile Installation,” [Online]. Available: https://capeholland.com/applications/monopile-installation (accessed September 2023). B. Nielsen, “Feasibility Study of the Complete Removal of Monopiles Using Vibratory Pile Removal,” Master''s Thesis, Department of Marine Technology, Norwegian University of Science and Technology, 2022. M. D. Collins, “Applications and time‐domain solution of higher‐order parabolic equations in underwater acoustics,” The Journal of the Acoustical Society of America, 86, 1097–1102, 1989. doi: 10.1121/1.398101. M. D. Collins, “User’s Guide For RAM Versions 1.0 And 1.0 P,” Naval Research Lab, Washington, 1995. Z. Wang, Y. Wu, G. Duan, H. Cao, J. Liu, K. Wang, and D. Wang, “Assessing the underwater acoustics of the World’s largest vibration hammer (OCTA-KONG) and its potential effects on the Indo-Pacific humpbacked Dolphin (Sousa chinensis),” PLoS One, 9, 110590, 2014. doi: 10.1371/journal.pone.0110590. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, “Computational Ocean Acoustics,” 2nd edition, Springer, New York, NY, USA, 2011. doi: 10.1007/978-1-4419-8678-8. M.A. Bellman, A. May, T. Wendt, S. Gerlach, P. Remmers, and J. Brinkmann, “Underwater noise during percussive pile driving: Influencing factors on pile-driving noise and technical possibilities to comply with noise mitigation values,” Report by Institute of Technical and Applied Physics (itap) GmbH, Germany, 2020. E.L. Hamilton, “Geoacoustic modeling of the sea floor,” The Journal of the Acoustical Society of America, 68, 1313-1340, 1980. doi: 10.1121/1.385100. E.L. Hamilton, “Compressional-Wave Attenuation in marine sediments,” Geophysics, 37, 620-646, 1972. doi: 10.1190/1.1440287. E.L. Hamilton, and R.T. Bachman, “Sound velocity and related properties of marine sediments,” The Journal of the Acoustical Society of America, 72, 1891-1904, 1982. doi: 10.1121/1.388539. S. B. Martin, K. Lucke, and D. R. Barclay, “Techniques for distinguishing between impulsive and non-impulsive sound in context of regulating sound exposure for marine mammals,” The Journal of the Acoustical Society of America, 147, 2159-2176, 2020. doi: 10.1121/10.0000971. NOAA National Centers for Environmental Information, “Coastal Relief Model,” [Online]. Available: https://www.ngdc.noaa.gov/mgg/coastal/crm.html (accessed September 2023). NOAA Atlas NESDIS 68,” WORLD OCEAN ATLAS 2009 Volume 1: Temperature,” U.S. Government Printing Office, Washington, D.C., USA, 2009. [Online]. Available: http://www.nodc.noaa.gov/OC5/indprod.html (accessed September 2023). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92384 | - |
dc.description.abstract | 近年來全世界各國對於離岸風力發電場之開發日益興盛,全世界排名前20處離岸風場當中臺灣西部海域就擁有超過一半的絕佳風場,因此具有極大的開發潛力,在未來幾年時間離岸風力發電場之開發數量會不斷增加。離岸風力發電場之發展在過去十年中不斷突破與創新,因此離岸風力發電機組設計尺寸、離岸距離以及基礎安裝水深都不斷地增加。離岸風力機組在安裝樁基礎時,這些基樁安裝期間通常會產生巨大之低頻噪音導致於水下噪音過高,可能影響海洋哺乳類的生態從而危害水生生物。因此本研究將依據現今臺灣評估離岸風機打樁噪音的方式,使用有限元素法於頻率域下模擬振動式打樁工法並進行打樁噪音之預估,建立一套振動式打樁噪聲預估之數值模型。
本研究分成兩部分,第一部分是使用COMSOL Multiphysics有限元素法數值分析軟體來執行振動式打樁工法水下噪音模擬研究,建立三維模型並輸入振動打樁之力道函數在頻率域進行模擬分析,從而執行該打樁工法噪音預估,並且分析該工法噪音能量介於1 Hz至500 Hz頻率之結果,與實際量測案例進行比對後,驗證其可行性與準確性。第二部分是為了讓三維模型更貼近實際打樁需求並且減少模型計算時間,也透過該模擬方法亦建立不同簡化型式的三維模型,經噪音結果比對後差異不大。此模擬方法可用來預估振動式打樁工法水下噪音聲源強度,可當作日後離岸風力發電場開發之參考來源。 | zh_TW |
dc.description.abstract | In recent years, there has been a growing global interest in the development of offshore wind farms, and Taiwan''s western waters rank among the top 20 offshore wind sites worldwide, boasting more than half of the ideal wind resources. Consequently, it holds significant development potential, and the number of offshore wind farms is expected to continually increase in the coming years. The development of offshore wind farms has witnessed continuous breakthroughs and innovations over the past decade, leading to an increase in the design size of offshore wind turbine generators, offshore distances, and foundation installation water depths. During the installation of pile foundations for offshore wind turbines, the piling process typically generates significant low-frequency noise, resulting in elevated underwater noise levels. This may potentially impact the ecology of marine mammals and pose a threat to aquatic life. Therefore, this study follows the current Taiwanese approach for evaluating the pile-driving noise of offshore wind turbines. It utilizes the finite element method to simulate vibratory pile driving in the frequency domain and predict pile-driving noise, establishing a numerical model for the estimation of vibratory pile-driving noise.
The study is divided into two parts. The first part utilizes the COMSOL Multiphysics finite element analysis software to conduct numerical simulations of underwater noise generated by vibratory pile driving. A three-dimensional model is established, and the force function of vibratory pile driving is input for frequency domain simulation analysis to predict the noise. The results, ranging from 1 Hz to 500 Hz, are compared with actual measurement cases to validate feasibility and accuracy. The second part aims to make the three-dimensional model more realistic and reduce computational time. Various simplified forms of the three-dimensional model are established through this simulation method, and the differences in noise results are found to be minimal after comparison. This simulation method can be used to predict the underwater noise source intensity of vibratory pile driving, serving as a reference for future offshore wind farm developments. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:15:12Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-22T16:15:12Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員會審定書 ii
謝辭 iii 中文摘要 iv ABSTRACT v 目次 vii 圖次 x 表次 xiii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 6 1.3 論文架構 13 第二章 研究方法 14 2.1 有限元素分析法 14 2.1.1 聲固耦合方程式 14 2.1.2 完美匹配層(Perfectly Matched Layer) 15 2.2 振動樁之力道函數(Force function of Vibratory piling) 17 2.3 打樁噪音量化指標 19 第三章 打樁噪音模型與實際案例比對 21 3.1 模擬案例與整體模擬流程 21 3.2 有限元素模型建立 21 3.3 模型參數統整 25 3.4 模型計算結果與實際案例比對 26 第四章 振動式打樁噪音三維模型比對 31 4.1 模擬案例與整體模擬流程 31 4.2 有限元素模型建立 31 4.3 模型參數統整 39 4.4 模型計算結果比對 40 4.4.1 模型之聲壓位準比對 41 4.4.2 模型之結構分析比對 56 4.4.3 模型之1/3倍頻帶比對 59 4.4.4 模型之計算時間比對 62 第五章 結論及未來展望 63 5.1 結論 63 5.2 未來展望與建議 64 參考文獻 66 附錄一 拋物線方程式聲學模型 74 附錄二 近場模擬與遠場模擬結合 78 附錄三 統計分析(ANOVA) 80 | - |
dc.language.iso | zh_TW | - |
dc.title | 振動式打樁水下噪音模擬研究 | zh_TW |
dc.title | Simulation of Underwater Noise Radiation for Vibratory Pile Installation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃維信;洪振發;彭巧明 | zh_TW |
dc.contributor.oralexamcommittee | Wei-Shien HWANG;Chen-Far HUNG;Chiao-Ming Peng | en |
dc.subject.keyword | 打樁噪音,振動式打樁,有限元素法,有限元素三維模型,力道函數, | zh_TW |
dc.subject.keyword | Pile Driving Noise,Vibratory Pile Driving,Finite Element Method,Finite Element 3D Model,Force function, | en |
dc.relation.page | 81 | - |
dc.identifier.doi | 10.6342/NTU202400667 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-02-18 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 5.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。