Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92379
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李枝宏zh_TW
dc.contributor.advisorJu-Hong Leeen
dc.contributor.author邱琛皓zh_TW
dc.contributor.authorChen-Hao Chiuen
dc.date.accessioned2024-03-22T16:13:45Z-
dc.date.available2024-03-23-
dc.date.copyright2024-03-22-
dc.date.issued2024-
dc.date.submitted2024-02-19-
dc.identifier.citation[AdADCdS19] Daniel Costa Araújo, André L. F. de Almeida, João P. C. L. Da Costa, and Rafael T. de Sousa. Tensor-based channel estimation for massive mimo-ofdm systems. IEEE Access, 7:42133–42147,2019.
[Ala98] S.M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications,16(8):1451–1458, 1998.
[and19] Ju-Hong Lee and Wei-En Sun. Robust beamforming and spatial precoding for quasi-ostbc massive mimo communications. EURASIP Journal on Wireless Communications and Networking, 2019(58),2019.
[Bal16] C.A. Balanis. Antenna Theory: Analysis and Design. Wiley, 2016.
[DB04] S. Durrani and M.E. Bialkowski. Effect of mutual coupling on the interference rejection capabilities of linear and circular arrays in cdma systems. IEEE Transactions on Antennas and Propagation,52(4):1130–1134, 2004.
[DB12] Marco F. Duarte and Richard G. Baraniuk. Kronecker compressive sensing. IEEE Transactions on Image Processing, 21(2):494–504,2012.
[FJ08] Fatemeh Fazel and Hamid Jafarkhani. Quasi-orthogonal spacefrequency and space-time-frequency block codes for mimo ofdm channels. IEEE Transactions on Wireless Communications, 7(1):184–192, 2008.
[FLH07] Antonio Forenza, David J. Love, and Robert W. Heath. Simplified spatial correlation models for clustered mimo channels with different array configurations. IEEE Transactions on Vehicular Technology, 56(4):1924–1934, 2007.
[HY10] C.-C. Hu and H.-Y. Yang. Modified gram-schmidt-based antenna selection for mimo systems in correlated channels. In Electronics letter, volume 46, pages 94–96, 7 January 2010.
[HZ17] Chia-Chang Hu and Jia-Hua Zhang. Hybrid precoding design for adaptive subarrays in millimeter-wave mimo. In 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), pages 1–4,2017.
[Jaf01] H. Jafarkhani. A quasi-orthogonal space-time block code. IEEE Transactions on Communications, 49(1):1–4, 2001.
[JJ17] Ju-Hong Lee and Jing-Yen Lee. Optimal beamforming-selection spatial precoding using population-based stochastic optimization for massive wireless mimo communication systems. Journal of the Franklin Institute, 354(10):4247–4272, 2017.
[KGW09] Mohammad A. Khojastepour, Krishna Gomadam, and Xiaodong Wang. Pilot-assisted channel estimation for mimo ofdm systems using theory of sparse signal recovery. In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 2693–2696, 2009.
[LY12] Xiaodong Li and Xin Yao. Cooperatively coevolving particle swarms for large scale optimization. IEEE Transactions on Evolutionary Computation, 16(2):210 – 224, 2012.
[MMB18] Benoit Martin, Julien Marot, and Salah Bourennane. Improved discrete grey wolf optimizer. In 2018 26th European Signal Processing Conference (EUSIPCO), pages 494–498, 2018.
[MMT+17] Mohammad Majidzadeh, Aleksi Moilanen, Nuutti Tervo, Harri Pennanen, Antti Tolli, and Matti Latva-aho. Partially connected hybrid beamforming for large antenna arrays in multi-user miso systems. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pages 1–6, 2017.
[NKDA17] Qurrat-Ul-Ain Nadeem, Abla Kammoun, M´erouane Debbah, and Mohamed-Slim Alouini. Performance analysis of compact fd-mimo antenna arrays in a correlated environment. IEEE Access, 5:4163–4178, 2017.
[NLLNH17] Duy H. N. Nguyen, Long Bao Le, Tho Le-Ngoc, and Robert W. Heath. Hybrid mmse precoding and combining designs for mmwave multiuser systems. IEEE Access, 5:19167–19181, 2017.
[PYZ+10] Yuexing Peng, Xiao Yang, Xiaofeng Zhang, Wenbo Wang, and Bin Wu. Compressed mimo-ofdm channel estimation. In 2010 IEEE 12th International Conference on Communication Technology, pages 1291–1294, 2010.
[SKC20] Xiaoshen Song, Thomas K¨uhne, and Giuseppe Caire. Fully-/partially-connected hybrid beamforming architectures for mmwave mu-mimo. IEEE Transactions on Wireless Communications, 19(3):1754–1769, 2020.
[SSA14] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey wolf optimizer. Advances in Engineering Software, 69:46–61,2014.
[SYS17] Nuan Song, Tao Yang, and Huan Sun. Overlapped subarray based hybrid beamforming for millimeter wave multiuser massive mimo. IEEE Signal Processing Letters, 24(5):550–554, 2017.
[TJC99a] V. Tarokh, H. Jafarkhani, and A.R. Calderbank. Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5):1456–1467, 1999.
[TJC99b] V. Tarokh, H. Jafarkhani, and A.R. Calderbank. Space-time block coding for wireless communications: performance results. IEEE Journal on Selected Areas in Communications, 17(3):451–460, 1999.
[TLSY14] Ming-Fu Tang, Meng-Ying Lee, Borching Su, and Chia-Pang Yen. Beamforming-based spatial precoding in fdd massive mimo systems. In 2014 48th Asilomar Conference on Signals, Systems and Computers,pages 2073–2077, 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92379-
dc.description.abstract本論文延續本實驗室過去所提出之波束成形選擇空間預編碼(Beamforming-selection spatial precoding, BSSP)並延伸到了在第五代行動通訊技術(5th generation wireless systems, 5G)中常見之大規模多輸入多輸出正交分頻多工系統(massive MIMO-OFDM)。我們結合了在5G中常見之混和式毫米波架構(hybrid mmWave structure)與經過灰狼演算法(Grey wolf optimizer, GWO)進行參數最佳化後之BSSP預編碼來節省分頻雙工Frequency-division duplexing, FDD)傳輸中之負擔(overhead)並節省硬體實現時之成本。在本篇論文中體現了過去所提出的多段式最佳化及透過離散灰狼最佳化(discrete grey wolf optimization, DGWO)進行部分連接(partially connected)最佳化在不重疊子陣列(non-overlapped subarray, NOSA)架構下應用於MIMO-OFDM時不僅可以比起在全連接(fully connected)架構時射頻訊號鏈(radio frequency chain, RF chain)連接較少的天線以簡紹功率損耗,更可以擁有更佳之系統平均位元錯誤率(average approximated bit error rate,AA-BER)。另外在本論文中亦考慮四種不同的常見天線陣列設置(antenna array configuration),透過最佳化平均互消息(average mutual information, AMI)來比較在何種配置及天線位置擺設下可以得到最佳之系統表現。最後,本論文考慮了在通道狀態資訊(channel state information, CSI)不足時,透過了壓縮感知(compressed sensing)中的正交匹配追蹤(orthogonal matching pursuit, OMP)算法和應用張量計算之正交匹配追蹤(tensor-based OMP,T-OMP)算法,分別在全數位和混合式架構下進行了通道估計(channel estimation)。在考量此種狀況後,配合既有的誤差(error effects)影響通道和加入準正交空時編碼(Quasi-orthogonal spacetime block code, QOSTBC)通訊,使得本系統得以發展為更加強健(robust)之預編碼算法。zh_TW
dc.description.abstractThe hybrid massive multi-input-multi-output orthogonal frequency division multiplexing(MIMO-OFDM) system is known for its high throughput and high transmission data rate, and is frequently used in the 5th generation (5G) wireless systems. However, the training overhead accompanied with the system is substantial due to the massive number of the antennas. In this paper, we consider the MIMO-OFDM system with quasi-orthogonal space-time block code (QOSTBC) transmission in the presence of mutual coupling effect (MCE) and spatial correlation effect (SCE).
Applying the beamforming-selection spatial precoding (BSSP) method along with the multi-stage optimization technique to decrease the overhead and in the meanwhile ascending the performance of the bit error rate (BER). We also consider the common-used partially connected non-overlapped subarray (NOSA) structure, which is used to reduce the number of the radio frequency (RF) chains to bring down the power consumption of the entire system. Similar to the optimization criterion, we adopt the discrete grey wolf optimization (DGWO) algorithm to optimize the selected antennas for each channel. Finally, we consider the case of imperfect channel state information (CSI) and employ the traditional vector orthogonal matching pursuit (OMP) and tensor-based OMP (TOMP) algorithms to tackle the channel estimation issue.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:13:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-22T16:13:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents1 Introduction 1
1.1 Research background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Beamforming-based spatial precoding (BSSP) under FDD MIMO downlink structure 4
2.1 FDD MIMO downlink transmission . . . . . . . . . . . . . . . . . . . 4
2.2 Downlink training in BBSP method . . . . . . . . . . . . . . . . . . 7
2.3 Downlink precoding and CSI feedback in BBSP method . . . . . . . . 9
2.4 Conclusion for the BBSP method . . . . . . . . . . . . . . . . . . . . 10

3 Applying Grey Wolf optimization to the beamforming-selection spatial precoding (BSSP) 12
3.1 Grey wolf optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Downlink transmission model for BSSP method . . . . . . . . . . . . 16
3.2.1 Improvement on interference problem of multi-beams in BBSP 17
3.2.2 Average bit error rate (avg. BER) as fitness function . . . . . 18
3.3 Channel model considering error effects and antenna position . . . . 20
3.3.1 Channel model affected by mutual coupling and spatial correlation effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Optimization of the antenna position in non-uniform array configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 MIMO-OFDM BSSP-GWO in fully digital structure with channel estimation 26
4.1 Combine QOSTBC transmission and MIMO-OFDM with BSSP-GWO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.1 Introduce MIMO-OFDM to BSSP-GWO . . . . . . . . . . . . 26
4.1.2 Applying QOSTBC to MIMO-OFDM BSSP-GWO . . . . . . 30
4.2 Channel estimation for MIMO-OFDM BSSP-GWO . . . . . . . . . . 32
4.2.1 Simulation results for MIMO-OFDM BSSP-GWO-OMP . . . 34

5 MIMO-OFDM BSSP-GWO in hybrid structure 40
5.1 Hybrid structure for MIMO-OFDM BSSP-GWO . . . . . . . . . . . 40
5.1.1 BSSP-GWO with hybrid beamforming structure . . . . . . . . 40
5.1.2 QOSTBC transmission with hybrid beamforming structure . . 42
5.2 Stepwise optimized hybrid MIMO-OFDM BSSP-GWO-QOSTBC in optimal NOSA structure . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Partially connected structure in hybrid MIMO system . . . . . 43
5.2.2 Antenna selection optimization for NOSA structure in hybrid BSSP-GWO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 Combine NOSA optimization with stepwise optimization in hybrid BSSP-GWO . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Channel estimation on stepwise optimized hybrid MIMO-OFDM BSSPGWO-QOSTBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.1 Channel model for T-OMP channel estimation . . . . . . . . . 53
5.3.2 Joint search method for T-OMP channel estimation . . . . . . 55
5.3.3 Simulation results for T-OMP-JS . . . . . . . . . . . . . . . . 58

6 Simulation results for hybrid BSSP-GWO under massive MIMO-OFDM 73
6.1 BSSP-GWO performance under massive MIMO-OFDM . . . . . . . . 73
6.2 Massive MIMO-OFDM performance with QOSTBC . . . . . . . . . . 79

7 Conclusion and future works 84

Bibliography 85
-
dc.language.isoen-
dc.title結合通道估計之混合式波束成形最佳空間預編碼應用於大規模多輸入多輸出正交分頻多工系統zh_TW
dc.titleHybrid beamforming-selection spatial precoding with channel estimation for massive MIMO-OFDM systemen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉俊麟;方文賢zh_TW
dc.contributor.oralexamcommitteeChun-Lin Liu;Wen-Hsien Fangen
dc.subject.keyword大規模多輸入多輸出正交分頻多工系統,混和式波束成形,空間預編碼,毫米波,部分連接架構,灰狼演算法,通道估計,壓縮感知,正交匹配追蹤,zh_TW
dc.subject.keywordmassive MIMO-OFDM,hybrid beamforming,spatial precoding,mmWave,partially connected structure,Grey wolf optimizer,channel estimation,compressed sensing,orthogonal matching pursuit,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202400742-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-19-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2029-02-19-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
5.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved