請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92377完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張豐丞 | zh_TW |
| dc.contributor.advisor | Feng-Cheng Chang | en |
| dc.contributor.author | 張鈞瑋 | zh_TW |
| dc.contributor.author | Chun-Wei Chang | en |
| dc.date.accessioned | 2024-03-22T16:13:03Z | - |
| dc.date.available | 2024-03-23 | - |
| dc.date.copyright | 2024-03-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-14 | - |
| dc.identifier.citation | Abdellah, M. Y., Hassan, M. K., AlMalki, A. A., Mohamed, A. F., & Backar, A. H. (2022). Finite Element Modelling of Wear Behaviors of Composite Laminated Structure. Lubricants, 10(11), 317.
Abdellaoui, H., Bensalah, H., Echaabi, J., Bouhfid, R., & Qaiss, A. (2015). Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Materials & Design, 68, 104-113. Ageyeva, T., Sibikin, I., & Kovács, J. G. (2019). A review of thermoplastic resin transfer molding: Process modeling and simulation. Polymers, 11(10), 1555. Akinbade, Y., Nettleship, I., Papadopoulos, C., & Harries, K. A. (2021). Modelling full-culm bamboo as a naturally varying functionally graded material. Wood Science and Technology, 55(1), 155-179. Alias, A. H., Tahir, P. M., Abdan, K., Sapuan, M. S., Wahab, M. S., & Saiman, M. P. (2018). Evaluation of kenaf yarn properties as affected by different linear densities for woven fabric laminated composite production. Sains Malaysiana, 47(8), 1853-1860. Al-Rukaibawi, L. S., & Károlyi, G. (2023). Through-thickness distribution of bamboo tensile strength parallel to fibres. SN Applied Sciences, 5(7), 174. Amada, S., Munekata, T., Nagase, Y., Ichikawa, Y., Kirigai, A., & Zhifei, Y. (1996). The mechanical structures of bamboos in viewpoint of functionally gradient and composite materials. Journal of Composite Materials, 30(7), 800-819. Anand, S. V., & Mahapatra, D. R. (2009). Quasi-static and dynamic strain sensing using carbon nanotube/epoxy nanocomposite thin films. Smart Materials and Structures, 18(4), 045013. Aoki, T., Ogasawara, T., & Ishikawa, T. (2003). Effects of normal stress on the off-axis mechanical behavior of a plain-woven C/C composite. Advanced Composite Materials, 12(2-3), 123-137. Arce-Villalobos, O.A. (1993). Fundamentals of the design of bamboo structure. (Ph. D. thesis). Technische Hog eschool Eindhoven, Eindhoven. Archila, H. F., Ansell, M. P., & Walker, P. (2015). MEASUREMENT OF THE IN-PLANE SHEAR MODULI OF BAMBOO-GUADUA USING THE IOSIPESCU SHEAR TEST METHOD. In 10th World Bamboo Congress. Ariawan, D., Salim, M. S., Mat Taib, R., Ahmad Thirmizir, M. Z., & Mohammad Ishak, Z. A. (2018). Durability of alkali and heat‐treated kenaf fiber/unsaturated polyester composite fabricated by resin transfer molding under natural weathering exposure. Advances in Polymer Technology, 37(5), 1420-1434. Askarinejad, S., Kotowski, P., Shalchy, F., & Rahbar, N. (2015). Effects of humidity on shear behavior of bamboo. Theoretical and Applied Mechanics Letters, 5(6), 236-243. Babuška, I. (1976). Homogenization and its application. Mathematical and computational problems. In Numerical solution of partial differential equations–III (pp. 89-116). Academic Press. Bai, J. B., Xiong, J. J., Shenoi, R. A., & Wang, Q. (2017a). A Micromechanical model for predicting biaxial tensile moduli of plain weave fabric composites. The Journal of Strain Analysis for Engineering Design, 52(5), 333-343. Bai, J. B., Xiong, J. J., Shenoi, R. A., & Zhu, Y. T. (2017b). Analytical solutions for predicting tensile and in-plane shear strengths of triaxial weave fabric composites. International Journal of Solids and Structures, 120, 199-212. Bari, E., Morrell, J. J., Sistani, A., Firoozbehi, F., Haghdoost, Y., Najafian, M., & Ghorbani, A. (2019). Assessment of physical and mechanical properties of bamboo–plastic composites. Polymer Composites, 40(7), 2834-2839. Basit, M. M., Luo, S. Y., & Mitra, A. (2019). A simplified constitutive and finite element model of plain weave fabric reinforcements for the biaxial loading. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2, 249-258. Benveniste, Y., Dvorak, G. J., & Chen, T. (1989). Stress fields in composites with coated inclusions. Mechanics of Materials, 7(4), 305-317. Biswas, S., Patnaik, A., & Kaundal, R. (2012). Effect of red mud and copper slag particles on physical and mechanical properties of bamboo-fiber-reinforced epoxy composites. Advances in Mechanical Engineering, 4, 141248. Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in polymer science, 24(2), 221-274. Boisse, P., Hamila, N., Guzman-Maldonado, E., Madeo, A., Hivet, G., & Dell’Isola, F. (2017). The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review. International Journal of Material Forming, 10, 473-492. Boisse, P., Zouari, B., & Daniel, J. L. (2006). Importance of in-plane shear rigidity in finite element analyses of woven fabric composite preforming. Composites Part A: Applied Science and Manufacturing, 37(12), 2201-2212. Breite, C., Melnikov, A., Turon, A., de Morais, A. B., Le Bourlot, C., Maire, E., ... & Swolfs, Y. (2022). Detailed experimental validation and benchmarking of six models for longitudinal tensile failure of unidirectional composites. Composite Structures, 279, 114828. Broughton, W. R., Kumosa, M., & Hull, D. (1990). Analysis of the Iosipescu shear test as applied to unidirectional carbon-fibre reinforced composites. Composites Science and Technology, 38(4), 299-325. Budiansky, B. (1965). On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 13(4), 223-227.Hill, R. (1965). Theory of mechanical properties of fibre-strengthened materials—III. Self-consistent model. Journal of the Mechanics and Physics of Solids, 13(4), 189-198. Byström, J., Jekabsons, N., & Varna, J. (2000). An evaluation of different models for prediction of elastic properties of woven composites. Composites Part B: Engineering, 31(1), 7-20. Cao, J., Akkerman, R., Boisse, P., Chen, J., Cheng, H. S., De Graaf, E. F., ... & Lee, W. (2008). Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Composites Part A: Applied Science and Manufacturing, 39(6), 1037-1053. Chamis, C. C., & Hopkins, D. A. (1988). Thermoviscoplastic nonlinear constitutive relationships for structural analysis of high-temperature metal matrix composites. In Testing Technology of Metal Matrix Composites. ASTM International. Chan, C. H., Wu, K. J., & Young, W. B. (2023). The effect of densification on bamboo fiber and bamboo fiber composites. Cellulose, 30(7), 4575-4585. Chandra, R., Singh, S. P., & Gupta, K. (2002). Micromechanical damping models for fiber-reinforced composites: a comparative study. Composites Part A: Applied science and manufacturing, 33(6), 787-796. Chang, C. W., & Chang, F. C. (2021). Fracture characteristics and energy dissipation of textile bamboo fiber reinforced polymer. Polymers, 13(4), 634. Chang, C. W., & Chang, F. C. (2022). Influence of Textile Structure on the Hygroscopic Behavior of Bamboo Textile-Reinforced Polymer. Journal of Natural Fibers, 19(16), 14365-14378. Chang, C. W., & Chang, F. C. (2022). Physical-mechanical properties of bamboo-textile-reinforced polymer made with vacuum-assist resin transfer molding. Journal of Natural Fibers, 19(17), 15824-15835. Chang, C. W., Hsu, F. L., Chang, F. C., & Huang, Y. S. (2022). Measuring elastic constants of wood through static bending using a strain gauge. European Journal of Wood and Wood Products, 80(3), 611-620. Chang, C. W., Lin, C. Y., Kao, H. W., & Chang, F. C. (2023). Micromechanical analytical and inverse numerical modeling methods for determining the transverse elastic modulus of bamboo. Wood Science and Technology, 57(1), 75-92. Chaphalkar, P., & Kelkar, A. D. (2001). Classical laminate theory model for twill weave fabric composites. Composites Part A: Applied Science and Manufacturing, 32(9), 1281-1289. Chapman, C., & Whitcomb, J. (1995). Effect of assumed tow architecture on predicted moduli and stresses in plain weave composites. Journal of Composite Materials, 29(16), 2134-2159. Chen, B., Lang, E. J., & Chou, T. W. (2001). Experimental and theoretical studies of fabric compaction behavior in resin transfer molding. Materials Science and Engineering: A, 317(1-2), 188-196. Chen, H., Cheng, H., Wang, G., Yu, Z., & Shi, S. Q. (2015). Tensile properties of bamboo in different sizes. Journal of wood science, 61(6), 552-561. Chen, J. W., Zhao, B., Chen, W. J., Wang, M. Y., Guan, X. Y., & Wu, S. H. X. (2019). Response surface analysis of biaxial mechanical properties and elastic parameters for woven fabric composites. Journal of Industrial Textiles, 49(2), 219-242. Chen, T., Dvorak, G. J., & Benveniste, Y. (1990). Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mechanics of Materials, 9(1), 17-32. Chen, X., Guo, Q., & Mi, Y. (1998). Bamboo fiber‐reinforced polypropylene composites: a study of the mechanical properties. Journal of applied polymer science, 69(10), 1891-1899. Chen, Y. H., & Aliabadi, M. H. (2019). Micromechanical modelling of the overall response of plainwoven polymer matrix composites. International Journal of Engineering Science, 145, 103163. Chen, Z. R., & Ye, L. (2006). A micromechanical compaction model for woven fabric preforms. Part II: Multilayer. Composites Science and Technology, 66(16), 3263-3272. Cheng, X., Xiong, J., & Jiangbo, B. A. I. (2012). Analytical solution for predicting in-plane elastic shear properties of 2D orthogonal PWF composites. Chinese Journal of Aeronautics, 25(4), 575-583. Chou, T. N., & Young, W. B. (2018). Strength of untreated and alkali-treated bamboo fibers and reinforcing effects for short fiber composites. J. Aeronaut. Astronaut. Aviat, 50(3), 237-246. Chung, P. W., & Tamma, K. K. (1999). Woven fabric composites—developments in engineering bounds, homogenization and applications. International Journal for Numerical Methods in Engineering, 45(12), 1757-1790. Chung, P. W., Tamma, K. K., & Namburu, R. R. (2001). Asymptotic expansion homogenization for heterogeneous media: computational issues and applications. Composites Part A: Applied Science and Manufacturing, 32(9), 1291-1301. Corbin, A. C., Soulat, D., Ferreira, M., Labanieh, A. R., Gabrion, X., Malécot, P., & Placet, V. (2020). Towards hemp fabrics for high-performance composites: Influence of weave pattern and features. Composites Part B: Engineering, 181, 107582. Crookston, J. J., Long, A. C., & Jones, I. A. (2005). A summary review of mechanical properties prediction methods for textile reinforced polymer composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 219(2), 91-109. Das, M., & Chakraborty, D. (2006). Influence of alkali treatment on the fine structure and morphology of bamboo fibers. Journal of Applied Polymer Science, 102(5), 5050-5056. Das, M., & Chakraborty, D. (2007). Role of mercerization of the bamboo strips on the impact properties and morphology of unidirectional bamboo strips–novolac composites. Polymer composites, 28(1), 57-60. Das, M., & Chakraborty, D. (2009). The effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, Part 1:—Polyester resin matrix. Journal of applied polymer science, 112(1), 489-495. Das, M., Pal, A., & Chakraborty, D. (2006). Effects of mercerization of bamboo strips on mechanical properties of unidirectional bamboo–novolac composites. Journal of applied polymer science, 100(1), 238-244. Das, P. P., Acharya, A., & Chaudhary, V. (2021). Influence of Moisture Uptake on the Mechanical Properties of Natural Fiber-Reinforced Polymer Composites. In Composite Materials (pp. 213-222). CRC Press. del Borrello, M., Mele, M., Campana, G., & Secchi, M. (2020). Manufacturing and characterization of hemp‐reinforced epoxy composites. Polymer Composites. Depuydt, D. E., Sweygers, N., Appels, L., Ivens, J., & Van Vuure, A. W. (2019). Bamboo fibres sourced from three global locations: A microstructural, mechanical and chemical composition study. Journal of Reinforced Plastics and Composites, 38(9), 397-412. Deshpande, A. P., Bhaskar Rao, M., & Lakshmana Rao, C. (2000). Extraction of bamboo fibers and their use as reinforcement in polymeric composites. Journal of applied polymer science, 76(1), 83-92. Dhar Malingam, S., Feng, N. L., Kamarolzaman, A. A., Tzy Yi, H., & Ab Ghani, A. F. (2019b). Mechanical Characterisation of Woven Kenaf Fabric as Reinforcement for Composite Materials. Journal of Natural Fibers, 1-11. Dhar Malingam, S., Subramaniam, K., Lin Feng, N., Fadzullah, S. H. S. M., & Subramonian, S. (2019a). Mechanical properties of plain woven kenaf/glass fiber reinforced polypropylene hybrid composites. Materials Testing, 61(11), 1095-1100. Dixit, A., & Mali, H. S. (2013). Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a review. Mechanics of composite Materials, 49, 1-20. Dixon, P. G., & Gibson, L. J. (2014). The structure and mechanics of Moso bamboo material. Journal of the Royal Society Interface, 11(99), 20140321. Dixon, P. G., Ahvenainen, P., Aijazi, A. N., Chen, S. H., Lin, S., Augusciak, P. K., ... & Gibson, L. J. (2015). Comparison of the structure and flexural properties of Moso, Guadua and Tre Gai bamboo. Construction and Building Materials, 90, 11-17. Djamil, S., Suardana, N. P. G., Irawan, A. P., Sugita, I. K. G., & Tanujaya, H. (2020, July). Flexural properties of bamboo strip composites on lamina configuration. In IOP Conference Series: Materials Science and Engineering (Vol. 852, No. 1, p. 012077). IOP Publishing. Dong, S. B., Alpdogan, C., & Taciroglu, E. (2010). Much ado about shear correction factors in Timoshenko beam theory. International Journal of Solids and Structures, 47(13), 1651-1665. El Agamy, N., & Laliberté, J. (2016). Historical development of geometrical modelling of textiles reinforcements for polymer composites: A review. Journal of industrial textiles, 45(4), 556-584. Fergoug, M., Parret-Fréaud, A., Feld, N., Marchand, B., & Forest, S. (2022). A general boundary layer corrector for the asymptotic homogenization of elastic linear composite structures. Composite Structures, 285, 115091. flax-epoxy composite materials. Composites Theory and Practice, 20(2), 51-59. Freund, J., & Karakoç, A. (2016). Shear and torsion correction factors of Timoshenko beam model for generic cross sections. Res. Eng. Struct. Mater, 2(1), 19-27. Fu, S. Y., Feng, X. Q., Lauke, B., & Mai, Y. W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 39(6), 933-961. Fu, S. Y., Hu, X., & Yue, C. Y. (1998). A new model for the transverse modulus of unidirectional fiber composites. Journal of materials science, 33, 4953-4960. Fuentes, C. A., Brughmans, G., Tran, L. Q. N., Dupont-Gillain, C., Verpoest, I., & Van Vuure, A. W. (2015). Mechanical behaviour and practical adhesion at a bamboo composite interface: Physical adhesion and mechanical interlocking. Composites Science and Technology, 109, 40-47. García, J. J., Rangel, C., & Ghavami, K. (2012). Experiments with rings to determine the anisotropic elastic constants of bamboo. Construction and building materials, 31, 52-57. Gauss, C., Savastano Jr, H., & Harries, K. A. (2019). Use of ISO 22157 mechanical test methods and the characterisation of Brazilian P. edulis bamboo. Construction and Building Materials, 228, 116728. Gereke, T., Döbrich, O., Hübner, M., & Cherif, C. (2013). Experimental and computational composite textile reinforcement forming: A review. Composites Part A: Applied Science and Manufacturing, 46, 1-10. Ghavami, K., & Marinho, A. B. (2005). Propriedades físicas e mecânicas do colmo inteiro do bambu da espécie Guadua angustifolia. Revista Brasileira de engenharia agrícola e ambiental, 9(1), 107-114. Ghazimoradi, M., Carvelli, V., Naouar, N., & Boisse, P. (2020). Experimental measurements and numerical modelling of the mechanical behaviour of a glass plain weave composite reinforcement. Journal of Reinforced Plastics and Composites, 39(1-2), 45-59. Giner, E., Vercher, A., Marco, M., & Arango, C. (2015). Estimation of the reinforcement factor ξ for calculating the transverse stiffness E2 with the Halpin–Tsai equations using the finite element method. Composite Structures, 124, 402-408. Gommers, B., Verpoest, I., & Van Houtte, P. (1996). Further developments in testing and analysis of the plate twist test for in-plane shear modulus measurements. Composites Part A: Applied Science and Manufacturing, 27(11), 1085-1087. Gopinath, G., & Batra, R. C. (2020). Prediction of elastic moduli and ultimate strength of fiber/yarn-reinforced elastic–plastic matrix using Fourier series approach and cuboidal/wedge sub-volumes. International Journal of Non-Linear Mechanics, 125, 103539. Goutianos, S., Peijs, T., Nystrom, B., & Skrifvars, M. (2006). Development of flax fibre based textile reinforcements for composite applications. Applied composite materials, 13(4), 199-215. Govignon, Q., Bickerton, S., Morris, J., & Kelly, P. A. (2008). Full field monitoring of the resin flow and laminate properties during the resin infusion process. Composites Part A: Applied Science and Manufacturing, 39(9), 1412-1426. Grassi, M., Zhang, X., & Meo, M. (2002). Prediction of stiffness and stresses in z-fibre reinforced composite laminates. Composites Part A: applied science and manufacturing, 33(12), 1653-1664. Guan, M., Zhang, Z., Yong, C., & Du, K. (2019). Interface compatibility and mechanisms of improved mechanical performance of starch/poly (lactic acid) blend reinforced by bamboo shoot shell fibers. Journal of Applied Polymer Science, 136(35), 47899. Gunaryo, K., Heriana, H., Sitompul, M. R., Kuswoyo, A., & Hadi, B. K. (2020). Experimentation and numerical modeling on the response of woven glass/epoxy composite plate under blast impact loading. International Journal of Mechanical and Materials Engineering, 15, 1-9. Gupta, A., & Raghavan, J. (2011). Parametric study of the effect of microstructure on creep of plain weave composites. Composites Part A: Applied Science and Manufacturing, 42(5), 511-520. Habibi, M. K., Samaei, A. T., Gheshlaghi, B., Lu, J., & Lu, Y. (2015). Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: underlying mechanisms. Acta biomaterialia, 16, 178-186. Haghi Kashani, M., Hosseini, A., Sassani, F., Ko, F. K., & Milani, A. S. (2018). The role of intra-yarn shear in integrated multi-scale deformation analyses of woven fabrics: a critical review. Critical Reviews in Solid State and Materials Sciences, 43(3), 213-232. Halpin, J. C. (1969). Effects of Environmental Factors on Composite Materials. Air Force Materials Lab Wright-Patterson AFB OH. Hamdan, M. H. M., Siregar, J. P., Cionita, T., Jaafar, J., Efriyohadi, A., Junid, R., & Kholil, A. (2019). Water absorption behaviour on the mechanical properties of woven hybrid reinforced polyester composites. The International Journal of Advanced Manufacturing Technology, 104, 1075-1086. Hao, H., Tam, L. H., Lu, Y., & Lau, D. (2018). An atomistic study on the mechanical behavior of bamboo cell wall constituents. Composites Part B: Engineering, 151, 222-231. Harries, K. A., Sharma, B., & Richard, M. (2012). Structural use of full culm bamboo: the path to standardization. International Journal of Architecture, Engineering and Construction, 1(2), 66-75. Harrison, P., Alvarez, M. F., & Anderson, D. (2018). Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics. International Journal of Solids and Structures, 154, 2-18. Hashin, Z., & Shtrikman, S. (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11(2), 127-140. Heidari-Rarani, M., Bashandeh-Khodaei-Naeini, K., & Mirkhalaf, S. M. (2018). Micromechanical modeling of the mechanical behavior of unidirectional composites–A comparative study. Journal of Reinforced Plastics and Composites, 37(16), 1051-1071. Hewitt, R. L., & De Malherbe, M. C. (1970). An approximation for the longitudinal shear modulus of continuous fibre composites. Journal of Composite Materials, 4(2), 280-282. Hill, R. (1965). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13(4), 213-222. Ho, H., Tsai, M. Y., Morton, J., & Farley, G. L. (1993). Numerical analysis of the Iosipescu specimen for composite materials. Composites science and technology, 46(2), 115-128. Hodgkinson, J. M. (Ed.). (2000). Mechanical testing of advanced fibre composites. Woodhead publishing. Holmes, J., Sommacal, S., Stachurski, Z., Das, R., & Compston, P. (2022). Digital image and volume correlation with X-ray micro-computed tomography for deformation and damage characterisation of woven fibre-reinforced composites. Composite Structures, 279, 114775. Hsiao, K. T., & Heider, D. (2012). Vacuum assisted resin transfer molding (VARTM) in polymer matrix composites. In Manufacturing techniques for polymer matrix composites (PMCs) (pp. 310-347). Woodhead Publishing. Huang, J. K., & Young, W. B. (2019). The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Composites Part B: Engineering, 166, 272-283. Huang, Y., Ji, Y., & Yu, W. (2019). Development of bamboo scrimber: A literature review. Journal of Wood Science, 65(1), 1-10. Hughes, M., Hill, C. A. S., & Hague, J. R. B. (2002). The fracture toughness of bast fibre reinforced polyester composites Part 1 Evaluation and analysis. Journal of materials science, 37, 4669-4676. Idicula, M., Sreekumar, P. A., Joseph, K., & Thomas, S. (2009). Natural fiber hybrid composites—A comparison between compression molding and resin transfer molding. Polymer composites, 30(10), 1417-1425. Ishikawa, T., & Chou, T. W. (1982). Elastic behavior of woven hybrid composites. Journal of composite materials, 16(1), 2-19. Ishikawa, T., & Chou, T. W. (1983a). One-dimensional micromechanical analysis of woven fabric composites. AIAA journal, 21(12), 1714-1721. Ishikawa, T., & Chou, T. W. (1983b). Thermoelastic analysis of hybrid fabric composites. Journal of Materials Science, 18, 2260-2268. Ishikawa, T., Matsushima, M., Hayashi, Y., & Chou, T. W. (1985). Experimental confirmation of the theory of elastic moduli of fabric composites. Journal of Composite Materials, 19(5), 443-458. Ismail, A. S., Jawaid, M., Sultan, M. T. H., & Hassan, A. (2019). Physical and Mechanical Properties of Woven Kenaf/Bamboo Fiber Mat Reinforced Epoxy Hybrid Composites. BioResources, 14(1), 1390-1404. Ito, M., & Chou, T. W. (1998). An analytical and experimental study of strength and failure behavior of plain weave composites. Journal of Composite Materials, 32(1), 2-30. Jacquet, E., Trivaudey, F., & Varchon, D. (2000). Calculation of the transverse modulus of a unidirectional composite material and of the modulus of an aggregate. Application of the rule of mixtures. Composites science and technology, 60(3), 345-350. Jain, S., Kumar, R., & Jindal, U. C. (1992). Mechanical behaviour of bamboo and bamboo composite. Journal of materials science, 27, 4598-4604. Janssen, J. J. A. (1981). Bamboo in building structures (Ph. D. thesis). Technische Hog eschool Eindhoven, Eindhoven. Janssen, J. J. A. (1999). An international model building code for bamboo. Jena, H., Pandit, M. K., & Pradhan, A. K. (2013). Effect of cenosphere on mechanical properties of bamboo–epoxy composites. Journal of Reinforced Plastics and Composites, 32(11), 794-801. Jiang, Z., Chen, F., Wang, G., Shi, S. Q., & Cheng, H. T. (2012). The circumferential mechanical properties of bamboo with uniaxial and biaxial compression tests. BioResources, 7(4), 4806-4816. Jin, X., Zhang, X., Xu, C., & Nie, S. (2019). Effect of bamboo fibers with different coupling agents on the properties of poly (hydroxybutyrate‐co‐valerate) biocomposites. Journal of Applied Polymer Science, 136(20), 47533. Justusson, B. P., Spagnuolo, D. M., & Jian, H. Y. (2013). Assessing the applicability of digital image correlation (dic) technique in tensile testing of fabric composites (pp. 1-24). Army Research Laboratory. Kachanov, M., Tsukrov, I., & Shafiro, B. (1994). Effective moduli of solids with cavities of various shapes. Kanaginahal, G. M., Hebbar, H. S., & Kulkarni, S. M. (2019). Influence of weave pattern and composite thickness on mechanical properties of bamboo/epoxy composites. Materials Research Express, 6(12), 125334. Kang, J. T., Park, S. H., & Kim, S. H. (2014). Improvement in the adhesion of bamboo fiber reinforced polylactide composites. Journal of Composite Materials, 48(21), 2567-2577. Kanzawa, E., Aoyagi, S., & Nakano, T. (2011). Vascular bundle shape in cross-section and relaxation properties of Moso bamboo (Phyllostachys pubescens). Materials Science and Engineering: C, 31(5), 1050-1054. Kardos, J. L. (1973). Structure property relations in short-fiber reinforced plastics. Critical Reviews in Solid State and Material Sciences, 3(4), 419-450. Kashani, M. H., Hosseini, A., Sassani, F., Ko, F. K., & Milani, A. S. (2017). Understanding different types of coupling in mechanical behavior of woven fabric reinforcements: A critical review and analysis. Composite Structures, 179, 558-567. Khan, T., Hameed Sultan, M. T. B., & Ariffin, A. H. (2018). The challenges of natural fiber in manufacturing, material selection, and technology application: A review. Journal of Reinforced Plastics and Composites, 37(11), 770-779. Khan, Z., Yousif, B. F., & Islam, M. (2017). Fracture behaviour of bamboo fiber reinforced epoxy composites. Composites Part B: Engineering, 116, 186-199. Khashaba, U. A., Aldousari, S. M., & Najjar, I. M. R. (2012). Behavior of [0] 8 woven composites under combined bending and tension loading: part-I experimental and analytical. Journal of composite materials, 46(11), 1345-1355. Kheng, E., D’Mello, R., & Waas, A. (2023). A multi-scale model for the tensile failure of twill textile composites. Composite Structures, 307, 116614. Kim, H., Okubo, K., Fujii, T., & Takemura, K. (2013). Influence of fiber extraction and surface modification on mechanical properties of green composites with bamboo fiber. Journal of Adhesion Science and Technology, 27(12), 1348-1358. Kim, K. Y., Curiskis, J. I., Ye, L., & Fu, S. Y. (2005). Mode-I interlaminar fracture behaviour of weft-knitted fabric reinforced composites. Composites Part A: Applied Science and Manufacturing, 36(7), 954-964. Klusemann, B., Böhm, H. J., & Svendsen, B. (2012). Homogenization methods for multi-phase elastic composites with non-elliptical reinforcements: Comparisons and benchmarks. European Journal of Mechanics-A/Solids, 34, 21-37. Koohbor, B., Ravindran, S., & Kidane, A. (2017). Experimental determination of Representative Volume Element (RVE) size in woven composites. Optics and Lasers in Engineering, 90, 59-71. Krause, J. Q., de Andrade Silva, F., Ghavami, K., Gomes, O. D. F. M., & Toledo Filho, R. D. (2016). On the influence of Dendrocalamus giganteus bamboo microstructure on its mechanical behavior. Construction and building materials, 127, 199-209. Krishnan, G. S., & Velmurugan, P. (2019). Investigation on the characteristics of bamboo/jute reinforced hybrid epoxy polymer composites. Materials Research Express, 6(10), 105346. Krishnan, G. S., & Velmurugan, P. (2019). Investigation on the characteristics of bamboo/jute reinforced hybrid epoxy polymer composites. Materials Research Express, 6(10), 105346. Krüger, R., & Wagenführ, A. (2020). Comparison of methods for determining shear modulus of wood. European Journal of Wood and Wood Products, 78, 1087-1094. Kubojima, Y., Inokuchi, Y., Suzuki, Y., & Tonosaki, M. (2010). Shear modulus of several kinds of Japanese bamboo obtained by flexural vibration test. Journal of wood science, 56(1), 64-70. Kubojima, Y., Tonosaki, M., & Yoshihara, H. (2006). Young’s modulus obtained by flexural vibration test of a wooden beam with inhomogeneity of density. Journal of wood science, 52(1), 20-24. Kubojima, Y., Yoshihara, H., Ohsaki, H., & Ohta, M. (2000). Accuracy of shear properties of wood obtained by simplified Iosipescu shear test. Journal of wood science, 46(4), 279-283. Kumpenza, C., Matz, P., Halbauer, P., Grabner, M., Steiner, G., Feist, F., & Müller, U. (2018). Measuring Poisson’s ratio: mechanical characterization of spruce wood by means of non-contact optical gauging techniques. Wood Science and Technology, 52, 1451-1471. Kushwaha, P. K., & Kumar, R. (2009). Studies on water absorption of bamboo-polyester composites: effect of silane treatment of mercerized bamboo. Polymer-Plastics Technology and Engineering, 49(1), 45-52. Kushwaha, P. K., & Kumar, R. (2010). The studies on performance of epoxy and polyester-based composites reinforced with bamboo and glass fibers. Journal of Reinforced Plastics and Composites, 29(13), 1952-1962. Kushwaha, P. K., & Kumar, R. (2011). Influence of chemical treatments on the mechanical and water absorption properties of bamboo fiber composites. Journal of Reinforced Plastics and Composites, 30(1), 73-85. Kuwazuru, O., & Yoshikawa, N. (2004). Theory of elasticity for plain-weave fabrics (1st report, new concept of pseudo-continuum model). JSME International Journal Series A Solid Mechanics and Material Engineering, 47(1), 17-25. L’vov, G. I., & Kostromitskaya, O. A. (2020). Numerical modeling of plastic deformation of unidirectionally reinforced composites. Mechanics of Composite Materials, 56, 1-14. Lee, C. H., Yang, T. H., Cheng, Y. W., & Lee, C. J. (2018). Effects of thermal modification on the surface and chemical properties of moso bamboo. Construction and Building Materials, 178, 59-71. Lee, P. H., Odlin, M., & Yin, H. (2014). Development of a hollow cylinder test for the elastic modulus distribution and the ultimate strength of bamboo. Construction and Building Materials, 51, 235-243. Lee, S. M. (Ed.). (1992). Handbook of composite reinforcements. John Wiley & Sons. Lee, S. Y., Kang, I. A., Park, B. S., Doh, G. H., & Park, B. D. (2009). Effects of filler and coupling agent on the properties of bamboo fiber-reinforced polypropylene composites. Journal of reinforced plastics and composites, 28(21), 2589-2604. Li, B., Liu, C., Zhao, X., Ye, J., & Guo, F. (2023). Multiscale Study of the Effect of Fiber Twist Angle and Interface on the Viscoelasticity of 2D Woven Composites. Materials, 16(7), 2689. Li, M., Wang, P., Boussu, F., & Soulat, D. (2022). A review on the mechanical performance of three-dimensional warp interlock woven fabrics as reinforcement in composites. Journal of Industrial Textiles, 51(7), 1009-1058 Li, P., Wang, Q., & Shi, S. (2011). Differential scheme for the effective elastic properties of nano-particle composites with interface effect. Computational materials science, 50(11), 3230-3237. Li, Z., Zhang, J., & Wang, R. (2022). Evaluation of the in-plane shear properties of bamboo strips (Phyllostachys edulis) with the Iosipescu test and theoretical models based on composite mechanics. Holzforschung, 76(8), 765-780. Liu, D., Song, J., Anderson, D. P., Chang, P. R., & Hua, Y. (2012). Bamboo fiber and its reinforced composites: structure and properties. Cellulose, 19(5), 1449-1480. Liu, H., Jiang, Z., Zhang, X., Liu, X., & Sun, Z. (2014). Effect of fiber on tensile properties of moso bamboo. BioResources, 9(4), 6888-6898. Liu, P., Zhou, Q., Jiang, N., Zhang, H., & Tian, J. (2020). Fundamental research on tensile properties of phyllostachys bamboo. Results in Materials, 7, 100076. Liu, Y., & Hu, H. (2008). X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers, 9, 735-739. Lokesh, P., Kumari, T. S., Gopi, R., & Loganathan, G. B. (2020). A study on mechanical properties of bamboo fiber reinforced polymer composite. Materials Today: Proceedings, 22, 897-903. Lolaki, A., & Shanbeh, M. (2020). Variation of Poisson’s ratio of fabrics woven with helical composite auxetic weft yarns in relation to fabric structural parameters. Journal of Industrial Textiles, 50(2), 149-169. Lomov, S. V., & Verpoest, I. (2006). Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements. Composites science and technology, 66(7-8), 919-933. Lomov, S. V., Verpoest, I., Peeters, T., Roose, D., & Zako, M. (2003). Nesting in textile laminates: geometrical modelling of the laminate. Composites Science and Technology, 63(7), 993-1007. Long, A. C. (Ed.). (2005). Design and manufacture of textile composites. Elsevier. Long, H., Wu, Z., Dong, Q., Shen, Y., Zhou, W., Luo, Y., ... & Dong, X. (2019). Effect of polyethylene glycol on mechanical properties of bamboo fiber‐reinforced polylactic acid composites. Journal of Applied Polymer Science, 136(26), 47709. Lu, H., Lian, H., Xu, J., Ma, N., Zhou, Z., Song, Y., ... & Zhang, X. (2022). Study on the Variation Pattern and Influencing Factors of Poisson’s Ratio of Bamboo. Frontiers in Materials, 9, 896756. Lu, T., Jiang, M., Jiang, Z., Hui, D., Wang, Z., & Zhou, Z. (2013). Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Composites Part B: Engineering, 51, 28-34. Lu, T., Liu, S., Jiang, M., Xu, X., Wang, Y., Wang, Z., ... & Zhou, Z. (2014). Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites. Composites Part B: Engineering, 62, 191-197. Luo, D., Zhong, Y., Xi, S., & Shi, Z. (2021). Static, buckling, and free-vibration analysis of plain-woven composite plate with finite thickness using VAM-based equivalent model. Thin-Walled Structures, 169, 108503. Mahendran, A., Wuzella, G., Hardt-Stremayr, T., & Gindl-Altmutter, W. (2016). Properties of Woven Natural Fiber-Reinforced Biocomposites. Journal of Renewable Materials, 4(3), 215-224. Manalo, A. C., Wani, E., Zukarnain, N. A., Karunasena, W., & Lau, K. T. (2015). Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites. Composites Part B: Engineering, 80, 73-83. Mandal, S., Alam, S., Varma, I. K., & Maiti, S. N. (2010). Studies on bamboo/glass fiber reinforced USP and VE resin. Journal of Reinforced Plastics and Composites, 29(1), 43-51. Mannan, S., Paul Knox, J., & Basu, S. (2017). Correlations between axial stiffness and microstructure of a species of bamboo. Royal Society open science, 4(1), 160412. Mao, J. Z., Sun, X. S., Ridha, M., Tan, V. B. C., & Tay, T. E. (2013). A modeling approach across length scales for progressive failure analysis of woven composites. Applied Composite Materials, 20, 213-231. Marín, J. C., Justo, J., Barroso, A., Cañas, J., & París, F. (2019). On the optimal choice of fibre orientation angle in off-axis tensile test using oblique end-tabs: theoretical and experimental studies. Composites Science and Technology, 178, 11-25. Mascia, N. T., & Nicolas, E. A. (2013). Determination of Poisson’s ratios in relation to fiber angle of a tropical wood species. Construction and Building Materials, 41, 691-696. Matveev, M. Y., Long, A. C., Brown, L. P., & Jones, I. A. (2017). Effects of layer shift and yarn path variability on mechanical properties of a twill weave composite. Journal of Composite Materials, 51(7), 913-925. Mbakop, R. S., Lebrun, G., & Brouillette, F. (2019). Effect of compaction parameters on preform permeability and mechanical properties of unidirectional flax fiber composites. Composites Part B: Engineering, 176, 107083. Melin, L. N., & Neumeister, J. M. (2006). Measuring constitutive shear behavior of orthotropic composites and evaluation of the modified Iosipescu test. Composite structures, 76(1-2), 106-115. Mentrasti, L., Molari, L., & Fabiani, M. (2021). Poisson's ratio bounds in orthotropic materials. Application to natural composites: wood, bamboo and Arundo donax. Composites Part B: Engineering, 209, 108612. Mi, Y., Chen, X., Cuo, Q., & Chan, C. M. (1999). U.S. Patent No. 5,882,745. Washington, DC: U.S. Patent and Trademark Office. Miranda Campos, B., Bourbigot, S., Fontaine, G., & Bonnet, F. (2022). Thermoplastic matrix‐based composites produced by resin transfer molding: A review. Polymer Composites, 43(5), 2485-2506. Mishra, R., Wiener, J., Militky, J., Petru, M., Tomkova, B., & Novotna, J. (2020). Bio-composites reinforced with natural fibers: Comparative analysis of thermal, static and dynamic-mechanical properties. Fibers and Polymers, 21, 619-627. Misnon, M. I., Islam, M. M., Epaarachchi, J. A., & Lau, K. T. (2015). Analyses of woven hemp fabric characteristics for composite reinforcement. Materials & Design (1980-2015), 66, 82-92. Mohanty, S., & Nayak, S. K. (2010). Short bamboo fiber-reinforced HDPE composites: influence of fiber content and modification on strength of the composite. Journal of Reinforced Plastics and Composites, 29(14), 2199-2210. Moran, R., Webb, K., Harries, K., & García, J. J. (2017). Edge bearing tests to assess the influence of radial gradation on the transverse behavior of bamboo. Construction and Building Materials, 131, 574-584. Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21(5), 571-574. Muhammad, A., Rahman, M. R., Hamdan, S., & Sanaullah, K. (2019). Recent developments in bamboo fiber-based composites: A review. Polymer bulletin, 76(5), 2655-2682. Nagamadhu, M., Jeyaraj, P., & Kumar, G. M. (2019). Characterization and mechanical properties of sisal fabric reinforced polyvinyl alcohol green composites: effect of composition and loading direction. Materials Research Express, 6(12), 125320. Naik, N. K., & Shembekar, P. S. (1992). Elastic behavior of woven fabric composites: I—Lamina analysis. Journal of composite materials, 26(15), 2196-2225. Nasri, M., Garnier, C., Abbassi, F., Labanieh, A. R., Dalverny, O., & Zghal, A. (2019). Hybrid approach for woven fabric modelling based on discrete hypoelastic behaviour and experimental validation. Composite Structures, 209, 992-1004. Navi, P., & Sedighi-Gilani, M. (2004). Modeling the influences of microfibril angles and natural defects on the force-extension behavior of single wood fibers. COST E20 book, 57-70. Nirmal, U., Hashim, J., & Low, K. O. (2012). Adhesive wear and frictional performance of bamboo fibres reinforced epoxy composite. Tribology International, 47, 122-133. Nogata, F., & Takahashi, H. (1995). Intelligent functionally graded material: bamboo. Composites Engineering, 5(7), 743-751. Norris, A. N. (1989). An examination of the Mori-Tanaka effective medium approximation for multiphase composites. Nwambu, C., Robert, C., & Alam, P. (2022). The tensile behaviour of unaged and hygrothermally aged asymmetric helicoidally stacked CFRP composites. Journal of Composites Science, 6(5), 137. Okubo, K., Fujii, T., & Yamamoto, Y. (2004). Development of bamboo-based polymer composites and their mechanical properties. Composites Part A: Applied science and manufacturing, 35(3), 377-383. Onal, L., & Adanur, S. (2007). Modeling of elastic, thermal, and strength/failure analysis of two-dimensional woven composites—a review. Onyekwere, O. S., Oladeinde, M. H., & Edokpia, R. O. (2021). Multi-Response optimization of bamboo fiber reinforced unsaturated polyester composites using hybrid Taguchi–grey relational analysis method. Journal of Industrial and Production Engineering, 38(2), 98-107. Osada, T., Nakai, A., & Hamada, H. (2002, January). Effect of nesting of fiber bundles on micro fracture of laminated woven fabric composite. In ASME International Mechanical Engineering Congress and Exposition (Vol. 36517, pp. 37-40). Osada, T., Nakai, A., & Hamada, H. (2003). Initial fracture behavior of satin woven fabric composites. Composite structures, 61(4), 333-339. Osorio Saraz, J. A., Espinosa Bedoya, A., & Garcia Galeano, E. A. (2009). Evaluation of Mechanical Properties of The Internal Structure of The Guadua with Matematical Modelling. DYNA, 76(160), 169-178. Osorio, L., Trujillo, E., Lens, F., Ivens, J., Verpoest, I., & Van Vuure, A. W. (2018). In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties. Journal of Reinforced Plastics and Composites, 37(17), 1099-1113. Osorio, L., Trujillo, E., Van Vuure, A. W., & Verpoest, I. (2011). Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites. Journal of reinforced plastics and composites, 30(5), 396-408. Penava, Ž., Šimić Penava, D., & Knezić, Ž. (2017). Influence kinds of materials on the Poisson’s ratio of woven fabrics. Tehnički glasnik, 11(3), 101-106. Phuong, N. T., Sollogoub, C., & Guinault, A. (2010). Relationship between fiber chemical treatment and properties of recycled pp/bamboo fiber composites. Journal of Reinforced Plastics and Composites, 29(21), 3244-3256. Pierard, O., Friebel, C., & Doghri, I. (2004). Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation. Composites Science and Technology, 64(10-11), 1587-1603. Potluri, P., & Sagar, T. V. (2008). Compaction modelling of textile preforms for composite structures. Composite structures, 86(1-3), 177-185. Potluri, P., & Thammandra, V. S. (2007). Influence of uniaxial and biaxial tension on meso-scale geometry and strain fields in a woven composite. Composite Structures, 77(3), 405-418. Prasad, A. R., & Rao, K. M. (2011). Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Materials & Design, 32(8-9), 4658-4663. Prodromou, A. G., Lomov, S. V., & Verpoest, I. (2011). The method of cells and the mechanical properties of textile composites. Composite structures, 93(4), 1290-1299. Qian, Y., Bao, Q., Li, Z., Xia, T., Yang, Z., & Lu, Z. (2023). Numerical investigation on the mechanical behaviors of 2D woven composites under complex in-plane stress states. Composite Structures, 117008. Qiu, R., Liu, W., & Li, K. (2015). Investigation of bamboo pulp fiber-reinforced unsaturated polyester composites. Holzforschung, 69(8), 967-974. Qu, J., & Cherkaoui, M. (2006). Fundamentals of micromechanics of solids (Vol. 735). Hoboken: Wiley. Raghavendra Rao, H., Varada Rajulu, A., Ramachandra Reddy, G., & Hemachandra Reddy, K. (2010). Flexural and compressive properties of bamboo and glass fiber-reinforced epoxy hybrid composites. Journal of Reinforced Plastics and Composites, 29(10), 1446-1450. Raju, B., Hiremath, S. R., & Mahapatra, D. R. (2018). A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Composite Structures, 204, 607-619. Rajulu, A. V., Chary, K. N., Reddy, G. R., & Meng, Y. Z. (2004). Void content, density and weight reduction studies on short bamboo fiber–epoxy composites. Journal of reinforced plastics and composites, 23(2), 127-130. Rassiah, K., Ali, A., & Saeman, M. (2021). Evaluation the Effect of Laminated Layer Sequence of Plain-Woven Bamboo on Tensile and Impact Performance of E-glass Woven/Epoxy Hybrid Composites. International Journal of Integrated Engineering, 13(7), 194-200. Rassiah, K., Megat Ahmad, M. M. H., Ali, A., Abdullah, A. H., & Nagapan, S. (2018). Mechanical properties of layered laminated woven bamboo Gigantochloa scortechinii/epoxy composites. Journal of Polymers and the Environment, 26, 1328-1342. Rattan, R., & Bijwe, J. (2006). Carbon fabric reinforced polyetherimide composites: Influence of weave of fabric and processing parameters on performance properties and erosive wear. Materials Science and Engineering: A, 420(1-2), 342-350. Rayyaan, R., Kennon, W. R., Potluri, P., & Akonda, M. (2020). Fibre architecture modification to improve the tensile properties of flax-reinforced composites. Journal of Composite Materials, 54(3), 379-395. Reuss, A. J. Z. A. M. M. (1929). Computation of the yield point of mixed crystals due to hiring for single crystals. Math. Phys, 9, 49-58. Rizal, S., Mustapha, A., Owolabi, F. T., Khalil, H. A., Tye, Y. Y., Fizree, H. M., ... & Paridah, M. T. (2018). Enhancement of the physical, mechanical, and thermal properties of epoxy-based bamboo nanofiber nanocomposites. BioResources, 13(4), 7709-7725. Rodrigues, D. D., & Broughton, J. G. (2013). Silane surface modification of boron carbide in epoxy composites. International Journal of Adhesion and Adhesives, 46, 62-73. Rossi, M., & Pierron, F. (2012). On the use of simulated experiments in designing tests for material characterization from full-field measurements. International Journal of Solids and Structures, 49(3-4), 420-435. Rouison, D., Couturier, M., Panthapulakkal, S., & Sain, M. (2006). Measurement of the Average Permeability of Natural Fibre Mai in Resin Transfer Moulding Application. Polymers and Polymer Composites, 14(3), 229-238. Rudd, C. D., Long, A. C., Kendall, K. N., & Mangin, C. (1997). Liquid moulding technologies: Resin transfer moulding, structural reaction injection moulding and related processing techniques. Elsevier. Rudov-Clark, S., Mouritz, A. P., Lee, L., & Bannister, M. K. (2003). Fibre damage in the manufacture of advanced three-dimensional woven composites. Composites Part A: Applied Science and Manufacturing, 34(10), 963-970. Ryzińska, G., & Janowski, G. (2017). Influence of RVE geometrical parameters on elastic response of woven flax-epoxy composite materials. Composites Theory and Practice, 20(2), 51-59. Safarabadi, M., & Feiz Mohammadi, H. (2018). An investigation into the effects of fiber architecture on the mechanical behavior of woven preforms. The Journal of The Textile Institute, 109(11), 1501-1509. Sahbaz Karaduman, N. (2022). Experimental investigation of the effect of weave type on the mechanical properties of woven hemp fabric/epoxy composites. Journal of Composite Materials, 56(8), 1255-1265. Samal, S. K., Mohanty, S., & Nayak, S. K. (2009). Polypropylene—bamboo/glass fiber hybrid composites: fabrication and analysis of mechanical, morphological, thermal, and dynamic mechanical behavior. Journal of Reinforced Plastics and Composites, 28(22), 2729-2747. Samanta, S., Muralidhar, M., & Sarkar, S. (2015). Characterization of mechanical properties of hybrid bamboo/GFRP and jute/GFRP composites. Materials Today: Proceedings, 2(4-5), 1398-1405. Sayem, A. S. M., Haider, J., & Sayeed, M. A. (2019). Development and characterisation of multi-layered jute fabric-reinforced HDPE composites. Journal of Composite Materials, 0021998319885440. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675. Scida, D., Aboura, Z., Benzeggagh, M. L., & Bocherens, E. (1999). A micromechanics model for 3D elasticity and failure of woven-fibre composite materials. Composites Science and Technology, 59(4), 505-517. Sekhar, A. C., & Bhartari, R. K. (1960). Studies on strength of Bamboos: a note on its mechanical behaviour. Indian Forester, 86(5), 296-301. Sevenois, R. D. B., Garoz, D., Verboven, E., Spronk, S. W. F., Gilabert, F. A., Kersemans, M., ... & Van Paepegem, W. (2018). Multiscale approach for identification of transverse isotropic carbon fibre properties and prediction of woven elastic properties using ultrasonic identification. Composites Science and Technology, 168, 160-169. Shanahan, W. J., & Hearle, J. W. S. (1978). 12—an energy method for calculations in fabric mechanics Part II: Examples of application of the method to woven fabrics. Journal of the textile institute, 69(4), 92-100. Shang, L., Sun, Z., & Jiang, Z. (2015). A novel method for measuring mechanical properties of vascular bundles in moso bamboo. Journal of Wood science, 61(6), 562-568. Shao, Z. P., Fang, C. H., Huang, S. X., & Tian, G. L. (2010a). Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure. Wood science and technology, 44(4), 655-666. Shao, Z. P., Zhou, L., Liu, Y. M., Wu, Z. M., & Arnaud, C. (2010b). Differences in structure and strength between internode and node sections of moso bamboo. Journal of Tropical Forest Science, 133-138. Sharma, B., Gatóo, A., & Ramage, M. H. (2015). Effect of processing methods on the mechanical properties of engineered bamboo. Construction and Building Materials, 83, 95-101. Sharma, B., Harries, K. A., & Ghavami, K. (2013). Methods of determining transverse mechanical properties of full-culm bamboo. Construction and Building Materials, 38, 627-637. Shin, H., Kim, B., Han, J. G., Lee, M. Y., Park, J. K., & Cho, M. (2017). Fracture toughness enhancement of thermoplastic/epoxy blends by the plastic yield of toughening agents: a multiscale analysis. Composites Science and Technology, 145, 173-180. Shukla, A. K., Goswami, P., & Maiti, P. R. (2020). Failure propensity of GFRP strengthen RC beam. Journal of Failure Analysis and Prevention, 20(4), 1308-1322. Singh, S., Mohanty, A. K., Sugie, T., Takai, Y., & Hamada, H. (2008). Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Composites Part A: Applied Science and Manufacturing, 39(5), 875-886. Song, W., Zhao, F., Yu, X., Wang, C., Wei, W., & Zhang, S. (2015). Interfacial characterization and optimal preparation of novel bamboo plastic composite engineering materials. BioResources, 10(3), 5049-5070. Soykasap, Ö. (2011). Analysis of plain-weave composites. Mechanics of Composite Materials, 47(2). Stojcevski, F., Hilditch, T. B., & Henderson, L. C. (2019). A comparison of interfacial testing methods and sensitivities to carbon fiber surface treatment conditions. Composites Part A: Applied Science and Manufacturing, 118, 293-301. Stojcevski, F., Hilditch, T., & Henderson, L. C. (2018). A modern account of Iosipescu testing. Composites Part A: Applied Science and Manufacturing, 107, 545-554. Sudheer, M., Pradyoth, K. R., & Somayaji, S. (2015). Analytical and numerical validation of epoxy/glass structural composites for elastic models. American Journal of Materials Science, 5(3C), 162-168. Sun, H., & Pan, N. (2005). Shear deformation analysis for woven fabrics. Composite Structures, 67(3), 317-322. Suthenthiraveerappa, V., & Gopalan, V. (2017). Elastic constants of tapered laminated woven jute/epoxy and woven aloe/epoxy composites under the influence of porosity. Journal of Reinforced Plastics and Composites, 36(19), 1453-1469. Szablewski, P. (2009). Sinusoidal model of fiber-reinforced plastic composite. Journal of Industrial Textiles, 38(4), 277-288. Taj, S., Munawar, M. A., & Khan, S. (2007). Natural fiber-reinforced polymer composites. Proceedings-Pakistan Academy of Sciences, 44(2), 129. Tan, T., Rahbar, N., Allameh, S. M., Kwofie, S., Dissmore, D., Ghavami, K., & Soboyejo, W. O. (2011). Mechanical properties of functionally graded hierarchical bamboo structures. Acta biomaterialia, 7(10), 3796-3803. Tang, X., Whitcomb, J. D., Li, Y., & Sue, H. J. (2005). Micromechanics modeling of moisture diffusion in woven composites. Composites Science and Technology, 65(6), 817-826. Thwe, M. M., & Liao, K. (2002). Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Composites Part A: Applied Science and Manufacturing, 33(1), 43-52. Tita, V., De Carvalho, J., & Vandepitte, D. (2008). Failure analysis of low velocity impact on thin composite laminates: Experimental and numerical approaches. Composite Structures, 83(4), 413-428. Torres Arellano, M., Crouzeix, L., Collombet, F., Douchin, B., & Grunevald, Y. H. (2012). Mechanical characterization of an alternative technique to embed sensors in composite structures: the monitoring patch. Applied Composite Materials, 19, 379-391. Torres, L. A., Ghavami, K., & Garcia, J. J. (2007). A transversely isotropic law for the determination of the circumferential young's modulus of bamboo with diametric compression tests. Latin American applied research, 37(4), 255-260. Trujillo, D. J., & López, L. F. (2020). Bamboo material characterisation. In Nonconventional and vernacular construction materials (pp. 491-520). Woodhead Publishing. Udhayaraman, R., & Mulay, S. S. (2017). Multi-scale approach based constitutive modelling of plain woven textile composites. Mechanics of Materials, 112, 172-192. Ullah, H., Harland, A. R., & Silberschmidt, V. V. (2015). Characterisation of mechanical behaviour and damage analysis of 2D woven composites under bending. Composites Part B: Engineering, 75, 156-166. Uzay, Ç., Çetin, A., Geren, N., Bayramoğlu, M., & Tütüncü, N. (2022). Predicting the tensile stiffness and strength properties of plain woven carbon fiber/epoxy laminates: a practical analytical approach and experimental validations. Mechanics of Advanced Materials and Structures, 1-16. Van Vuure, A. W., Ivens, J. A., & Verpoest, I. (2000). Mechanical properties of composite panels based on woven sandwich-fabric preforms. Composites Part A: Applied Science and Manufacturing, 31(7), 671-680. Vanaerschot, A., Cox, B. N., Lomov, S. V., & Vandepitte, D. (2016). Multi-scale modelling strategy for textile composites based on stochastic reinforcement geometry. Computer Methods in Applied Mechanics and Engineering, 310, 906-934. Waas, A., & Heyer, M. W. (2000). Micromechanics of Linear Elastic Continuous Fiber Composites. Comprehensive Composite Materials. Elsevier Science Ltd. Wambua, P. A., & Anandjiwala, R. (2011). A review of preforms for the composites industry. Journal of industrial textiles, 40(4), 310-333. Wang, B. J., & Young, W. B. (2022). The natural fiber reinforced thermoplastic composite made of woven bamboo fiber and polypropylene. Fibers and Polymers, 1-9. Wang, F., & Shao, Z. (2020). Study on the variation law of bamboo fibers’ tensile properties and the organization structure on the radial direction of bamboo stem. Industrial Crops and Products, 152, 112521. Wang, H., Sheng, K. C., Lan, T., Adl, M., Qian, X. Q., & Zhu, S. M. (2010). Role of surface treatment on water absorption of poly (vinyl chloride) composites reinforced by Phyllostachys pubescens particles. Composites Science and technology, 70(5), 847-853. Wang, L., Wu, J., Chen, C., Zheng, C., Li, B., Joshi, S. C., & Zhou, K. (2017a). Progressive failure analysis of 2D woven composites at the meso-micro scale. Composite Structures, 178, 395-405. Wang, R., Zhang, L., Hu, D., Liu, C., Shen, X., Cho, C., & Li, B. (2017b). A novel approach to impose periodic boundary condition on braided composite RVE model based on RPIM. Composite Structures, 163, 77-88. Wang, Y., & Huang, Z. (2018). Analytical micromechanics models for elastoplastic behavior of long fibrous composites: A critical review and comparative study. Materials, 11(10), 1919. Wang, Y., Zhang, W., Ren, H., Huang, Z., Geng, F., Li, Y., & Zhu, Z. (2020). An Analytical Model for the Tension-Shear Coupling of Woven Fabrics with Different Weave Patterns under Large Shear Deformation. Applied Sciences, 10(4), 1551. Wang, Y., Zhou, Y., & Jin, C. (2022). An analytical nonlinear model for plain-woven composites under off-axis loads. Composite Structures, 296, 115905. Whitney, J. M. (1973). Analytical and experimental methods in composite mechanics. Journal of the Structural Division, 99(1), 113-129. Wijaya, W., Bickerton, S., & Kelly, P. A. (2020). Meso-scale compaction simulation of multi-layer 2D textile reinforcements: A Kirchhoff-based large-strain non-linear elastic constitutive tow model. Composites Part A: Applied Science and Manufacturing, 137, 106017. Williams, D. R., Nurco, D. J., Rahbar, N., & Koski, K. J. (2019). Elasticity of bamboo fiber variants from Brillouin spectroscopy. Materialia, 5, 100240. Wilson, D. W. (1990). Evaluation of the V-notched beam shear test through an interlaboratory study. Journal of Composites, Technology and Research, 12(3), 131-138. Wong, K. J., Zahi, S., Low, K. O., & Lim, C. C. (2010). Fracture characterisation of short bamboo fibre reinforced polyester composites. Materials & Design, 31(9), 4147-4154. Woo, K., & Whitcomb, J. D. (1997). Effects of fiber tow misalignment on the engineering properties of plain weave textile composites. Composite structures, 37(3-4), 343-355. Wu, X., Li, J., & Shenoi, R. A. (2006). Measurement of braided preform permeability. Composites Science and Technology, 66(15), 3064-3069. Xu, L. (1996). Fiber waviness and bonding conditions on composite performance by homogenization method. Michigan State University. Xu, Q., Harries, K., Li, X., Liu, Q., & Gottron, J. (2014). Mechanical properties of structural bamboo following immersion in water. Engineering Structures, 81, 230-239. Xu, Z. W., Chen, Y. H., Cantwell, W. J., & Guan, Z. W. (2020). Multiscale modelling of scaling effects in the impact response of plain woven composites. Composites Part B: Engineering, 188, 107885. Yan, K. F., Zhang, C. Y., Qiao, S. R., Han, D., & Li, M. (2011). In-plane shear strength of a carbon/carbon composite at different loading rates and temperatures. Materials Science and Engineering: A, 528(3), 1458-1462. Yang, M., Wang, F., Zhou, S., Lu, Z., Ran, S., Li, L., & Shao, J. (2019). Thermal and mechanical performance of unidirectional composites from bamboo fibers with varying volume fractions. Polymer Composites, 40(10), 3929-3937. Yang, Teng-Chun, and Hsing-Yu Yang. (2021). "Strain analysis of Moso bamboo (Phyllostachys pubescens) subjected to longitudinal tensile force." Materials Today Communications 28: 102491. Yao, W., W. Zhang (2011) Research on manufacturing technology and application of natural bamboo fibre. In: 4th international conference on intelligent computation technology and automation; Shenzhen, Guangdong, China; 28–29 March 2011. Yoshihara, H., & Tsunematsu, S. (2006). Feasibility of estimation methods for measuring Young's modulus of wood by three-point bending test. Materials and structures, 39(1), 29-36. Yoshihara, H., Kubojima, Y., Nagaoka, K., & Ohta, M. (1998). Measurement of the shear modulus of wood by static bending tests. Journal of wood science, 44, 15-20. Youssefian, S., Jakes, J. E., & Rahbar, N. (2017). Variation of nanostructures, molecular interactions, and anisotropic elastic moduli of lignocellulosic cell walls with moisture. Scientific reports, 7(1), 1-10. Yu, W. K., Chung, K. F., & Chan, S. L. (2005). Axial buckling of bamboo columns in bamboo scaffolds. Engineering Structures, 27(1), 61-73. Yu, Y. L., Huang, X. A., & Yu, W. J. (2014). High performance of bamboo‐based fiber composites from long bamboo fiber bundles and phenolic resins. Journal of Applied Polymer Science, 131(12). Yu, Y., Fei, B., Zhang, B., & Yu, X. (2007). Cell-wall mechanical properties of bamboo investigated by in-situ imaging nanoindentation. Wood and Fiber Science, 39(4), 527-535. Yu, Y., Tian, G., Wang, H., Fei, B., & Wang, G. (2011). Mechanical characterization of single bamboo fibers with nanoindentation and microtensile technique. Holzforschung, 65(1), 113-119. Zako, M., Uetsuji, Y., & Kurashiki, T. (2003). Finite element analysis of damaged woven fabric composite materials. Composites science and technology, 63(3-4), 507-516. Zhang, K., Wang, F., Liang, W., Wang, Z., Duan, Z., & Yang, B. (2018). Thermal and mechanical properties of bamboo fiber reinforced epoxy composites. Polymers, 10(6), 608. Zhang, Y. Z., Wu, H. Y. & Qiu, Y. P. (2010). Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Bioresource Technology, 101(20), 7944-7950. Zhao, G., Lai, R., Li, X., He, B., & Greschik, T. (2010). Replacement of softwood kraft pulp with ECF-bleached bamboo kraft pulp in fine paper. BioResources, 5(3), 1733-1744. Zhao, X., Wang, G., & Wang, Y. (2018). Micromechanical modeling in determining the transverse elastic moduli and stress distributions of bamboo. Journal of Materials Science, 53, 2553-2565. Zhao, Y. H., Tandon, G. P., & Weng, G. J. (1989). Elastic moduli for a class of porous materials. Acta Mechanica, 76(1), 105-131. Zheng, J., Komatsu, T., Takatera, M., Inui, S., Bao, L., & Shimizu, Y. (2008). Relationship between uniaxial and strip biaxial tensile properties of fabrics. Textile Research Journal, 78(3), 224-231. Zhenkai, W., & Jialu, L. (2006). Braided angle measurement technique for three-dimensional braided composite material preform using mathematical morphology and image texture. AUTEX Research Journal, 6(1), 30-39. Zhou, A., Huang, D., Li, H., & Su, Y. (2012). Hybrid approach to determine the mechanical parameters of fibers and matrixes of bamboo. Construction and Building Materials, 35, 191-196. Zhou, G., Sun, Q., Li, D., Meng, Z., Peng, Y., Chen, Z., ... & Su, X. (2021). Meso-scale modeling and damage analysis of carbon/epoxy woven fabric composite under in-plane tension and compression loadings. International journal of mechanical sciences, 190, 105980. Zhou, X., Yu, Y., Lin, Q., & Chen, L. (2013). Effects of maleic anhydride-grafted polypropylene (MAPP) on the physico-mechanical properties and rheological behavior of bamboo powder-polypropylene foamed composites. BioResources, 8(4), 6263-6279. Zhu, C., Zhu, P., Liu, Z., Tao, W., & Chen, W. (2018). Hierarchical framework for quantifying multiscale structures of two-dimensional woven carbon fibre-reinforced composites considering geometric variability. Journal of Industrial Textiles, 48(4), 802-824. Zuhudi, N. Z. M., Jayaraman, K., & Lin, R. J. (2023). Water absorption behavior of the woven bamboo fabric polypropylene-based composites and their hybrids with glass. Materials Today: Proceedings, 74, 513-518. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92377 | - |
| dc.description.abstract | 纖維強化高分子複合材料 (Fiber Reinforced Polymer, FRP) 是工程中重要的一種材料利用形式,藉由高性能的纖維提供剛性與強度而高延展性的基質用於傳遞應力、保護纖維並提供外形。在淨零碳排的時空背景下,竹纖維是一種同時具備短纖維與連續纖維加工潛力的材料,在固碳效益、再生速度、集運效率與力學性能均在多種天然纖維中脫穎而出。本研究利用真空轉注成形技術開發一種竹編織加固環氧樹脂複合材料 (Bamboo Textile Reinforced-Polymer, BTRP)。研究旨在發展出此一新材料並探究其物理與力學性能,更針對彈性常數進行深度的剖析與理論模型的建構。據此,研究分為三個主題。首先是 (1) 基礎物理力學性能的研究,目的是評估BTRP工程所需的基本性能數據並討論不同編織結構因子所造成的影響。首先從密度、含水率、水分吸附、尺寸變異、準靜態、應變能與破壞模式等多種角度切入,廣泛評估此一材料受編法、疊層數、疊層結構、受力方向與荷重條件的影響。結果發現,BTRP在輕量化、尺寸穩定性與耐水性方面均有相當潛力。力學性能方面,楊氏模數至高可達19 GPa,波松比則分布於0.13–0.23之間;抗彎強度最高的組別可達193.40 MPa,而模數可達17.90 GPa,並與編織法、層數、尺寸效應、軸向纖維比例有關。搭配3D X-ray 成像、一階導函數以及應變能分析,也辨識出多種由編織結構引起的破壞模式。由此可見,竹材的彈性常數影響最後的力學表現甚劇,而編織結構對BTRP彈性常數的影響也相當重要,影響抗彎、拉伸行為,甚至因儲存能量的方式不同進而影響破壞發生。
由於編織結構會造成彈性常數明顯的變動進而影響許多力學行為,彈性常數的建構又是複合材料設計的重要基礎,因此第二個主題 (2) 編織FRP的彈性常數預測的目標是推導適用於竹編織FRP的多層級線彈性常數模型。針對竹編結構建立可從竹纖維的彈性,到竹編單層行為直到疊層複合材料彈性反應的解析模型。此模型聚焦在目前較少研究探究的斜紋編織結構,並選定應用性較高且求解較於簡便的解析模型盡可能從物理現象與幾何結構推知不同層級間彈性行為交互作用。此模型共分為四個層級。第一層級將竹篾視為一橫向等向性 (Transverse isotropic) 的等向 (Unidirectional) 材料,利用多種微觀力學模型來描述竹材維管束鞘 (Vascular Bundle Sheath) 與基質組織 (Ground Tissue) 的天然複合結構;第二層級是將竹篾在編織單元中的幾何狀態與疊壓造成的彎折型態以數學式描述,並額外加入描述纖維束彎曲結構的參數;第三層級是將樹脂基質區域與纖維束區域在經緯雙向對彈性的各自貢獻進行組合,求得單層的簡化勁度矩陣並加入修正表面樹脂分布的新參數。第四層級則依循古典疊層理論計算多疊層或多角度的BTRP成品的外力與變形關係。此外,由於竹材料天生的變異性與梯度分布特性,多層級模型亦納入了一種用於解釋竹材變異性的理論;藉由參數分析得知,各種彈性常數對纖維束斷面的敏感度不同。纖維束斷面結構不僅會影響纖維體積分數還會造成疊壓角度不同進而影響彈性常數計算結果。 本研究的最後一個主題是 (3) 各層級的面內彈性常數量測,核心目的是比較不同彈性常數測量的方式,並針對目前較缺乏討論的彈性項發展或測試對應的測定方法 (如竹材顯微單元的估算、竹材側向彈性常數、竹材面內面外剪切模數與編織FRP面內剪切)。本研究利用竹材纖維方向的拉伸試驗量測波松比與縱向彈性模數,討論了包含試片類型與應變量測方式等因子在內的影響。接著利用一種特殊設計過的試片,藉由微觀力學模型來反算橫向的彈性模數,並利用了有限元素分析與旋切的竹單板進行橫向拉伸試驗當作驗證。剪切模數方面,將竹材當成等向FRP,借助V-notched短樑試驗測量面內的剪切模數與剪切強度。為了檢視是否創造真正的面內剪切,我們額外做了竹材與夾具內外側的剪應變比對、數位影像相關法以及破壞模式的比對。最後,以Timoshenko 樑彎理論為基礎,發展一種測得面外剪切模數的方法。本文亦利用數值擬合的方式估計了竹材彈性顯微層級的彈性常數,並成功將之用來描述竹材的梯度變異性。 本研究中,以斜紋編BTRP為材料,比較了多種方法量測雙方向彈性模數、波松比、面內剪切模數的差異。結果顯示,測量方法對彈性模數與波松比的影響不大。而疊層前後會使材料的彈性常數有所不同,可能與編織材料的特有的嵌套效應 (Nesting) 與表面編織結構有關。剪切模數則會因為受力模式與應變量測方式的不同有明顯的差異。 總結而言,本文成功利用編織、連續竹纖維與真空轉注成形三者的優勢發展出一種高性能輕量化的樹脂複合材料,並建構一個能輸入少量因子便計算BTRP成品彈性常數的解析模型。除詳細討論模型中各種幾何因子與編織參數的行為敏感度,更輔以多種不同編織結構的試驗驗證。另一方面,原先缺乏特定數值的竹材與BTRP兩層級彈性常數,本研究系統性的建構新測定方法或取得對應數據。無論是新方法或新理論的討論、基礎研究的積累與材料設計的創新等三個層面,均期望本研究的結果能為竹材料的高值化應用與複合材料工業的低碳轉型做出貢獻。 | zh_TW |
| dc.description.abstract | Fiber reinforced polymers (FRP) are composites used in engineering to provide stiffness and strength through high-performance fibers, while a ductile matrix is used to transfer stress, protect the fibers, and provide form. In line with the trend towards net-zero carbon emissions, bamboo fiber is a material with potential as both a short and continuous fiber processing material. It stands out among various natural fibers in terms of carbon sequestration efficiency, regeneration rate, transportation efficiency, and mechanical properties. In this study, a Bamboo Textile Reinforced-Polymer (BTRP) was developed using vacuum-assisted resin transfer molding (VA-RTM). The research aims to develop this new composite and investigate its physical-mechanical properties, as well as conduct an in-depth analysis and theoretical modeling of the elastic constants. The research is divided into three topics.
The first topic is (1) a study of the physical-mechanical properties of BTRP to evaluate the performance required for engineering and discuss the effects caused by different woven structural factors. The BTRP is extensively evaluated from various perspectives such as density, moisture content, moisture adsorption, dimensional variation, quasi-static behavior, strain energy, and fracture mode. The effects of woven type, number of plies, lamination sequence, loading direction, and conditions are also evaluated. It was found that BTRP has considerable potential in terms of light weight, dimensional stability, and water resistance. Young's modulus can reach up to 19 GPa, Poisson's ratio is distributed between 0.13 and 0.23, and the flexural strength can reach 193.40 MPa, which is affected by the weaving type, number of plies, size effect, and axial fiber content. Various fracture patterns caused by woven structures are also identified using 3D X-ray imaging, first-order derivatives, and strain energy analysis. The elastic constants of bamboo affect the final mechanical performance significantly, and the influence of the woven structure on the elastic constants of BTRP is also critical. The second topic is (2) the prediction of the elastic constants for woven FRP to derive a hierarchical linear elasticity model applicable to BTRP. An analytical model was developed for bamboo woven structures from the elastic properties of bamboo fibers to the elastic properties of lamina up to laminates. The model focuses on twill weave structure, which has been less investigated, and is an easily applied and solved analytical model to deduce the interaction of elastic behaviors between different levels from physical phenomena and geometry. The first level treats the strip as a transversely isotropic unidirectional composite and uses various micromechanical models to describe the natural complex structure of the vascular sheath and the ground tissue of the bamboo. The second level describes the geometry and undulation of the strip in the repeating woven unit. An additional parameter to describe the undulation of strip was proposed; The third level combines the respective contributions of the matrix and the strip to elasticity to obtain a reduced stiffness matrix for a lamina and new parameters which modify the surface matrix distribution was added. The fourth level follows the classical lamination theory to calculate the force–deformation relationship of BTRP laminates. The hierarchical model predicted the inherent variability and gradient distribution properties of bamboo and elastic constants of each level well; the parametric analysis shows that the sensitivity of various elastic constants to strip cross-sections varies. The tow cross-sectional structure not only affects the fiber volume fraction but also causes different crimp angles, which in turn affects the results of elastic constants. The final topic is (3) the measurement of in-plane constants of each level. The main objective of this topic includes a comparative study of measuring approaches and the development of a method for determining specific constants. For instance, this topic focuses on the estimation of anatomical tissue, transverse elastic modulus, in-plane and out-of-plane shear modulus of bamboo, and in-plane shear of woven FRP. The differences between the specimen types and the strain measurement are also discussed. A novel designed specimen was used to invert the transverse modulus using a micromechanical and finite element model, and a transverse tensile test of spin-cut bamboo veneer was conducted as validation. The in-plane shear modulus and shear strength were measured using the Iosipescu approach. To verify the in-plane shear loading, the shear strain, fracture mode were analyzed through digital image correlation . Finally, an approach was developed to measure the out-of-plane shear modulus based on Timoshenko's assumption. In this study, the differences between various measurements for the biaxial elastic modulus, Poisson's ratio, and in-plane shear modulus of BTRP were compared. The results showed that the measurement did not have much effect on the elastic modulus and Poisson's ratio. The effect of ply number on constants may be related to the nesting effect of the woven FRP and the surface deformation characteristics. In addition, the measured shear modulus is significantly different depending on the loading mode and strain measurement. In conclusion, this work successfully developed a high-performance lightweight composite by utilizing the advantages of weaving, continuous bamboo fiber, and VA-RTM. An analytical model describing the elastic constants of BTRP with simple inputs was developed theoretically and verified experimentally. Additionally, a series of new measurements were systematically constructed, and the elastic constants of bamboo and BTRP were obtained. The results of this study are expected to contribute to the high-value application of bamboo and composite materials in the industry. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:13:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-22T16:13:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | PREFACE I
ACKNOWLEDGEMENT III 摘要 VI ABSTRACT IX TABLE OF CONTENT XII LIST OF FIGURES XVI LIST OF TABLES XXI LIST OF SYMBOLS XXII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 BAMBOO TEXTILE REINFORCED POLYMER 4 2.1 Introduction 4 2.1.1 Textile Composite 4 2.1.2 Bamboo Fiber and Composite 6 2.1.3 Vacuum-Assisted Resin Transfer Molding (VA-RTM) 11 2.2 Materials 13 2.2.1 Bamboo Fiber and Preform 13 2.2.2 Manufacturing Process of BTRP 13 2.3 Methods 16 2.3.1 Fundamental Physical Property 16 2.3.2 Tensile Property 17 2.3.3 Flexural Behavior and Fracture Characteristics 19 2.4 Results and Discussion 23 2.4.1 Density 23 2.4.2 Quasi-static Mechanical Test 24 2.4.3 Fracture Mode and Characteristics 34 2.5 Conclusion 46 CHAPTER 3 ELASTIC CONSTANTS OF BAMBOO WEAVING UNIT 48 3.1 Introduction 48 3.1.1 Structure of Bamboo 49 3.1.2 Anisotropy and Linear Elasticity 52 3.1.3 Elastic Constants of Bamboo 56 3.2 Methods and Materials 68 3.2.1 Longitudinal EL and Poisson’s ratio νLT. 69 3.2.2 Transverse Young’s modulus ET 71 3.2.3 In-plane Shear Modulus GLT 78 3.2.4 Digital Image Correlation 80 3.2.5 Out-of-plane Shear Modulus, GLR 82 3.3 Results and Discussion 84 3.3.1 Longitudinal EL and Poisson’s ratio νLT. 84 3.3.2 Transverse Young’s modulus ET 94 3.3.3 Shear Modulus 103 3.4 Conclusion 110 CHAPTER 4 ELASTIC CONSTANTS OF BAMBOO TEXTILE REINFORCED POLYMER 113 4.1 Introduction 113 4.1.1 Structure of Woven Preform 113 4.1.2 Effect of Woven Structure on Composite Elastic Constants 117 4.1.3 Evaluation of Elastic Constants of Woven FRP. 121 4.2 Materials and Methods 128 4.2.1 In-plane Elastic Modulus E1 and Poisson’s Ratio ν12 129 4.2.2 In-plane Shear Modulus, G12 131 4.2.3 Digital Image Correlation 135 4.3 Results and Discussion 137 4.3.1 In-plane Elastic Modulus E1 and Poisson’s Ratio ν12 137 4.3.2 In-plane Shear Modulus, G12 and Comparison of Approaches 141 4.4 Conclusion 148 CHAPTER 5 DEVELOPMENT OF HIERARCHICAL MODEL FOR ELASTIC CONSTANTS 150 5.1 Introduction 150 5.1.1 Modelling of Equivalent Properties of FRP 150 5.1.2 Modeling Approach of Elastic Constants of Woven FRP 157 5.2 Development of Hierarchical Analytical Model for BTRP 161 5.2.1 Overview of The Hierarchical Model and Description of Levels 161 5.2.2 Level 1: Elastic Constants of Bamboo Strip 162 5.2.3 Level 2: Geometry Description of Twill Weave Repeating Unit 172 5.2.4 Level 3: Effective Elastic Constants of Lamina 177 5.2.5 Level 4: Load–deformation of Laminates 180 5.3 Parametrical Study of Model and FRP Behavior 181 5.3.1 Geometry Effect of Strip Cross-section 181 5.3.2 Effect of Undulation and Woven Structure 185 5.4 Validation of the Hierarchical Model 188 5.4.1 Modeling Bamboo Elastic Constants 189 5.4.2 Comparison of Experimental and Predicted Results 190 5.4.3 Results and Discussion 191 5.5 Conclusion 193 CHAPTER 6 CONCLUSION AND FUTURE WORK 196 6.1 Conclusion of Present Work 196 6.1.1 Study of Physical-mechanical Properties of BTRP 196 6.1.2 Elastic Constants Modeling of BTRP 197 6.1.3 Measurements of In-plane Elastic Constants of Each Level 198 6.2 Contributions and Innovations 199 6.2.1 The Development and Evaluation of New Composite 199 6.2.2 Measurements of Important Engineering Constants 199 6.2.3 In-depth Comparison of Test approaches and Condition 200 6.2.4 Development, modification and validation of Hierarchical Model 201 6.3 Future Work 202 REFERENCE 203 APPEDIX 241 Hygroscopic Behavior 241 Moisture Absorption and Swelling 241 Results of Hygroscopic Behavior 243 Python Code 251 | - |
| dc.language.iso | en | - |
| dc.subject | 織物預成形體 | zh_TW |
| dc.subject | 真空樹脂轉注成形 | zh_TW |
| dc.subject | 彈性常數 | zh_TW |
| dc.subject | 竹纖維 | zh_TW |
| dc.subject | 多層級解析模型 | zh_TW |
| dc.subject | Woven Composite | en |
| dc.subject | Hierarchical Model | en |
| dc.subject | VA-RTM | en |
| dc.subject | Elastic Constants | en |
| dc.subject | Bamboo Fiber | en |
| dc.title | 竹編織強化高分子複合材料等效彈性常數之量測與多層級模型之建構 | zh_TW |
| dc.title | Measurements and Hierarchical Modelling of Effective Elastic Constants for Bamboo Textile Reinforced Polymer Composites | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 郭文雄;王正賢;黃心豪;楊文彬;楊登鈞;楊德新 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Shyong Kuo;Jean-Shyan Wang;Hsin-Haou Haung;Wen Bin Young;Teng-Chun Yang;Te-Hsin Yang | en |
| dc.subject.keyword | 織物預成形體,竹纖維,彈性常數,真空樹脂轉注成形,多層級解析模型, | zh_TW |
| dc.subject.keyword | Woven Composite,Bamboo Fiber,Elastic Constants,VA-RTM,Hierarchical Model, | en |
| dc.relation.page | 259 | - |
| dc.identifier.doi | 10.6342/NTU202400524 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| dc.date.embargo-lift | 2029-02-03 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 此日期後於網路公開 2029-02-03 | 19.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
