Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92373
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏安祺zh_TW
dc.contributor.advisorAn-Chi Weien
dc.contributor.author吳靜順zh_TW
dc.contributor.authorChing-Shun Wuen
dc.date.accessioned2024-03-21T16:51:00Z-
dc.date.available2024-03-22-
dc.date.copyright2024-03-21-
dc.date.issued2023-
dc.date.submitted2023-12-21-
dc.identifier.citationAhmet, I., Krawczyk, M., Zhu, W., Woo, A. Y.-H., Morrell, C., Poosala, S., Xiao, R.-P., Lakatta, E. G., & Talan, M. I. (2008). Cardioprotective and survival benefits of long-term combined therapy with beta2 adrenoreceptor (AR) agonist and beta1 AR blocker in dilated cardiomyopathy postmyocardial infarction. The Journal of Pharmacology and Experimental Therapeutics, 325(2), 491–499. https://doi.org/10.1124/jpet.107.135335
Alhayek, S., & Preuss, C. V. (2023). Beta 1 Receptors. In StatPearls. StatPearls Publishing.
Amin, P., Singh, M., & Singh, K. (2011). β-Adrenergic Receptor-Stimulated Cardiac Myocyte Apoptosis: Role of β1 Integrins. Journal of Signal Transduction, 2011, 179057. https://doi.org/10.1155/2011/179057
Anderson, M. E., Brown, J. H., & Bers, D. M. (2011). CaMKII in myocardial hypertrophy and heart failure. Journal of Molecular and Cellular Cardiology, 51(4), 468–473. https://doi.org/10.1016/j.yjmcc.2011.01.012
Ardestani, G., West, M. C., Maresca, T. J., Fissore, R. A., & Stratton, M. M. (2019). FRET-based sensor for CaMKII activity (FRESCA): A useful tool for assessing CaMKII activity in response to Ca2+ oscillations in live cells. The Journal of Biological Chemistry, 294(31), 11876–11891. https://doi.org/10.1074/jbc.RA119.009235
Bassani, R. A., Altamirano, J., Puglisi, J. L., & Bers, D. M. (2004). Action potential duration determines sarcoplasmic reticulum Ca2+ reloading in mammalian ventricular myocytes. The Journal of Physiology, 559(Pt 2), 593–609. https://doi.org/10.1113/jphysiol.2004.067959
Beeler, G. W., & Reuter, H. (1977). Reconstruction of the action potential of ventricular myocardial fibres. The Journal of Physiology, 268(1), 177–210. https://doi.org/10.1113/jphysiol.1977.sp011853
Bell, J. R., Vila-Petroff, M., & Delbridge, L. M. D. (2014). CaMKII-dependent responses to ischemia and reperfusion challenges in the heart. Frontiers in Pharmacology, 5, 96. https://doi.org/10.3389/fphar.2014.00096
Bers, D. M., & Grandi, E. (2009). Calcium/calmodulin-dependent kinase II regulation of cardiac ion channels. Journal of Cardiovascular Pharmacology, 54(3), 180–187. https://doi.org/10.1097/FJC.0b013e3181a25078
Bers, D. M., & Morotti, S. (2014). Ca(2+) current facilitation is CaMKII-dependent and has arrhythmogenic consequences. Frontiers in Pharmacology, 5, 144. https://doi.org/10.3389/fphar.2014.00144
Bhattacharyya, M., Karandur, D., & Kuriyan, J. (2020). Structural Insights into the Regulation of Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII). Cold Spring Harbor Perspectives in Biology, 12(6). https://doi.org/10.1101/cshperspect.a035147
Bondarenko, V. E., Szigeti, G. P., Bett, G. C. L., Kim, S.-J., & Rasmusson, R. L. (2004). Computer model of action potential of mouse ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 287(3), H1378-403. https://doi.org/10.1152/ajpheart.00185.2003
Bradshaw, J. M., Hudmon, A., & Schulman, H. (2002). Chemical quenched flow kinetic studies indicate an intraholoenzyme autophosphorylation mechanism for Ca2+/calmodulin-dependent protein kinase II. The Journal of Biological Chemistry, 277(23), 20991–20998. https://doi.org/10.1074/jbc.M202154200
Braun, A. P., & Schulman, H. (1995). The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annual Review of Physiology, 57, 417–445. https://doi.org/10.1146/annurev.ph.57.030195.002221
Chang, J.-Y., Nakahata, Y., Hayano, Y., & Yasuda, R. (2019). Mechanisms of Ca2+/calmodulin-dependent kinase II activation in single dendritic spines. Nature Communications, 10(1), 2784. https://doi.org/10.1038/s41467-019-10694-z
Chiba, H., Schneider, N. S., Matsuoka, S., & Noma, A. (2008). A simulation study on the activation of cardiac CaMKII delta-isoform and its regulation by phosphatases. Biophysical Journal, 95(5), 2139–2149. https://doi.org/10.1529/biophysj.107.118505
Christensen, M. D., Dun, W., Boyden, P. A., Anderson, M. E., Mohler, P. J., & Hund, T. J. (2009). Oxidized calmodulin kinase II regulates conduction following myocardial infarction: a computational analysis. PLoS Computational Biology, 5(12), e1000583. https://doi.org/10.1371/journal.pcbi.1000583
Collins, S., Altschmied, J., Herbsman, O., Caron, M. G., Mellon, P. L., & Lefkowitz, R. J. (1990). A cAMP response element in the beta 2-adrenergic receptor gene confers transcriptional autoregulation by cAMP. The Journal of Biological Chemistry, 265(31), 19330–19335. https://doi.org/10.1016/S0021-9258(17)30662-2
Communal, C., Singh, K., Pimentel, D. R., & Colucci, W. S. (1998). Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation, 98(13), 1329–1334. https://doi.org/10.1161/01.cir.98.13.1329
Communal, C., Singh, K., Sawyer, D. B., & Colucci, W. S. (1999). Opposing Effects of 1- and 2-Adrenergic Receptors on Cardiac Myocyte Apoptosis : Role of a Pertussis Toxin-Sensitive G Protein. Circulation, 100(22), 2210–2212. https://doi.org/10.1161/01.CIR.100.22.2210
Coultrap, S. J., & Bayer, K. U. (2012). CaMKII regulation in information processing and storage. Trends in Neurosciences, 35(10), 607–618. https://doi.org/10.1016/j.tins.2012.05.003
D’Oria, R., Schipani, R., Leonardini, A., Natalicchio, A., Perrini, S., Cignarelli, A., Laviola, L., & Giorgino, F. (2020). The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxidative Medicine and Cellular Longevity, 2020, 5732956. https://doi.org/10.1155/2020/5732956
Dai, L., Zang, Y., Zheng, D., Xia, L., & Gong, Y. (2016). Role of camkii and PKA in early afterdepolarization of human ventricular myocardium cell: A computational model study. Computational and Mathematical Methods in Medicine, 2016, 4576313. https://doi.org/10.1155/2016/4576313
Demir, S. S., Clark, J. W., Murphey, C. R., & Giles, W. R. (1994). A mathematical model of a rabbit sinoatrial node cell. The American Journal of Physiology, 266(3 Pt 1), C832-52. https://doi.org/10.1152/ajpcell.1994.266.3.C832
Dokos, S., Celler, B., & Lovell, N. (1996). Ion currents underlying sinoatrial node pacemaker activity: a new single cell mathematical model. Journal of Theoretical Biology, 181(3), 245–272. https://doi.org/10.1006/jtbi.1996.0129
Dupont, G., Houart, G., & De Koninck, P. (2003). Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: a simple model. Cell Calcium, 34(6), 485–497. https://doi.org/10.1016/S0143-4160(03)00152-0
Duran, J., Nickel, L., Estrada, M., Backs, J., & van den Hoogenhof, M. M. G. (2021). Camkiiδ splice variants in the healthy and diseased heart. Frontiers in Cell and Developmental Biology, 9, 644630. https://doi.org/10.3389/fcell.2021.644630
Erickson, J. R., He, B. J., Grumbach, I. M., & Anderson, M. E. (2011). CaMKII in the cardiovascular system: sensing redox states. Physiological Reviews, 91(3), 889–915. https://doi.org/10.1152/physrev.00018.2010
Erickson, J. R., Joiner, M. A., Guan, X., Kutschke, W., Yang, J., Oddis, C. V., Bartlett, R. K., Lowe, J. S., O’Donnell, S. E., Aykin-Burns, N., Zimmerman, M. C., Zimmerman, K., Ham, A.-J. L., Weiss, R. M., Spitz, D. R., Shea, M. A., Colbran, R. J., Mohler, P. J., & Anderson, M. E. (2008). A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell, 133(3), 462–474. https://doi.org/10.1016/j.cell.2008.02.048
Erickson, J. R., Patel, R., Ferguson, A., Bossuyt, J., & Bers, D. M. (2011). Fluorescence resonance energy transfer-based sensor Camui provides new insight into mechanisms of calcium/calmodulin-dependent protein kinase II activation in intact cardiomyocytes. Circulation Research, 109(7), 729–738. https://doi.org/10.1161/CIRCRESAHA.111.247148
Foteinou, P. T., Greenstein, J. L., & Winslow, R. L. (2015). Mechanistic investigation of the arrhythmogenic role of oxidized camkii in the heart. Biophysical Journal, 109(4), 838–849. https://doi.org/10.1016/j.bpj.2015.06.064
Frishman, W. H. (2003). Cardiology patient page. Beta-adrenergic blockers. Circulation, 107(18), e117-9. https://doi.org/10.1161/01.CIR.0000070983.15903.A2
Fu, Q., Kim, S., Soto, D., De Arcangelis, V., DiPilato, L., Liu, S., Xu, B., Shi, Q., Zhang, J., & Xiang, Y. K. (2014). A long lasting β1 adrenergic receptor stimulation of cAMP/protein kinase A (PKA) signal in cardiac myocytes. The Journal of Biological Chemistry, 289(21), 14771–14781. https://doi.org/10.1074/jbc.M113.542589
Gaertner, T. R., Kolodziej, S. J., Wang, D., Kobayashi, R., Koomen, J. M., Stoops, J. K., & Waxham, M. N. (2004). Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II. The Journal of Biological Chemistry, 279(13), 12484–12494. https://doi.org/10.1074/jbc.M313597200
Gaido, O. E. R., Granger, J. M., Nkashama, L. J., Lin, B. L., Long, A., Mesubi, O. O., Schole, K. L., Terrilion, C. E., Liu, J. O., Luczak, E. D., & Anderson, M. E. (2022). Novel biosensor identifies ruxolitinib as a potent and cardioprotective camkii inhibitor. BioRxiv. https://doi.org/10.1101/2022.09.24.509320
Grandi, E., & Herren, A. W. (2014). CaMKII-dependent regulation of cardiac Na(+) homeostasis. Frontiers in Pharmacology, 5, 41. https://doi.org/10.3389/fphar.2014.00041
Grandi, E., Puglisi, J. L., Wagner, S., Maier, L. S., Severi, S., & Bers, D. M. (2007). Simulation of Ca-calmodulin-dependent protein kinase II on rabbit ventricular myocyte ion currents and action potentials. Biophysical Journal, 93(11), 3835–3847. https://doi.org/10.1529/biophysj.107.114868
Greenstein, J. L., & Winslow, R. L. (2002). An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. Biophysical Journal, 83(6), 2918–2945. https://doi.org/10.1016/S0006-3495(02)75301-0
Grimm, M., & Brown, J. H. (2010). Beta-adrenergic receptor signaling in the heart: role of CaMKII. Journal of Molecular and Cellular Cardiology, 48(2), 322–330. https://doi.org/10.1016/j.yjmcc.2009.10.016
Grimm, M., Ling, H., Willeford, A., Pereira, L., Gray, C. B. B., Erickson, J. R., Sarma, S., Respress, J. L., Wehrens, X. H. T., Bers, D. M., & Brown, J. H. (2015). CaMKIIδ mediates β-adrenergic effects on RyR2 phosphorylation and SR Ca(2+) leak and the pathophysiological response to chronic β-adrenergic stimulation. Journal of Molecular and Cellular Cardiology, 85, 282–291. https://doi.org/10.1016/j.yjmcc.2015.06.007
Guilbert, A., Lim, H. J., Cheng, J., & Wang, Y. (2015). CaMKII-dependent myofilament Ca2+ desensitization contributes to the frequency-dependent acceleration of relaxation. Cell Calcium, 58(5), 489–499. https://doi.org/10.1016/j.ceca.2015.08.001
Hashambhoy, Y. L., Greenstein, J. L., & Winslow, R. L. (2010). Role of CaMKII in RyR leak, EC coupling and action potential duration: a computational model. Journal of Molecular and Cellular Cardiology, 49(4), 617–624. https://doi.org/10.1016/j.yjmcc.2010.07.011
Hashambhoy, Y. L., Winslow, R. L., & Greenstein, J. L. (2009). CaMKII-induced shift in modal gating explains L-type Ca(2+) current facilitation: a modeling study. Biophysical Journal, 96(5), 1770–1785. https://doi.org/10.1016/j.bpj.2008.11.055
Hashambhoy, Y. L., Winslow, R. L., & Greenstein, J. L. (2011). CaMKII-dependent activation of late INa contributes to cellular arrhythmia in a model of the cardiac myocyte. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2011, 4665–4668. https://doi.org/10.1109/IEMBS.2011.6091155
Helmstadter, K. G., Ljubojevic-Holzer, S., Wood, B. M., Taheri, K. D., Sedej, S., Erickson, J. R., Bossuyt, J., & Bers, D. M. (2021). CaMKII and PKA-dependent phosphorylation co-regulate nuclear localization of HDAC4 in adult cardiomyocytes. Basic Research in Cardiology, 116(1), 11. https://doi.org/10.1007/s00395-021-00850-2
Holmes, W. R. (2000). Models of calmodulin trapping and CaM kinase II activation in a dendritic spine. Journal of Computational Neuroscience, 8(1), 65–85. https://doi.org/10.1023/a:1008969032563
Howe, A. K. (2011). Cross-talk between calcium and protein kinase A in the regulation of cell migration. Current Opinion in Cell Biology, 23(5), 554–561. https://doi.org/10.1016/j.ceb.2011.05.006
Hudmon, A., & Schulman, H. (2002). Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annual Review of Biochemistry, 71, 473–510. https://doi.org/10.1146/annurev.biochem.71.110601.135410
Hund, T. J., Decker, K. F., Kanter, E., Mohler, P. J., Boyden, P. A., Schuessler, R. B., Yamada, K. A., & Rudy, Y. (2008). Role of activated CaMKII in abnormal calcium homeostasis and I(Na) remodeling after myocardial infarction: insights from mathematical modeling. Journal of Molecular and Cellular Cardiology, 45(3), 420–428. https://doi.org/10.1016/j.yjmcc.2008.06.007
Johnston, A. S., Lehnart, S. E., & Burgoyne, J. R. (2015). Ca(2+) signaling in the myocardium by (redox) regulation of PKA/CaMKII. Frontiers in Pharmacology, 6, 166. https://doi.org/10.3389/fphar.2015.00166
Kolodziej, S. J., Hudmon, A., Waxham, M. N., & Stoops, J. K. (2000). Three-dimensional Reconstructions of Calcium/Calmodulin-dependent (CaM) Kinase IIα and Truncated CaM Kinase IIα Reveal a Unique Organization for Its Structural Core and Functional Domains. Journal of Biological Chemistry, 275(19), 14354–14359. https://doi.org/10.1074/jbc.275.19.14354
Korhonen, T., Hänninen, S. L., & Tavi, P. (2009). Model of excitation-contraction coupling of rat neonatal ventricular myocytes. Biophysical Journal, 96(3), 1189–1209. https://doi.org/10.1016/j.bpj.2008.10.026
Lascano, E. C., Said, M., Vittone, L., Mattiazzi, A., Mundiña-Weilenmann, C., & Negroni, J. A. (2013). Role of CaMKII in post acidosis arrhythmias: a simulation study using a human myocyte model. Journal of Molecular and Cellular Cardiology, 60, 172–183. https://doi.org/10.1016/j.yjmcc.2013.04.018
Leroy, J., Abi-Gerges, A., Nikolaev, V. O., Richter, W., Lechêne, P., Mazet, J.-L., Conti, M., Fischmeister, R., & Vandecasteele, G. (2008). Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases. Circulation Research, 102(9), 1091–1100. https://doi.org/10.1161/CIRCRESAHA.107.167817
Linse, S., Helmersson, A., & Forsén, S. (1991). Calcium binding to calmodulin and its globular domains. The Journal of Biological Chemistry, 266(13), 8050–8054. https://doi.org/10.1016/S0021-9258(18)92938-8
Lisman, J., Yasuda, R., & Raghavachari, S. (2012). Mechanisms of CaMKII action in long-term potentiation. Nature Reviews. Neuroscience, 13(3), 169–182. https://doi.org/10.1038/nrn3192
Livshitz, L. M., & Rudy, Y. (2007). Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. American Journal of Physiology. Heart and Circulatory Physiology, 292(6), H2854-66. https://doi.org/10.1152/ajpheart.01347.2006
Llano-Diez, M., Sinclair, J., Yamada, T., Zong, M., Fauconnier, J., Zhang, S.-J., Katz, A., Jardemark, K., Westerblad, H., Andersson, D. C., & Lanner, J. T. (2016). The Role of Reactive Oxygen Species in β-Adrenergic Signaling in Cardiomyocytes from Mice with the Metabolic Syndrome. Plos One, 11(12), e0167090. https://doi.org/10.1371/journal.pone.0167090
Luczak, E. D., & Anderson, M. E. (2014). CaMKII oxidative activation and the pathogenesis of cardiac disease. Journal of Molecular and Cellular Cardiology, 73, 112–116. https://doi.org/10.1016/j.yjmcc.2014.02.004
Lu, C. S., Hodge, J. J. L., Mehren, J., Sun, X. X., & Griffith, L. C. (2003). Regulation of the Ca2+/CaM-responsive pool of CaMKII by scaffold-dependent autophosphorylation. Neuron, 40(6), 1185–1197. https://doi.org/10.1016/s0896-6273(03)00786-4
Lucić, V., Greif, G. J., & Kennedy, M. B. (2008). Detailed state model of CaMKII activation and autophosphorylation. European Biophysics Journal, 38(1), 83–98. https://doi.org/10.1007/s00249-008-0362-4
Luo, C. H., & Rudy, Y. (1991). A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circulation Research, 68(6), 1501–1526. https://doi.org/10.1161/01.res.68.6.1501
Luo, C. H., & Rudy, Y. (1994). A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circulation Research, 74(6), 1071–1096. https://doi.org/10.1161/01.res.74.6.1071
Morotti, S., Edwards, A. G., McCulloch, A. D., Bers, D. M., & Grandi, E. (2014). A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na+ loading and CaMKII. The Journal of Physiology, 592(6), 1181–1197. https://doi.org/10.1113/jphysiol.2013.266676
Negroni, J. A., & Lascano, E. C. (1996). A cardiac muscle model relating sarcomere dynamics to calcium kinetics. Journal of Molecular and Cellular Cardiology, 28(5), 915–929. https://doi.org/10.1006/jmcc.1996.0086
Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., & Giles, W. R. (1998). Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circulation Research, 82(1), 63–81. https://doi.org/10.1161/01.res.82.1.63
Ojuka, E. O., Goyaram, V., & Smith, J. A. H. (2012). The role of CaMKII in regulating GLUT4 expression in skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 303(3), E322-31. https://doi.org/10.1152/ajpendo.00091.2012
Palombo, P., Bürkle, A., & Moreno-Villanueva, M. (2022). Culture medium-dependent isoproterenol stability and its impact on DNA strand breaks formation and repair. Chemico-Biological Interactions, 357, 109877. https://doi.org/10.1016/j.cbi.2022.109877
Pandit, S. V., Clark, R. B., Giles, W. R., & Demir, S. S. (2001). A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophysical Journal, 81(6), 3029–3051. https://doi.org/10.1016/S0006-3495(01)75943-7
Pepke, S., Kinzer-Ursem, T., Mihalas, S., & Kennedy, M. B. (2010). A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II. PLoS Computational Biology, 6(2), e1000675. https://doi.org/10.1371/journal.pcbi.1000675
Pharris, M. C., Patel, N. M., VanDyk, T. G., Bartol, T. M., Sejnowski, T. J., Kennedy, M. B., Stefan, M. I., & Kinzer-Ursem, T. L. (2019). A multi-state model of the CaMKII dodecamer suggests a role for calmodulin in maintenance of autophosphorylation. PLoS Computational Biology, 15(12), e1006941. https://doi.org/10.1371/journal.pcbi.1006941
Pugazhenthi, S., Nesterova, A., Sable, C., Heidenreich, K. A., Boxer, L. M., Heasley, L. E., & Reusch, J. E. (2000). Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. The Journal of Biological Chemistry, 275(15), 10761–10766. https://doi.org/10.1074/jbc.275.15.10761
Puglisi, J. L., & Bers, D. M. (2001). LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. American Journal of Physiology. Cell Physiology, 281(6), C2049-60. https://doi.org/10.1152/ajpcell.2001.281.6.C2049
Reed, J. C., Jurgensmeier, J. M., & Matsuyama, S. (1998). Bcl-2 family proteins and mitochondria. Biochimica et Biophysica Acta, 1366(1–2), 127–137. https://doi.org/10.1016/s0005-2728(98)00108-x
Reyes Gaido, O. E., Pavlaki, N., Granger, J. M., Mesubi, O. O., Liu, B., Lin, B. L., Long, A., Walker, D., Mayourian, J., Schole, K. L., Terrillion, C. E., Nkashama, L. J., Hulsurkar, M. M., Dorn, L. E., Ferrero, K. M., Huganir, R. L., Müller, F. U., Wehrens, X. H. T., Liu, J. O., … Anderson, M. E. (2023). An improved reporter identifies ruxolitinib as a potent and cardioprotective CaMKII inhibitor. Science Translational Medicine, 15(701), eabq7839. https://doi.org/10.1126/scitranslmed.abq7839
Rocco-Machado, N., Lai, L., Kim, G., He, Y., Luczak, E. D., Anderson, M. E., & Levine, R. L. (2022). Oxidative stress-induced autonomous activation of the calcium/calmodulin-dependent kinase II involves disulfide formation in the regulatory domain. The Journal of Biological Chemistry, 298(11), 102579. https://doi.org/10.1016/j.jbc.2022.102579
Rostas, J. A. P., & Skelding, K. A. (2023). Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment. Cells, 12(3). https://doi.org/10.3390/cells12030401
Sag, C. M., Wadsack, D. P., Khabbazzadeh, S., Abesser, M., Grefe, C., Neumann, K., Opiela, M.-K., Backs, J., Olson, E. N., Brown, J. H., Neef, S., Maier, S. K. G., & Maier, L. S. (2009). Calcium/calmodulin-dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure. Circulation. Heart Failure, 2(6), 664–675. https://doi.org/10.1161/CIRCHEARTFAILURE.109.865279
Saucerman, J. J., & Bers, D. M. (2008). Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca2+ in cardiac myocytes. Biophysical Journal, 95(10), 4597–4612. https://doi.org/10.1529/biophysj.108.128728
Shannon, T. R., Wang, F., Puglisi, J., Weber, C., & Bers, D. M. (2004). A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophysical Journal, 87(5), 3351–3371. https://doi.org/10.1529/biophysj.104.047449
Shifman, J. M., Choi, M. H., Mihalas, S., Mayo, S. L., & Kennedy, M. B. (2006). Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proceedings of the National Academy of Sciences of the United States of America, 103(38), 13968–13973. https://doi.org/10.1073/pnas.0606433103
Shin, S.-Y., Kim, T., Lee, H.-S., Kang, J. H., Lee, J. Y., Cho, K.-H., & Kim, D. H. (2014). The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes. Nature Communications, 5, 5777. https://doi.org/10.1038/ncomms6777
Soltis, A. R., & Saucerman, J. J. (2010). Synergy between CaMKII substrates and β-adrenergic signaling in regulation of cardiac myocyte Ca(2+) handling. Biophysical Journal, 99(7), 2038–2047. https://doi.org/10.1016/j.bpj.2010.08.016
Swaminathan, P. D., Purohit, A., Hund, T. J., & Anderson, M. E. (2012). Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circulation Research, 110(12), 1661–1677. https://doi.org/10.1161/CIRCRESAHA.111.243956
Talan, M. I., Ahmet, I., Xiao, R.-P., & Lakatta, E. G. (2011). β₂ AR agonists in treatment of chronic heart failure: long path to translation. Journal of Molecular and Cellular Cardiology, 51(4), 529–533. https://doi.org/10.1016/j.yjmcc.2010.09.019
ten Tusscher, K. H. W. J., Noble, D., Noble, P. J., & Panfilov, A. V. (2004). A model for human ventricular tissue. American Journal of Physiology. Heart and Circulatory Physiology, 286(4), H1573-89. https://doi.org/10.1152/ajpheart.00794.2003
ten Tusscher, K. H. W. J., & Panfilov, A. V. (2006). Alternans and spiral breakup in a human ventricular tissue model. American Journal of Physiology. Heart and Circulatory Physiology, 291(3), H1088-100. https://doi.org/10.1152/ajpheart.00109.2006
Torre, E., Mesirca, P., & Mangoni, M. E. (2021). Beta-1 adrenergic receptors modulate pacemaker activity of mouse sino-atrial myocytes through L-type Cav1.3 channels. EP Europace, 23(Supplement_3). https://doi.org/10.1093/europace/euab116.579
Veitch, C. R., Power, A. S., & Erickson, J. R. (2021). Camkii inhibition is a novel therapeutic strategy to prevent diabetic cardiomyopathy. Frontiers in Pharmacology, 12, 695401. https://doi.org/10.3389/fphar.2021.695401
Wagner, S., Rokita, A. G., Anderson, M. E., & Maier, L. S. (2013). Redox regulation of sodium and calcium handling. Antioxidants & Redox Signaling, 18(9), 1063–1077. https://doi.org/10.1089/ars.2012.4818
Wahler, G. M., Dollinger, S. J., Smith, J. M., & Flemal, K. L. (1994). Time course of postnatal changes in rat heart action potential and in transient outward current is different. The American Journal of Physiology, 267(3 Pt 2), H1157-66. https://doi.org/10.1152/ajpheart.1994.267.3.H1157
Wang, L. J., & Sobie, E. A. (2008). Mathematical model of the neonatal mouse ventricular action potential. American Journal of Physiology. Heart and Circulatory Physiology, 294(6), H2565-75. https://doi.org/10.1152/ajpheart.01376.2007
Wang, W., Shen, W., Zhang, S., Luo, G., Wang, K., Xu, Y., & Zhang, H. (2020). The Role of CaMKII Overexpression and Oxidation in Atrial Fibrillation-A Simulation Study. Frontiers in Physiology, 11, 607809. https://doi.org/10.3389/fphys.2020.607809
Westenbrink, B. D., Edwards, A. G., McCulloch, A. D., & Brown, J. H. (2013). The promise of CaMKII inhibition for heart disease: preventing heart failure and arrhythmias. Expert Opinion on Therapeutic Targets, 17(8), 889–903. https://doi.org/10.1517/14728222.2013.809064
Woo, A. Y. H., & Xiao, R. (2012). β-Adrenergic receptor subtype signaling in heart: from bench to bedside. Acta Pharmacologica Sinica, 33(3), 335–341. https://doi.org/10.1038/aps.2011.201
Yang, J. H., & Saucerman, J. J. (2012). Phospholemman is a negative feed-forward regulator of Ca2+ in β-adrenergic signaling, accelerating β-adrenergic inotropy. Journal of Molecular and Cellular Cardiology, 52(5), 1048–1055. https://doi.org/10.1016/j.yjmcc.2011.12.015
Yoo, B., Lemaire, A., Mangmool, S., Wolf, M. J., Curcio, A., Mao, L., & Rockman, H. A. (2009). Beta1-adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 297(4), H1377-86. https://doi.org/10.1152/ajpheart.00504.2009
Zalcman, G., Federman, N., & Romano, A. (2018). Camkii isoforms in learning and memory: localization and function. Frontiers in Molecular Neuroscience, 11, 445. https://doi.org/10.3389/fnmol.2018.00445
Zang, Y., Dai, L., Zhan, H., Dou, J., Xia, L., & Zhang, H. (2013). Theoretical investigation of the mechanism of heart failure using a canine ventricular cell model: especially the role of up-regulated CaMKII and SR Ca(2+) leak. Journal of Molecular and Cellular Cardiology, 56, 34–43. https://doi.org/10.1016/j.yjmcc.2012.11.020
Zhang, P. (2017). CaMKII: The molecular villain that aggravates cardiovascular disease. Experimental and Therapeutic Medicine, 13(3), 815–820. https://doi.org/10.3892/etm.2017.4034
Zhang, T., Maier, L. S., Dalton, N. D., Miyamoto, S., Ross, J., Bers, D. M., & Brown, J. H. (2003). The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circulation Research, 92(8), 912–919. https://doi.org/10.1161/01.RES.0000069686.31472.C5
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92373-
dc.description.abstract鈣離子/鈣調素蛋白激酶Ⅱ的複雜動動力學一直以來都是一個無論於疾病醫學或生理學皆炙手可熱的研究主題,這是由於它在細胞信號傳遞中的關鍵角色,特別是在心臟生理學方面。 本研究提出了一種新穎的方法,通過整合四種不同的數學模型架構,這在電腦模擬大鼠心臟細胞的領域中仍然相對稀缺,具有獨特的特點。
此篇論文的電腦模擬是為了與約翰霍普金斯大學所做的新生大鼠心臟細胞中鈣離子/鈣調素蛋白激酶Ⅱ活性檢測的實驗數據進行比對探討。 實驗數據中,有控制組以及加了異丙腎上腺素(Isoproterenol)的對照組,不過缺乏了加入活性氧類(Reactive Oxygen Species, ROS)的鈣離子/鈣調素蛋白激酶Ⅱ活性實驗數據。 因此,此篇論文的模擬進行了與控制組及對照組實驗數據的比對探討,也進行了加入活性氧類後鈣離子/鈣調素蛋白激酶Ⅱ活性的模擬預測。
因為現有文獻在研究大鼠心肌細胞中鈣離子/鈣調素蛋白激酶Ⅱ活性探討的數學建模相當稀少,因此突顯了此篇模擬方法的新穎性。通過綜合和適應各種數學建模技術,我們的目標是提供對新生大鼠心室肌細胞中鈣離子/鈣調素蛋白激酶Ⅱ活性的變化有更全面的理解。多個模型的整合使我們能夠捕捉鈣離子/鈣調素蛋白激酶Ⅱ在不同條件下的微妙的活性狀態變化。由於缺少了大鼠心肌模型中鈣離子/鈣調素蛋白激酶Ⅱ活性探討的文獻,此篇研究借鑒Morotti等人的小鼠心室肌細胞模型以及其他模型的建模方法,我們整合並且進行了在新生大鼠背景下的模擬應用。這種全面的方法不僅提高了我們發現的可靠性,還有助於填補有關大鼠心臟細胞模擬的文獻中的短缺。
我們的研究結果揭示了在新生大鼠心室肌細胞中調節CaMKII的多面性機制,為細胞信號通路提供了有價值的見解。本研究中各種建模技術的融合標誌著在物種特定背景下揭示CaMKII動態複雜性的一個重要步驟。隨著數學建模繼續在心臟研究中發揮關鍵作用,本研究為未來旨在闡明在不同實驗環境中CaMKII活性變化的探索鋪平了道路。
zh_TW
dc.description.abstractThe intricate regulatory dynamics of CaMKII within cardiac myocytes constitute a central focus in contemporary research, given their pivotal role in cellular signaling and cardiac physiology. This study employs a computational framework to explore CaMKII activity by integrating four distinct modeling frameworks: excitation-contraction coupling, beta-adrenergic signaling pathway, CaMKII autoregulation, and oxidative regulation. Our model is constructed based on the Morotti-Grandi mathematical model of mouse cardiomyocytes with beta-adrenergic receptors, the rat cardiomyocyte model by Korhonen et al., a refined CaMKII activation model inspired by Chang et al., and the incorporation of oxidative CaMKII states as proposed by Christensen et al. By coupling these models with calcium transients, we scrutinize variations in CaMKII activity under diverse conditions, including different pacing frequencies and durations, isopropanol and super oxide stimulations.
The model parameters are rigorously constrained using experimental data on CaMKII activity in neonatal rat ventricular myocytes, conducted at Johns Hopkins University and supplemented by relevant literature. By integrating multiple models, our approach captures nuanced intricacies in CaMKII regulation, allowing for the analysis of the intricate interplay of CaMKII-mediated processes. Leveraging insights from the mouse ventricular myocyte model and other relevant sources, we extend the applicability of computational simulations to the neonatal rat context. Our findings offer valuable insights into the multifaceted regulatory mechanisms governing CaMKII, and the amalgamation of diverse modeling techniques in this study represents a significant advancement in unraveling the complexities of CaMKII dynamics within a species-specific context.
As computational modeling continues to play a crucial role in advancing cardiac research, our study not only contributes to the current understanding of CaMKII dynamics but also lays the foundation for future investigations seeking to elucidate the intricacies of CaMKII activity in various experimental settings.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:51:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-21T16:51:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgments iii
中文摘要 iv
Abstract vi
Table of Contents viii
List of Tables xi
List of Figures xii
Chapter 1: Introduction and Overview 1
1.1 CaMKII Basic Introduction 1
1.1.1 CaMKII Structure 1
1.1.2 CaMKII Isoforms 2
1.1.3 Mechanism of CaMKII Activation 8
1.2 The Role of CaMKII in Cardiomyocyte 16
1.3 CaMKII Regulation - Isoproterenol 21
1.4 CaMKII Regulation - ROS 27
1.4.1 Functional Consequences of CAMKII Oxidation 29
1.4.2 Implications for Cardiac Pathologies 31
1.5 Biosensor CaMKAR 33
1.6 CaMKII Modeling in Dendritic Spines 36
1.7 Literature Review 37
1.8 Motivation 52
Chapter 2: Mathematical Model and Computational Simulation 54
2.1 A Kinetic Model of Ca2+/CAM and CaMKII 56
2.2 Cardiac Electrophysiology and ECC 72
2.3 Activation of CaMKII and Phosphorylation of ECC Targets 79
2.4 ECC Modified with Neonatal Rat Model 83
2.5 Ca2+ Transient and Formula 94
2.6 Oxidized CAMKII Model 99
Chapter 3: Results and Discussion 101
3.1 Simulation of ECC in Neonatal Rat 101
3.1.1 Action Potential 103
3.1.2 Calcium Transient 107
3.1.3 CaMKII Activity with Different Frequencies 111
3.2 Simulation of CaMKII Acativity with ISO 115
3.2.1 Calcium Transient 116
3.2.2 CaMKII Activity with Different Frequencies 120
3.2.3 CaMKII Activity with Different Duration 121
3.3 Simulation of CaMKII Acativity with ROS 129
3.3.1 With Different Frequencies 130
3.3.2 Simulation of MMVV 133
3.3.3 Simulation of Reference Results Fitting 138
Chapter 4: Summary, Future Perspective and Concluding Remarks 141
4.1 Discussion and Summary 141
4.2 Significant of the Study 146
4.3 Limitation 149
4.4 Future Perspective 152
Reference 155
-
dc.language.isoen-
dc.subject鈣調素蛋白激酶Ⅱzh_TW
dc.subject鈣離子zh_TW
dc.subject活性氧類zh_TW
dc.subject大鼠心臟細胞zh_TW
dc.subject數學建模zh_TW
dc.subjectβ腎上腺素受體zh_TW
dc.subjectmulti-method modelingen
dc.subjectCaMKII regulationen
dc.subjectβ-adrenergic signalingen
dc.subjectROSen
dc.subjectventricular myocyteen
dc.subjectECCen
dc.title基於數學模型對新生大鼠心肌細胞內鈣離子/鈣調素蛋白激酶II活性調控之探討zh_TW
dc.titleSimulation and Analysis of Ca2+/calmodulin Protein Kinase II Activity in Neonatal Rat Cardiomyocytes Using Mathematical Modelsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommitteeElizabeth Luczak;Olurotimi Mesubi;Priya Umapathizh_TW
dc.contributor.oralexamcommitteeElizabeth Luczak;Olurotimi Mesubi;Priya Umapathien
dc.subject.keyword鈣離子,鈣調素蛋白激酶Ⅱ,β腎上腺素受體,數學建模,大鼠心臟細胞,活性氧類,zh_TW
dc.subject.keywordCaMKII regulation,β-adrenergic signaling,ROS,ventricular myocyte,ECC,multi-method modeling,en
dc.relation.page173-
dc.identifier.doi10.6342/NTU202304544-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-12-22-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2025-12-31-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved