Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92369
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林璧鳳zh_TW
dc.contributor.advisorBi-Fong Linen
dc.contributor.author林雅莉zh_TW
dc.contributor.authorAlana Jr Ang Barrettoen
dc.date.accessioned2024-03-21T16:49:54Z-
dc.date.available2024-03-22-
dc.date.copyright2024-03-21-
dc.date.issued2024-
dc.date.submitted2024-01-22-
dc.identifier.citationAl-Sarraf, H. (2002). Transport of 14C-gamma-aminobutyric acid into brain, cerebrospinal fluid and choroid plexus in neonatal and adult rats. Brain Res Dev Brain Res, 139(2), 121-129. https://doi.org/10.1016/s0165-3806(02)00537-0
Allen, J. K., Armaiz-Pena, G. N., Nagaraja, A. S., Sadaoui, N. C., Ortiz, T., Dood, R., Ozcan, M., Herder, D. M., Haemmerle, M., Gharpure, K. M., Rupaimoole, R., Previs, R. A., Wu, S. Y., Pradeep, S., Xu, X., Han, H. D., Zand, B., Dalton, H. J., Taylor, M., . . . Sood, A. K. (2018). Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction. Cancer Res, 78(12), 3233-3242. https://doi.org/10.1158/0008-5472.Can-16-1701
Alpers, C. E., Hudkins, K. L., Ferguson, M., Johnson, R. J., Schatteman, G. C., & Bothwell, M. (1993). Nerve growth factor receptor expression in fetal, mature, and diseased human kidneys. Lab Invest, 69(6), 703-713.
Arnaiz, E., & Harris, A. L. (2022). Role of Hypoxia in the Interferon Response. Front Immunol, 13, 821816. https://doi.org/10.3389/fimmu.2022.821816
Ayala, G. E., Dai, H., Powell, M., Li, R., Ding, Y., Wheeler, T. M., Shine, D., Kadmon, D., Thompson, T., Miles, B. J., Ittmann, M. M., & Rowley, D. (2008). Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res, 14(23), 7593-7603. https://doi.org/10.1158/1078-0432.Ccr-08-1164
Bader, H. L., & Hsu, T. (2016). Inactivation of the tumor suppressor gene von Hippel-Lindau (VHL) in granulocytes contributes to development of liver hemangiomas in a mouse model. BMC Cancer, 16(1), 797. https://doi.org/10.1186/s12885-016-2802-3
Bassett, M. L., Mullen, K. D., Scholz, B., Fenstermacher, J. D., & Jones, E. A. (1990). Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy. Gastroenterology, 98(3), 747-757. https://doi.org/10.1016/0016-5085(90)90298-f
Bhattacharya, D., Gawali, V. S., Kallay, L., Toukam, D. K., Koehler, A., Stambrook, P., Krummel, D. P., & Sengupta, S. (2021). Therapeutically leveraging GABA(A) receptors in cancer. Exp Biol Med (Maywood), 246(19), 2128-2135. https://doi.org/10.1177/15353702211032549
Biljak, V. R., Honović, L., Matica, J., Krešić, B., & Vojak, S. (2017). The role of laboratory testing in detection and classification of chronic kidney disease: national recommendations. Biochem Med (Zagreb), 27(1), 153-176. https://doi.org/10.11613/bm.2017.019
Bonofiglio, R., Antonucci, M. T., Papalia, T., Romeo, F., Capocasale, G., Caroleo, M. C., Di Fausto, V., & Aloe, L. (2007). Nerve growth factor (NGF) and NGF-receptor expression in diseased human kidneys. J Nephrol, 20(2), 186-195.
Boonstra, E., de Kleijn, R., Colzato, L. S., Alkemade, A., Forstmann, B. U., & Nieuwenhuis, S. (2015). Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Front Psychol, 6, 1520. https://doi.org/10.3389/fpsyg.2015.01520
Borthwick Bowen, M., Helmink, B. A., Wargo, J. A., & Yates, M. S. (2023). TIME for Bugs: The Immune Microenvironment and Microbes in Precancer. Cancer Prev Res (Phila), 16(9), 497-505. https://doi.org/10.1158/1940-6207.Capr-23-0087
Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., & Keshert, E. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394(6692), 485-490. https://doi.org/10.1038/28867
Chalifoux, J. R., & Carter, A. G. (2011). GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites. J Neurosci, 31(11), 4221-4232. https://doi.org/10.1523/jneurosci.4561-10.2011
Chappell, J. C., Payne, L. B., & Rathmell, W. K. (2019). Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J Clin Invest, 129(2), 442-451. https://doi.org/10.1172/jci120855
Cheng, L., MacLennan, G. T., Zhang, S., Wang, M., Zhou, M., Tan, P. H., Foster, S., Lopez-Beltran, A., & Montironi, R. (2008). Evidence for polyclonal origin of multifocal clear cell renal cell carcinoma. Clin Cancer Res, 14(24), 8087-8093. https://doi.org/10.1158/1078-0432.Ccr-08-1494
Chitrakar, A., Budda, S. A., Henderson, J. G., Axtell, R. C., & Zenewicz, L. A. (2020). E3 Ubiquitin Ligase Von Hippel-Lindau Protein Promotes Th17 Differentiation. J Immunol, 205(4), 1009-1023. https://doi.org/10.4049/jimmunol.2000243
Clark, P. E. (2009). The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int, 76(9), 939-945. https://doi.org/10.1038/ki.2009.296
Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860-867. https://doi.org/10.1038/nature01322
Cuadros, T., Trilla, E., Sarró, E., Vilà, M. R., Vilardell, J., de Torres, I., Salcedo, M., López-Hellin, J., Sánchez, A., Ramón y Cajal, S., Itarte, E., Morote, J., & Meseguer, A. (2014). HAVCR/KIM-1 activates the IL-6/STAT-3 pathway in clear cell renal cell carcinoma and determines tumor progression and patient outcome. Cancer Res, 74(5), 1416-1428. https://doi.org/10.1158/0008-5472.Can-13-1671
Cuiffo, B. G., & Karnoub, A. E. (2012). Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr, 6(3), 220-230. https://doi.org/10.4161/cam.20875
D''Urso, M., & Kurniawan, N. A. (2020). Mechanical and Physical Regulation of Fibroblast-Myofibroblast Transition: From Cellular Mechanoresponse to Tissue Pathology. Front Bioeng Biotechnol, 8, 609653. https://doi.org/10.3389/fbioe.2020.609653
Dang, C. V. (2013). MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med, 3(8). https://doi.org/10.1101/cshperspect.a014217
Di Donato, M., Cernera, G., Migliaccio, A., & Castoria, G. (2019). Nerve Growth Factor Induces Proliferation and Aggressiveness In Prostate Cancer Cells. Cancers (Basel), 11(6). https://doi.org/10.3390/cancers11060784
Djordjevic, G., Mozetic, V., Mozetic, D. V., Licul, V., Ilijas, K. M., Mustac, E., Oguic, R., Fuckar, Z., & Jonjic, N. (2007). Prognostic significance of vascular endothelial growth factor expression in clear cell renal cell carcinoma. Pathol Res Pract, 203(2), 99-106. https://doi.org/10.1016/j.prp.2006.12.002
Dollé, L., Adriaenssens, E., El Yazidi-Belkoura, I., Le Bourhis, X., Nurcombe, V., & Hondermarck, H. (2004). Nerve growth factor receptors and signaling in breast cancer. Curr Cancer Drug Targets, 4(6), 463-470. https://doi.org/10.2174/1568009043332853
Findeis-Hosey, J. J., McMahon, K. Q., & Findeis, S. K. (2016). Von Hippel-Lindau Disease. J Pediatr Genet, 5(2), 116-123. https://doi.org/10.1055/s-0036-1579757
Greenwald, A. C., Licht, T., Kumar, S., Oladipupo, S. S., Iyer, S., Grunewald, M., & Keshet, E. (2019). VEGF expands erythropoiesis via hypoxia-independent induction of erythropoietin in noncanonical perivascular stromal cells. J Exp Med, 216(1), 215-230. https://doi.org/10.1084/jem.20180752
Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883-899. https://doi.org/10.1016/j.cell.2010.01.025
Haase, V. H. (2009). The VHL tumor suppressor: master regulator of HIF. Curr Pharm Des, 15(33), 3895-3903. https://doi.org/10.2174/138161209789649394
Haase, V. H. (2013). Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev, 27(1), 41-53. https://doi.org/10.1016/j.blre.2012.12.003
Hibino, S., Kawazoe, T., Kasahara, H., Itoh, S., Ishimoto, T., Sakata-Yanagimoto, M., & Taniguchi, K. (2021). Inflammation-Induced Tumorigenesis and Metastasis. Int J Mol Sci, 22(11). https://doi.org/10.3390/ijms22115421
Hsu, T. (2012). Complex cellular functions of the von Hippel-Lindau tumor suppressor gene: insights from model organisms. Oncogene, 31(18), 2247-2257. https://doi.org/10.1038/onc.2011.442
Huang, H.-Y., Hsu, T., & Lin, B.-F. (2019). Gamma-aminobutyric acid decreases macrophages infiltration and suppresses inflammatory responses in renal injury. Journal of Functional Foods, 60, 103419. https://doi.org/https://doi.org/10.1016/j.jff.2019.103419
Hwang, S., Ham, S., Lee, S. E., Lee, Y., & Lee, G. H. (2018). Hypoxia regulates the level of glutamic acid decarboxylase enzymes and interrupts inhibitory synapse stability in primary cultured neurons. Neurotoxicology, 65, 221-230. https://doi.org/10.1016/j.neuro.2017.10.006
Jelkmann, W. (2013). Physiology and pharmacology of erythropoietin. Transfus Med Hemother, 40(5), 302-309. https://doi.org/10.1159/000356193
Kakee, A., Takanaga, H., Terasaki, T., Naito, M., Tsuruo, T., & Sugiyama, Y. (2001). Efflux of a suppressive neurotransmitter, GABA, across the blood-brain barrier. J Neurochem, 79(1), 110-118. https://doi.org/10.1046/j.1471-4159.2001.00540.x
Kovesdy, C. P. (2022). Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011), 12(1), 7-11. https://doi.org/10.1016/j.kisu.2021.11.003
Kuo, C. Y., Chiu, V., Hsieh, P. C., Hsu, T., & Lin, T. Y. (2021). Loss of Function of von Hippel-Lindau Trigger Lipocalin 2-Dependent Inflammatory Responses in Cultured and Primary Renal Tubular Cells. Oxid Med Cell Longev, 2021, 5571638. https://doi.org/10.1155/2021/5571638
Lappin, T. R., & Lee, F. S. (2019). Update on mutations in the HIF: EPO pathway and their role in erythrocytosis. Blood Rev, 37, 100590. https://doi.org/10.1016/j.blre.2019.100590
Lappin, T. R., Maxwell, A. P., & Johnston, P. G. (2002). EPO''s alter ego: erythropoietin has multiple actions. Stem Cells, 20(6), 485-492. https://doi.org/10.1634/stemcells.20-6-485
Li, G., Ni, A., & Yu, M. (2019). Pretumor microenvironment of hepatocellular carcinoma: Cancerization or anticancerization? Gene, 701, 46-54. https://doi.org/10.1016/j.gene.2019.03.034
Li, K., & Xu, E. (2008). The role and the mechanism of gamma-aminobutyric acid during central nervous system development. Neurosci Bull, 24(3), 195-200. https://doi.org/10.1007/s12264-008-0109-3
Li, T. J., Jiang, J., Tang, Y. L., & Liang, X. H. (2023). Insights into the leveraging of GABAergic signaling in cancer therapy. Cancer Med, 12(13), 14498-14510. https://doi.org/10.1002/cam4.6102
Liu, Y., Hu, X., Han, C., Wang, L., Zhang, X., He, X., & Lu, X. (2015). Targeting tumor suppressor genes for cancer therapy. Bioessays, 37(12), 1277-1286. https://doi.org/10.1002/bies.201500093
Marmigère, F., Rage, F., & Tapia-Arancibia, L. (2003). GABA–glutamate interaction in the control of BDNF expression in hypothalamic neurons. Neurochemistry International, 42(4), 353-358. https://doi.org/https://doi.org/10.1016/S0197-0186(02)00100-6
Naderali, E., Valipour, B., Khaki, A. A., Soleymani Rad, J., Alihemmati, A., Rahmati, M., & Nozad Charoudeh, H. (2019). Positive Effects of PI3K/Akt Signaling Inhibition on PTEN and P53 in Prevention of Acute Lymphoblastic Leukemia Tumor Cells. Adv Pharm Bull, 9(3), 470-480. https://doi.org/10.15171/apb.2019.056
Neumann, A. K., Yang, J., Biju, M. P., Joseph, S. K., Johnson, R. S., Haase, V. H., Freedman, B. D., & Turka, L. A. (2005). Hypoxia inducible factor 1 alpha regulates T cell receptor signal transduction. Proc Natl Acad Sci U S A, 102(47), 17071-17076. https://doi.org/10.1073/pnas.0506070102
Nigam, M., Mishra, A. P., Deb, V. K., Dimri, D. B., Tiwari, V., Bungau, S. G., Bungau, A. F., & Radu, A.-F. (2023). Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomedicine & Pharmacotherapy, 164, 115015. https://doi.org/https://doi.org/10.1016/j.biopha.2023.115015
Norata, D., Peri, M., Giammalva, G. R., Lupica, A., Paolini, F., Incorvaia, L., Badalamenti, G., Gristina, V., Galvano, A., Russo, A., Iacopino, D. G., Silvestrini, M., Bazan, V., Brighina, F., & Di Stefano, V. (2023). Immunological Aspects of Von Hippel-Lindau Disease: A Focus on Neuro-Oncology and Myasthenia Gravis. Diagnostics (Basel), 13(1). https://doi.org/10.3390/diagnostics13010144
Okazaki, T., Ebihara, S., Asada, M., Yamanda, S., Niu, K., & Arai, H. (2008). Erythropoietin promotes the growth of tumors lacking its receptor and decreases survival of tumor-bearing mice by enhancing angiogenesis. Neoplasia, 10(9), 932-939. https://doi.org/10.1593/neo.08140
Osborn, J. W., Tyshynsky, R., & Vulchanova, L. (2021). Function of Renal Nerves in Kidney Physiology and Pathophysiology. Annu Rev Physiol, 83, 429-450. https://doi.org/10.1146/annurev-physiol-031620-091656
Oyelese, A. A., Rizzo, M. A., Waxman, S. G., & Kocsis, J. D. (1997). Differential effects of NGF and BDNF on axotomy-induced changes in GABA(A)-receptor-mediated conductance and sodium currents in cutaneous afferent neurons. J Neurophysiol, 78(1), 31-42. https://doi.org/10.1152/jn.1997.78.1.31
Padala, S. A., Barsouk, A., Thandra, K. C., Saginala, K., Mohammed, A., Vakiti, A., Rawla, P., & Barsouk, A. (2020). Epidemiology of Renal Cell Carcinoma. World J Oncol, 11(3), 79-87. https://doi.org/10.14740/wjon1279
Palapattu, G. S., Kristo, B., & Rajfer, J. (2002). Paraneoplastic syndromes in urologic malignancy: the many faces of renal cell carcinoma. Rev Urol, 4(4), 163-170.
Ramakrishnan, S., Anand, V., & Roy, S. (2014). Vascular endothelial growth factor signaling in hypoxia and inflammation. J Neuroimmune Pharmacol, 9(2), 142-160. https://doi.org/10.1007/s11481-014-9531-7
Saman, H., Raza, S. S., Uddin, S., & Rasul, K. (2020). Inducing Angiogenesis, a Key Step in Cancer Vascularization, and Treatment Approaches. Cancers (Basel), 12(5). https://doi.org/10.3390/cancers12051172
Sernagor, E., Chabrol, F., Bony, G., & Cancedda, L. (2010). GABAergic control of neurite outgrowth and remodeling during development and adult neurogenesis: general rules and differences in diverse systems. Front Cell Neurosci, 4, 11. https://doi.org/10.3389/fncel.2010.00011
Shyamaladevi, N., Jayakumar, A. R., Sujatha, R., Paul, V., & Subramanian, E. H. (2002). Evidence that nitric oxide production increases gamma-amino butyric acid permeability of blood-brain barrier. Brain Res Bull, 57(2), 231-236. https://doi.org/10.1016/s0361-9230(01)00755-9
Sigel, E., & Steinmann, M. E. (2012). Structure, Function, and Modulation of GABAA Receptors*. Journal of Biological Chemistry, 287(48), 40224-40231. https://doi.org/https://doi.org/10.1074/jbc.R112.386664
Singh, N., Baby, D., Rajguru, J. P., Patil, P. B., Thakkannavar, S. S., & Pujari, V. B. (2019). Inflammation and cancer. Ann Afr Med, 18(3), 121-126. https://doi.org/10.4103/aam.aam_56_18
Sonbhadra, A., Reddy, B. V. C., Saini, A. G., Tiewsoh, K., Paria, P., Kesavan, S., Suthar, R., Dawman, L., & Attri, S. (2022). Peripheral Neuropathy in Children With Chronic Kidney Disease: Are We Looking Enough? Ann Indian Acad Neurol, 25(3), 389-393. https://doi.org/10.4103/aian.aian_1067_21
Sosman, J. A., & Sondak, V. K. (2003). Melacine: an allogeneic melanoma tumor cell lysate vaccine. Expert Rev Vaccines, 2(3), 353-368. https://doi.org/10.1586/14760584.2.3.353
Srivastava, S., Ghosh, S., Kagan, J., & Mazurchuk, R. (2018). The Making of a PreCancer Atlas: Promises, Challenges, and Opportunities. Trends Cancer, 4(8), 523-536. https://doi.org/10.1016/j.trecan.2018.06.007
Srivastava, S., Ghosh, S., Kagan, J., Mazurchuk, R., Boja, E., Chuaqui, R., Chavarria-Johnson, E., Davidsen, T., Eary, J., Haim, T., Hanlon, S., Hewitt, S., Hughes, S., Jacobs, P., Li, J., Lively, T., Lockett, S., Misteli, T., Nelson, S., . . . Kenney, N. (2018). The Making of a PreCancer Atlas: Promises, Challenges, and Opportunities. Trends in Cancer, 4(8), 523-536. https://doi.org/10.1016/j.trecan.2018.06.007
Stopczynski, R. E., Normolle, D. P., Hartman, D. J., Ying, H., DeBerry, J. J., Bielefeldt, K., Rhim, A. D., DePinho, R. A., Albers, K. M., & Davis, B. M. (2014). Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res, 74(6), 1718-1727. https://doi.org/10.1158/0008-5472.Can-13-2050
Terunuma, M. (2018). Diversity of structure and function of GABA(B) receptors: a complexity of GABA(B)-mediated signaling. Proc Jpn Acad Ser B Phys Biol Sci, 94(10), 390-411. https://doi.org/10.2183/pjab.94.026
Tripathi, M., Billet, S., & Bhowmick, N. A. (2012). Understanding the role of stromal fibroblasts in cancer progression. Cell Adh Migr, 6(3), 231-235. https://doi.org/10.4161/cam.20419
Wang, M., Zhao, J., Zhang, L., Wei, F., Lian, Y., Wu, Y., Gong, Z., Zhang, S., Zhou, J., Cao, K., Li, X., Xiong, W., Li, G., Zeng, Z., & Guo, C. (2017). Role of tumor microenvironment in tumorigenesis. J Cancer, 8(5), 761-773. https://doi.org/10.7150/jca.17648
Wang, W., Li, L., Chen, N., Niu, C., Li, Z., Hu, J., & Cui, J. (2020). Nerves in the Tumor Microenvironment: Origin and Effects. Front Cell Dev Biol, 8, 601738. https://doi.org/10.3389/fcell.2020.601738
Weaver, C. T., Elson, C. O., Fouser, L. A., & Kolls, J. K. (2013). The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol, 8, 477-512. https://doi.org/10.1146/annurev-pathol-011110-130318
Weiss, R. H. (2018). Metabolomics and Metabolic Reprogramming in Kidney Cancer. Semin Nephrol, 38(2), 175-182. https://doi.org/10.1016/j.semnephrol.2018.01.006
Yang, Q., Zhao, J., Chen, D., & Wang, Y. (2021). E3 ubiquitin ligases: styles, structures and functions. Mol Biomed, 2(1), 23. https://doi.org/10.1186/s43556-021-00043-2
Yogeeswari, P., Sriram, D., & Vaigundaragavendran, J. (2005). The GABA shunt: an attractive and potential therapeutic target in the treatment of epileptic disorders. Curr Drug Metab, 6(2), 127-139. https://doi.org/10.2174/1389200053586073
Young, S. Z., & Bordey, A. (2009). GABA''s control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology (Bethesda), 24, 171-185. https://doi.org/10.1152/physiol.00002.2009
Zenobia, C., & Hajishengallis, G. (2015). Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000, 69(1), 142-159. https://doi.org/10.1111/prd.12083
Zhang, Q., & Yang, H. (2012). The Roles of VHL-Dependent Ubiquitination in Signaling and Cancer. Front Oncol, 2, 35. https://doi.org/10.3389/fonc.2012.00035
Zou, J., Bretlau, P., Pyykkö, I., Toppila, E., Olovius, N. P., Stephanson, N., Beck, O., & Miller, J. M. (2003). Comparison of the protective efficacy of neurotrophins and antioxidants for vibration-induced trauma. ORL J Otorhinolaryngol Relat Spec, 65(3), 155-161. https://doi.org/10.1159/000072253
National Kidney Foundation- Stages of Chronic Kidney Disease (2023)
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92369-
dc.description.abstract抑制性神經傳導物質γ-胺基丁酸(GABA)已被證明能夠緩解腎小管特定條件von Hippel-Lindau(VHL)基因敲除小鼠(Hoxb7-Cre-GFP/+; Vhlhfl/fl)或(Vhlhfl/fl)的腎臟發炎並增加壽命,這些小鼠自發性地發展出發炎和腎臟損傷。 這促使人們對神經抑制與免疫反應之間的相關性進行研究。
為了研究神經抑制與免疫反應之間的關係,將Vhlhfl/fl小鼠與野生型小鼠(Hoxb7-Cre-GFP/+; Vhlh+/fl or Hoxb7-GFP/-; Vhlhfl/fl 小鼠)進行比較 ,並在為期10週的時間裡餵食含有79.5g/kg GABA補充劑的AIN-93飲食。實驗中我們透過免疫組織化學染色法來觀察了腎臟神經形態。在動物模型的脾臟以及HEK-293和HK-2細胞系中,使用shVHL25和shVHL61基因敲除來評估發炎因子,這些基因以0 μM、250 μM以及500 μM 的 GABA來進行處理.。
數據顯示,VHL缺陷的動物以及細胞導致了他們的抗發炎細胞因子(IL-6, TNF-α, IFN-γ, IL-17A/F, TGF-β, and MCP-1) 、VHL 症狀標記 (HIF, EPO, and VEGF) 以及神經營養因子 (NGF and BDNF)的表現上升。然而GABA的補充都會導致抗發炎細胞因子、VHL症候標記以及神經營養因子的表現下降。值得注意的是,接受GABA處理的組別也表現出神經生長的減少,顯示GABA可能透過抑制神經生長來對抗腎臟損傷。該研究顯示了GABA在調節腎臟損傷背景下的免疫反應和神經調控方面的治療潛力。
zh_TW
dc.description.abstractThe inhibitory neurotransmitter gamma-aminobutyric acid (GABA) was shown to alleviate renal inflammation and increase lifespan of the renal tubule specific condition von Hippel-Lindau (VHL) gene knockout mice (Hoxb7-Cre-GFP/+; Vhlhfl/fl) or (Vhlhfl/fl) that spontaneously develop inflammation, and renal injury. Prompting investigations into the correlations between the neuronal inhibition and the immune response.
To study the correlation between neuronal inhibition and the immune response, Vhlhfl/fl mice were compared to the wild-type (Hoxb7-Cre-GFP/+; Vhlh+/fl or Hoxb7-GFP/-; Vhlhfl/fl mice) and fed AIN-93 diets containing 79.5g/kg of GABA supplementation for a 10-week period. Renal nerve morphology was assessed through 3-dimensional immunohistochemistry staining. Inflammatory factors were assessed in the spleen of the animal model as well as in vitro with the use of HEK-293 and HK-2 cell lines, featuring shVHL25 and shVHL61 gene knockdowns, that were treated with 0 μM, 250 μM, and 500 μM of GABA.
Our data showed that VHL deficit animal and cell models resulted in an increase of pro-inflammatory cytokines (IL-6, TNF-α, IFN-γ, IL-17A/F, TGF-β, and MCP-1), VHL syndrome markers (HIF, EPO, and VEGF) and neurotropic factors (NGF and BDNF). Indicating the inflammatory response and early markers of angiogenesis. However, GABA supplementation resulted in a downregulation of this response. Notably, GABA-treated groups also exhibited a decrease in nerve growth, suggesting a potential mechanism through which GABA may confer protective effects against renal injury by suppressing nerve growth. This study underscores the therapeutic potential of GABA in modulating neuronal and immune regulation in renal injury.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:49:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-21T16:49:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents審定書 i
誌謝 ii
中文摘要 iii
Abstract: iv
CONTENTS v
Figure List ix
Table List xi
Abbreviation Table xii
Literature Review 1
1.1 Renal cancer and the pre-tumour microenvironment 1
1.1.1 Renal cancer and chronic kidney disease on renal function 1
1.1.2 Proliferation of cancer 3
1.1.3 Pre-tumour microenvironment 5
1.1.4 Pre-tumour inflammation 6
1.2 Von Hippel-Lindau Hereditary Syndrome 8
1.2.1 Introduction to VHL syndrome and ccRCC 8
1.2.2 ccRCC leading to spontaneous kidney failure 10
1.2.3 VHL ubiquitination on the pre-tumor environment 11
1.2.4 Markers of VHL syndrome 12
1.2.5 Role of cytokines in VHL/HIF dependent inflammation 13
1.2.6 Nervous system in VHL syndrome
1.3 GABA 17
1.3.1 Introduction and composition of GABA 17
1.3.2 Role of GABA in inhibiting tumorigenesis and immunity 18
1.3.3 GABA signalling in nerve formations 20
1.3.4 Leveraging GABA signalling in therapies 20
Chapter 2 Exploring the early impact of von Hippel-Lindau knock-out mice and the modulatory role of GABA in renal inflammation and nerve formation. 22
I. Introduction 22
II. Materials and methods 23
2.2.1 Animals 23
2.2.2 Experimental design 24
2.2.3 Behavioural examination 26
2.2.4 Tissue Preparation 28
2.2.5 Detection of serum, brain and urinary markers. 30
2.2.6 Immunohistochemistry 32
2.2.7 Determination of Cytokines 33
2.2.8 Statistical Analysis 35
III. Animal Model Results 37
2.3.1 Physiological disparities in Wild-Type and Vhlhfl/fl mouse 37
2.3.2 Effects of GABA treatment on serum and brain GABA levels and behaviour 39
2.3.3 Markers of inflammation and kidney damage in Vhlhdel/del mice 41
2.3.4 GABA treatment on nerve fibres of Vhlhfl/fl mice 44
2.3.5 Effects of GABA treatment on cytokines from mitogen-stimulated splenocytes 46
Chapter 3 The effects of GABA on nerve and cytokine in VHL knock-down cell cultures 50
I. Introduction 50
II. Materials and methods 51
3.2.1 Cell Lines 51
3.2.2 MTT 52
3.2.3 Transfection of RNA interference (RNAi) molecules 53
3.2.4 Cytokine analysis 56
3.2.5 Gene Expression 58
3.2.6 Western Blot 62
3.2.7 Immunostaining 67
III. Results 68
3.3.1 Transfection efficiency rate of VHL knock-down and cell viability 68
3.3.2 GABA treatment reduced proinflammatory cytokines in VHL knock-down cells 71
3.3.3 GABA induced inhibitory effect of VHL syndrome markers 72
3.3.4 GABA treatment inhibited NGF-induced neurite outgrowth of PC-12 cells 76
Chapter 4 Discussion and Conclusion 78
4.1 The role of VHL and GABA treatment on nerve growth 78
4.2 Behavioural impacts of VHL syndrome and GABA supplementation 80
4.3 Inflammation and immunomodulatory effect of GABA in VHL syndrome 82
4.4 GABA therapy on biomarkers of VHL syndrome 87
4.5 Variations in transfection efficiency of HEK293 and HK2 cells 88
4.6 Conclusion 91
Reference 93
Supplementary Material 104
-
dc.language.isoen-
dc.subjectγ-胺基丁酸zh_TW
dc.subject細胞激素zh_TW
dc.subjectVHLzh_TW
dc.subject神經生長zh_TW
dc.subject發炎zh_TW
dc.subjectinflammationen
dc.subjectVHLen
dc.subjectGamma-aminobutyric aciden
dc.subjectcytokinesen
dc.subjectnerve growthen
dc.titleγ-胺基丁酸對von Hippel-Lindau缺失腎損傷模式的神經與免疫反應調控zh_TW
dc.titleGamma-Aminobutyric Acid Modulates Neuronal and Immune Regulation in the von Hippel-Lindau Deficient Model of Renal Injuryen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee江伯倫;江孟燦;徐沺;謝佳倩zh_TW
dc.contributor.oralexamcommitteeBor-Luen Chiang;Meng-Tsan Chiang;Tien Hsu;Chia-Chien Hsiehen
dc.subject.keywordγ-胺基丁酸,發炎,神經生長,VHL,細胞激素,zh_TW
dc.subject.keywordGamma-aminobutyric acid,inflammation,nerve growth,VHL,cytokines,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202400126-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-23-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2029-01-18-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  此日期後於網路公開 2029-01-18
5.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved