請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92369完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林璧鳳 | zh_TW |
| dc.contributor.advisor | Bi-Fong Lin | en |
| dc.contributor.author | 林雅莉 | zh_TW |
| dc.contributor.author | Alana Jr Ang Barretto | en |
| dc.date.accessioned | 2024-03-21T16:49:54Z | - |
| dc.date.available | 2024-03-22 | - |
| dc.date.copyright | 2024-03-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-22 | - |
| dc.identifier.citation | Al-Sarraf, H. (2002). Transport of 14C-gamma-aminobutyric acid into brain, cerebrospinal fluid and choroid plexus in neonatal and adult rats. Brain Res Dev Brain Res, 139(2), 121-129. https://doi.org/10.1016/s0165-3806(02)00537-0
Allen, J. K., Armaiz-Pena, G. N., Nagaraja, A. S., Sadaoui, N. C., Ortiz, T., Dood, R., Ozcan, M., Herder, D. M., Haemmerle, M., Gharpure, K. M., Rupaimoole, R., Previs, R. A., Wu, S. Y., Pradeep, S., Xu, X., Han, H. D., Zand, B., Dalton, H. J., Taylor, M., . . . Sood, A. K. (2018). Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction. Cancer Res, 78(12), 3233-3242. https://doi.org/10.1158/0008-5472.Can-16-1701 Alpers, C. E., Hudkins, K. L., Ferguson, M., Johnson, R. J., Schatteman, G. C., & Bothwell, M. (1993). Nerve growth factor receptor expression in fetal, mature, and diseased human kidneys. Lab Invest, 69(6), 703-713. Arnaiz, E., & Harris, A. L. (2022). Role of Hypoxia in the Interferon Response. Front Immunol, 13, 821816. https://doi.org/10.3389/fimmu.2022.821816 Ayala, G. E., Dai, H., Powell, M., Li, R., Ding, Y., Wheeler, T. M., Shine, D., Kadmon, D., Thompson, T., Miles, B. J., Ittmann, M. M., & Rowley, D. (2008). Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res, 14(23), 7593-7603. https://doi.org/10.1158/1078-0432.Ccr-08-1164 Bader, H. L., & Hsu, T. (2016). Inactivation of the tumor suppressor gene von Hippel-Lindau (VHL) in granulocytes contributes to development of liver hemangiomas in a mouse model. BMC Cancer, 16(1), 797. https://doi.org/10.1186/s12885-016-2802-3 Bassett, M. L., Mullen, K. D., Scholz, B., Fenstermacher, J. D., & Jones, E. A. (1990). Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy. Gastroenterology, 98(3), 747-757. https://doi.org/10.1016/0016-5085(90)90298-f Bhattacharya, D., Gawali, V. S., Kallay, L., Toukam, D. K., Koehler, A., Stambrook, P., Krummel, D. P., & Sengupta, S. (2021). Therapeutically leveraging GABA(A) receptors in cancer. Exp Biol Med (Maywood), 246(19), 2128-2135. https://doi.org/10.1177/15353702211032549 Biljak, V. R., Honović, L., Matica, J., Krešić, B., & Vojak, S. (2017). The role of laboratory testing in detection and classification of chronic kidney disease: national recommendations. Biochem Med (Zagreb), 27(1), 153-176. https://doi.org/10.11613/bm.2017.019 Bonofiglio, R., Antonucci, M. T., Papalia, T., Romeo, F., Capocasale, G., Caroleo, M. C., Di Fausto, V., & Aloe, L. (2007). Nerve growth factor (NGF) and NGF-receptor expression in diseased human kidneys. J Nephrol, 20(2), 186-195. Boonstra, E., de Kleijn, R., Colzato, L. S., Alkemade, A., Forstmann, B. U., & Nieuwenhuis, S. (2015). Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Front Psychol, 6, 1520. https://doi.org/10.3389/fpsyg.2015.01520 Borthwick Bowen, M., Helmink, B. A., Wargo, J. A., & Yates, M. S. (2023). TIME for Bugs: The Immune Microenvironment and Microbes in Precancer. Cancer Prev Res (Phila), 16(9), 497-505. https://doi.org/10.1158/1940-6207.Capr-23-0087 Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., & Keshert, E. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394(6692), 485-490. https://doi.org/10.1038/28867 Chalifoux, J. R., & Carter, A. G. (2011). GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites. J Neurosci, 31(11), 4221-4232. https://doi.org/10.1523/jneurosci.4561-10.2011 Chappell, J. C., Payne, L. B., & Rathmell, W. K. (2019). Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J Clin Invest, 129(2), 442-451. https://doi.org/10.1172/jci120855 Cheng, L., MacLennan, G. T., Zhang, S., Wang, M., Zhou, M., Tan, P. H., Foster, S., Lopez-Beltran, A., & Montironi, R. (2008). Evidence for polyclonal origin of multifocal clear cell renal cell carcinoma. Clin Cancer Res, 14(24), 8087-8093. https://doi.org/10.1158/1078-0432.Ccr-08-1494 Chitrakar, A., Budda, S. A., Henderson, J. G., Axtell, R. C., & Zenewicz, L. A. (2020). E3 Ubiquitin Ligase Von Hippel-Lindau Protein Promotes Th17 Differentiation. J Immunol, 205(4), 1009-1023. https://doi.org/10.4049/jimmunol.2000243 Clark, P. E. (2009). The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int, 76(9), 939-945. https://doi.org/10.1038/ki.2009.296 Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860-867. https://doi.org/10.1038/nature01322 Cuadros, T., Trilla, E., Sarró, E., Vilà, M. R., Vilardell, J., de Torres, I., Salcedo, M., López-Hellin, J., Sánchez, A., Ramón y Cajal, S., Itarte, E., Morote, J., & Meseguer, A. (2014). HAVCR/KIM-1 activates the IL-6/STAT-3 pathway in clear cell renal cell carcinoma and determines tumor progression and patient outcome. Cancer Res, 74(5), 1416-1428. https://doi.org/10.1158/0008-5472.Can-13-1671 Cuiffo, B. G., & Karnoub, A. E. (2012). Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr, 6(3), 220-230. https://doi.org/10.4161/cam.20875 D''Urso, M., & Kurniawan, N. A. (2020). Mechanical and Physical Regulation of Fibroblast-Myofibroblast Transition: From Cellular Mechanoresponse to Tissue Pathology. Front Bioeng Biotechnol, 8, 609653. https://doi.org/10.3389/fbioe.2020.609653 Dang, C. V. (2013). MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med, 3(8). https://doi.org/10.1101/cshperspect.a014217 Di Donato, M., Cernera, G., Migliaccio, A., & Castoria, G. (2019). Nerve Growth Factor Induces Proliferation and Aggressiveness In Prostate Cancer Cells. Cancers (Basel), 11(6). https://doi.org/10.3390/cancers11060784 Djordjevic, G., Mozetic, V., Mozetic, D. V., Licul, V., Ilijas, K. M., Mustac, E., Oguic, R., Fuckar, Z., & Jonjic, N. (2007). Prognostic significance of vascular endothelial growth factor expression in clear cell renal cell carcinoma. Pathol Res Pract, 203(2), 99-106. https://doi.org/10.1016/j.prp.2006.12.002 Dollé, L., Adriaenssens, E., El Yazidi-Belkoura, I., Le Bourhis, X., Nurcombe, V., & Hondermarck, H. (2004). Nerve growth factor receptors and signaling in breast cancer. Curr Cancer Drug Targets, 4(6), 463-470. https://doi.org/10.2174/1568009043332853 Findeis-Hosey, J. J., McMahon, K. Q., & Findeis, S. K. (2016). Von Hippel-Lindau Disease. J Pediatr Genet, 5(2), 116-123. https://doi.org/10.1055/s-0036-1579757 Greenwald, A. C., Licht, T., Kumar, S., Oladipupo, S. S., Iyer, S., Grunewald, M., & Keshet, E. (2019). VEGF expands erythropoiesis via hypoxia-independent induction of erythropoietin in noncanonical perivascular stromal cells. J Exp Med, 216(1), 215-230. https://doi.org/10.1084/jem.20180752 Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883-899. https://doi.org/10.1016/j.cell.2010.01.025 Haase, V. H. (2009). The VHL tumor suppressor: master regulator of HIF. Curr Pharm Des, 15(33), 3895-3903. https://doi.org/10.2174/138161209789649394 Haase, V. H. (2013). Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev, 27(1), 41-53. https://doi.org/10.1016/j.blre.2012.12.003 Hibino, S., Kawazoe, T., Kasahara, H., Itoh, S., Ishimoto, T., Sakata-Yanagimoto, M., & Taniguchi, K. (2021). Inflammation-Induced Tumorigenesis and Metastasis. Int J Mol Sci, 22(11). https://doi.org/10.3390/ijms22115421 Hsu, T. (2012). Complex cellular functions of the von Hippel-Lindau tumor suppressor gene: insights from model organisms. Oncogene, 31(18), 2247-2257. https://doi.org/10.1038/onc.2011.442 Huang, H.-Y., Hsu, T., & Lin, B.-F. (2019). Gamma-aminobutyric acid decreases macrophages infiltration and suppresses inflammatory responses in renal injury. Journal of Functional Foods, 60, 103419. https://doi.org/https://doi.org/10.1016/j.jff.2019.103419 Hwang, S., Ham, S., Lee, S. E., Lee, Y., & Lee, G. H. (2018). Hypoxia regulates the level of glutamic acid decarboxylase enzymes and interrupts inhibitory synapse stability in primary cultured neurons. Neurotoxicology, 65, 221-230. https://doi.org/10.1016/j.neuro.2017.10.006 Jelkmann, W. (2013). Physiology and pharmacology of erythropoietin. Transfus Med Hemother, 40(5), 302-309. https://doi.org/10.1159/000356193 Kakee, A., Takanaga, H., Terasaki, T., Naito, M., Tsuruo, T., & Sugiyama, Y. (2001). Efflux of a suppressive neurotransmitter, GABA, across the blood-brain barrier. J Neurochem, 79(1), 110-118. https://doi.org/10.1046/j.1471-4159.2001.00540.x Kovesdy, C. P. (2022). Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011), 12(1), 7-11. https://doi.org/10.1016/j.kisu.2021.11.003 Kuo, C. Y., Chiu, V., Hsieh, P. C., Hsu, T., & Lin, T. Y. (2021). Loss of Function of von Hippel-Lindau Trigger Lipocalin 2-Dependent Inflammatory Responses in Cultured and Primary Renal Tubular Cells. Oxid Med Cell Longev, 2021, 5571638. https://doi.org/10.1155/2021/5571638 Lappin, T. R., & Lee, F. S. (2019). Update on mutations in the HIF: EPO pathway and their role in erythrocytosis. Blood Rev, 37, 100590. https://doi.org/10.1016/j.blre.2019.100590 Lappin, T. R., Maxwell, A. P., & Johnston, P. G. (2002). EPO''s alter ego: erythropoietin has multiple actions. Stem Cells, 20(6), 485-492. https://doi.org/10.1634/stemcells.20-6-485 Li, G., Ni, A., & Yu, M. (2019). Pretumor microenvironment of hepatocellular carcinoma: Cancerization or anticancerization? Gene, 701, 46-54. https://doi.org/10.1016/j.gene.2019.03.034 Li, K., & Xu, E. (2008). The role and the mechanism of gamma-aminobutyric acid during central nervous system development. Neurosci Bull, 24(3), 195-200. https://doi.org/10.1007/s12264-008-0109-3 Li, T. J., Jiang, J., Tang, Y. L., & Liang, X. H. (2023). Insights into the leveraging of GABAergic signaling in cancer therapy. Cancer Med, 12(13), 14498-14510. https://doi.org/10.1002/cam4.6102 Liu, Y., Hu, X., Han, C., Wang, L., Zhang, X., He, X., & Lu, X. (2015). Targeting tumor suppressor genes for cancer therapy. Bioessays, 37(12), 1277-1286. https://doi.org/10.1002/bies.201500093 Marmigère, F., Rage, F., & Tapia-Arancibia, L. (2003). GABA–glutamate interaction in the control of BDNF expression in hypothalamic neurons. Neurochemistry International, 42(4), 353-358. https://doi.org/https://doi.org/10.1016/S0197-0186(02)00100-6 Naderali, E., Valipour, B., Khaki, A. A., Soleymani Rad, J., Alihemmati, A., Rahmati, M., & Nozad Charoudeh, H. (2019). Positive Effects of PI3K/Akt Signaling Inhibition on PTEN and P53 in Prevention of Acute Lymphoblastic Leukemia Tumor Cells. Adv Pharm Bull, 9(3), 470-480. https://doi.org/10.15171/apb.2019.056 Neumann, A. K., Yang, J., Biju, M. P., Joseph, S. K., Johnson, R. S., Haase, V. H., Freedman, B. D., & Turka, L. A. (2005). Hypoxia inducible factor 1 alpha regulates T cell receptor signal transduction. Proc Natl Acad Sci U S A, 102(47), 17071-17076. https://doi.org/10.1073/pnas.0506070102 Nigam, M., Mishra, A. P., Deb, V. K., Dimri, D. B., Tiwari, V., Bungau, S. G., Bungau, A. F., & Radu, A.-F. (2023). Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomedicine & Pharmacotherapy, 164, 115015. https://doi.org/https://doi.org/10.1016/j.biopha.2023.115015 Norata, D., Peri, M., Giammalva, G. R., Lupica, A., Paolini, F., Incorvaia, L., Badalamenti, G., Gristina, V., Galvano, A., Russo, A., Iacopino, D. G., Silvestrini, M., Bazan, V., Brighina, F., & Di Stefano, V. (2023). Immunological Aspects of Von Hippel-Lindau Disease: A Focus on Neuro-Oncology and Myasthenia Gravis. Diagnostics (Basel), 13(1). https://doi.org/10.3390/diagnostics13010144 Okazaki, T., Ebihara, S., Asada, M., Yamanda, S., Niu, K., & Arai, H. (2008). Erythropoietin promotes the growth of tumors lacking its receptor and decreases survival of tumor-bearing mice by enhancing angiogenesis. Neoplasia, 10(9), 932-939. https://doi.org/10.1593/neo.08140 Osborn, J. W., Tyshynsky, R., & Vulchanova, L. (2021). Function of Renal Nerves in Kidney Physiology and Pathophysiology. Annu Rev Physiol, 83, 429-450. https://doi.org/10.1146/annurev-physiol-031620-091656 Oyelese, A. A., Rizzo, M. A., Waxman, S. G., & Kocsis, J. D. (1997). Differential effects of NGF and BDNF on axotomy-induced changes in GABA(A)-receptor-mediated conductance and sodium currents in cutaneous afferent neurons. J Neurophysiol, 78(1), 31-42. https://doi.org/10.1152/jn.1997.78.1.31 Padala, S. A., Barsouk, A., Thandra, K. C., Saginala, K., Mohammed, A., Vakiti, A., Rawla, P., & Barsouk, A. (2020). Epidemiology of Renal Cell Carcinoma. World J Oncol, 11(3), 79-87. https://doi.org/10.14740/wjon1279 Palapattu, G. S., Kristo, B., & Rajfer, J. (2002). Paraneoplastic syndromes in urologic malignancy: the many faces of renal cell carcinoma. Rev Urol, 4(4), 163-170. Ramakrishnan, S., Anand, V., & Roy, S. (2014). Vascular endothelial growth factor signaling in hypoxia and inflammation. J Neuroimmune Pharmacol, 9(2), 142-160. https://doi.org/10.1007/s11481-014-9531-7 Saman, H., Raza, S. S., Uddin, S., & Rasul, K. (2020). Inducing Angiogenesis, a Key Step in Cancer Vascularization, and Treatment Approaches. Cancers (Basel), 12(5). https://doi.org/10.3390/cancers12051172 Sernagor, E., Chabrol, F., Bony, G., & Cancedda, L. (2010). GABAergic control of neurite outgrowth and remodeling during development and adult neurogenesis: general rules and differences in diverse systems. Front Cell Neurosci, 4, 11. https://doi.org/10.3389/fncel.2010.00011 Shyamaladevi, N., Jayakumar, A. R., Sujatha, R., Paul, V., & Subramanian, E. H. (2002). Evidence that nitric oxide production increases gamma-amino butyric acid permeability of blood-brain barrier. Brain Res Bull, 57(2), 231-236. https://doi.org/10.1016/s0361-9230(01)00755-9 Sigel, E., & Steinmann, M. E. (2012). Structure, Function, and Modulation of GABAA Receptors*. Journal of Biological Chemistry, 287(48), 40224-40231. https://doi.org/https://doi.org/10.1074/jbc.R112.386664 Singh, N., Baby, D., Rajguru, J. P., Patil, P. B., Thakkannavar, S. S., & Pujari, V. B. (2019). Inflammation and cancer. Ann Afr Med, 18(3), 121-126. https://doi.org/10.4103/aam.aam_56_18 Sonbhadra, A., Reddy, B. V. C., Saini, A. G., Tiewsoh, K., Paria, P., Kesavan, S., Suthar, R., Dawman, L., & Attri, S. (2022). Peripheral Neuropathy in Children With Chronic Kidney Disease: Are We Looking Enough? Ann Indian Acad Neurol, 25(3), 389-393. https://doi.org/10.4103/aian.aian_1067_21 Sosman, J. A., & Sondak, V. K. (2003). Melacine: an allogeneic melanoma tumor cell lysate vaccine. Expert Rev Vaccines, 2(3), 353-368. https://doi.org/10.1586/14760584.2.3.353 Srivastava, S., Ghosh, S., Kagan, J., & Mazurchuk, R. (2018). The Making of a PreCancer Atlas: Promises, Challenges, and Opportunities. Trends Cancer, 4(8), 523-536. https://doi.org/10.1016/j.trecan.2018.06.007 Srivastava, S., Ghosh, S., Kagan, J., Mazurchuk, R., Boja, E., Chuaqui, R., Chavarria-Johnson, E., Davidsen, T., Eary, J., Haim, T., Hanlon, S., Hewitt, S., Hughes, S., Jacobs, P., Li, J., Lively, T., Lockett, S., Misteli, T., Nelson, S., . . . Kenney, N. (2018). The Making of a PreCancer Atlas: Promises, Challenges, and Opportunities. Trends in Cancer, 4(8), 523-536. https://doi.org/10.1016/j.trecan.2018.06.007 Stopczynski, R. E., Normolle, D. P., Hartman, D. J., Ying, H., DeBerry, J. J., Bielefeldt, K., Rhim, A. D., DePinho, R. A., Albers, K. M., & Davis, B. M. (2014). Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res, 74(6), 1718-1727. https://doi.org/10.1158/0008-5472.Can-13-2050 Terunuma, M. (2018). Diversity of structure and function of GABA(B) receptors: a complexity of GABA(B)-mediated signaling. Proc Jpn Acad Ser B Phys Biol Sci, 94(10), 390-411. https://doi.org/10.2183/pjab.94.026 Tripathi, M., Billet, S., & Bhowmick, N. A. (2012). Understanding the role of stromal fibroblasts in cancer progression. Cell Adh Migr, 6(3), 231-235. https://doi.org/10.4161/cam.20419 Wang, M., Zhao, J., Zhang, L., Wei, F., Lian, Y., Wu, Y., Gong, Z., Zhang, S., Zhou, J., Cao, K., Li, X., Xiong, W., Li, G., Zeng, Z., & Guo, C. (2017). Role of tumor microenvironment in tumorigenesis. J Cancer, 8(5), 761-773. https://doi.org/10.7150/jca.17648 Wang, W., Li, L., Chen, N., Niu, C., Li, Z., Hu, J., & Cui, J. (2020). Nerves in the Tumor Microenvironment: Origin and Effects. Front Cell Dev Biol, 8, 601738. https://doi.org/10.3389/fcell.2020.601738 Weaver, C. T., Elson, C. O., Fouser, L. A., & Kolls, J. K. (2013). The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol, 8, 477-512. https://doi.org/10.1146/annurev-pathol-011110-130318 Weiss, R. H. (2018). Metabolomics and Metabolic Reprogramming in Kidney Cancer. Semin Nephrol, 38(2), 175-182. https://doi.org/10.1016/j.semnephrol.2018.01.006 Yang, Q., Zhao, J., Chen, D., & Wang, Y. (2021). E3 ubiquitin ligases: styles, structures and functions. Mol Biomed, 2(1), 23. https://doi.org/10.1186/s43556-021-00043-2 Yogeeswari, P., Sriram, D., & Vaigundaragavendran, J. (2005). The GABA shunt: an attractive and potential therapeutic target in the treatment of epileptic disorders. Curr Drug Metab, 6(2), 127-139. https://doi.org/10.2174/1389200053586073 Young, S. Z., & Bordey, A. (2009). GABA''s control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology (Bethesda), 24, 171-185. https://doi.org/10.1152/physiol.00002.2009 Zenobia, C., & Hajishengallis, G. (2015). Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000, 69(1), 142-159. https://doi.org/10.1111/prd.12083 Zhang, Q., & Yang, H. (2012). The Roles of VHL-Dependent Ubiquitination in Signaling and Cancer. Front Oncol, 2, 35. https://doi.org/10.3389/fonc.2012.00035 Zou, J., Bretlau, P., Pyykkö, I., Toppila, E., Olovius, N. P., Stephanson, N., Beck, O., & Miller, J. M. (2003). Comparison of the protective efficacy of neurotrophins and antioxidants for vibration-induced trauma. ORL J Otorhinolaryngol Relat Spec, 65(3), 155-161. https://doi.org/10.1159/000072253 National Kidney Foundation- Stages of Chronic Kidney Disease (2023) | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92369 | - |
| dc.description.abstract | 抑制性神經傳導物質γ-胺基丁酸(GABA)已被證明能夠緩解腎小管特定條件von Hippel-Lindau(VHL)基因敲除小鼠(Hoxb7-Cre-GFP/+; Vhlhfl/fl)或(Vhlhfl/fl)的腎臟發炎並增加壽命,這些小鼠自發性地發展出發炎和腎臟損傷。 這促使人們對神經抑制與免疫反應之間的相關性進行研究。
為了研究神經抑制與免疫反應之間的關係,將Vhlhfl/fl小鼠與野生型小鼠(Hoxb7-Cre-GFP/+; Vhlh+/fl or Hoxb7-GFP/-; Vhlhfl/fl 小鼠)進行比較 ,並在為期10週的時間裡餵食含有79.5g/kg GABA補充劑的AIN-93飲食。實驗中我們透過免疫組織化學染色法來觀察了腎臟神經形態。在動物模型的脾臟以及HEK-293和HK-2細胞系中,使用shVHL25和shVHL61基因敲除來評估發炎因子,這些基因以0 μM、250 μM以及500 μM 的 GABA來進行處理.。 數據顯示,VHL缺陷的動物以及細胞導致了他們的抗發炎細胞因子(IL-6, TNF-α, IFN-γ, IL-17A/F, TGF-β, and MCP-1) 、VHL 症狀標記 (HIF, EPO, and VEGF) 以及神經營養因子 (NGF and BDNF)的表現上升。然而GABA的補充都會導致抗發炎細胞因子、VHL症候標記以及神經營養因子的表現下降。值得注意的是,接受GABA處理的組別也表現出神經生長的減少,顯示GABA可能透過抑制神經生長來對抗腎臟損傷。該研究顯示了GABA在調節腎臟損傷背景下的免疫反應和神經調控方面的治療潛力。 | zh_TW |
| dc.description.abstract | The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) was shown to alleviate renal inflammation and increase lifespan of the renal tubule specific condition von Hippel-Lindau (VHL) gene knockout mice (Hoxb7-Cre-GFP/+; Vhlhfl/fl) or (Vhlhfl/fl) that spontaneously develop inflammation, and renal injury. Prompting investigations into the correlations between the neuronal inhibition and the immune response.
To study the correlation between neuronal inhibition and the immune response, Vhlhfl/fl mice were compared to the wild-type (Hoxb7-Cre-GFP/+; Vhlh+/fl or Hoxb7-GFP/-; Vhlhfl/fl mice) and fed AIN-93 diets containing 79.5g/kg of GABA supplementation for a 10-week period. Renal nerve morphology was assessed through 3-dimensional immunohistochemistry staining. Inflammatory factors were assessed in the spleen of the animal model as well as in vitro with the use of HEK-293 and HK-2 cell lines, featuring shVHL25 and shVHL61 gene knockdowns, that were treated with 0 μM, 250 μM, and 500 μM of GABA. Our data showed that VHL deficit animal and cell models resulted in an increase of pro-inflammatory cytokines (IL-6, TNF-α, IFN-γ, IL-17A/F, TGF-β, and MCP-1), VHL syndrome markers (HIF, EPO, and VEGF) and neurotropic factors (NGF and BDNF). Indicating the inflammatory response and early markers of angiogenesis. However, GABA supplementation resulted in a downregulation of this response. Notably, GABA-treated groups also exhibited a decrease in nerve growth, suggesting a potential mechanism through which GABA may confer protective effects against renal injury by suppressing nerve growth. This study underscores the therapeutic potential of GABA in modulating neuronal and immune regulation in renal injury. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:49:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-21T16:49:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 審定書 i
誌謝 ii 中文摘要 iii Abstract: iv CONTENTS v Figure List ix Table List xi Abbreviation Table xii Literature Review 1 1.1 Renal cancer and the pre-tumour microenvironment 1 1.1.1 Renal cancer and chronic kidney disease on renal function 1 1.1.2 Proliferation of cancer 3 1.1.3 Pre-tumour microenvironment 5 1.1.4 Pre-tumour inflammation 6 1.2 Von Hippel-Lindau Hereditary Syndrome 8 1.2.1 Introduction to VHL syndrome and ccRCC 8 1.2.2 ccRCC leading to spontaneous kidney failure 10 1.2.3 VHL ubiquitination on the pre-tumor environment 11 1.2.4 Markers of VHL syndrome 12 1.2.5 Role of cytokines in VHL/HIF dependent inflammation 13 1.2.6 Nervous system in VHL syndrome 1.3 GABA 17 1.3.1 Introduction and composition of GABA 17 1.3.2 Role of GABA in inhibiting tumorigenesis and immunity 18 1.3.3 GABA signalling in nerve formations 20 1.3.4 Leveraging GABA signalling in therapies 20 Chapter 2 Exploring the early impact of von Hippel-Lindau knock-out mice and the modulatory role of GABA in renal inflammation and nerve formation. 22 I. Introduction 22 II. Materials and methods 23 2.2.1 Animals 23 2.2.2 Experimental design 24 2.2.3 Behavioural examination 26 2.2.4 Tissue Preparation 28 2.2.5 Detection of serum, brain and urinary markers. 30 2.2.6 Immunohistochemistry 32 2.2.7 Determination of Cytokines 33 2.2.8 Statistical Analysis 35 III. Animal Model Results 37 2.3.1 Physiological disparities in Wild-Type and Vhlhfl/fl mouse 37 2.3.2 Effects of GABA treatment on serum and brain GABA levels and behaviour 39 2.3.3 Markers of inflammation and kidney damage in Vhlhdel/del mice 41 2.3.4 GABA treatment on nerve fibres of Vhlhfl/fl mice 44 2.3.5 Effects of GABA treatment on cytokines from mitogen-stimulated splenocytes 46 Chapter 3 The effects of GABA on nerve and cytokine in VHL knock-down cell cultures 50 I. Introduction 50 II. Materials and methods 51 3.2.1 Cell Lines 51 3.2.2 MTT 52 3.2.3 Transfection of RNA interference (RNAi) molecules 53 3.2.4 Cytokine analysis 56 3.2.5 Gene Expression 58 3.2.6 Western Blot 62 3.2.7 Immunostaining 67 III. Results 68 3.3.1 Transfection efficiency rate of VHL knock-down and cell viability 68 3.3.2 GABA treatment reduced proinflammatory cytokines in VHL knock-down cells 71 3.3.3 GABA induced inhibitory effect of VHL syndrome markers 72 3.3.4 GABA treatment inhibited NGF-induced neurite outgrowth of PC-12 cells 76 Chapter 4 Discussion and Conclusion 78 4.1 The role of VHL and GABA treatment on nerve growth 78 4.2 Behavioural impacts of VHL syndrome and GABA supplementation 80 4.3 Inflammation and immunomodulatory effect of GABA in VHL syndrome 82 4.4 GABA therapy on biomarkers of VHL syndrome 87 4.5 Variations in transfection efficiency of HEK293 and HK2 cells 88 4.6 Conclusion 91 Reference 93 Supplementary Material 104 | - |
| dc.language.iso | en | - |
| dc.subject | γ-胺基丁酸 | zh_TW |
| dc.subject | 細胞激素 | zh_TW |
| dc.subject | VHL | zh_TW |
| dc.subject | 神經生長 | zh_TW |
| dc.subject | 發炎 | zh_TW |
| dc.subject | inflammation | en |
| dc.subject | VHL | en |
| dc.subject | Gamma-aminobutyric acid | en |
| dc.subject | cytokines | en |
| dc.subject | nerve growth | en |
| dc.title | γ-胺基丁酸對von Hippel-Lindau缺失腎損傷模式的神經與免疫反應調控 | zh_TW |
| dc.title | Gamma-Aminobutyric Acid Modulates Neuronal and Immune Regulation in the von Hippel-Lindau Deficient Model of Renal Injury | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江伯倫;江孟燦;徐沺;謝佳倩 | zh_TW |
| dc.contributor.oralexamcommittee | Bor-Luen Chiang;Meng-Tsan Chiang;Tien Hsu;Chia-Chien Hsieh | en |
| dc.subject.keyword | γ-胺基丁酸,發炎,神經生長,VHL,細胞激素, | zh_TW |
| dc.subject.keyword | Gamma-aminobutyric acid,inflammation,nerve growth,VHL,cytokines, | en |
| dc.relation.page | 106 | - |
| dc.identifier.doi | 10.6342/NTU202400126 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-01-23 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2029-01-18 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 此日期後於網路公開 2029-01-18 | 5.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
