請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92341完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃心豪 | zh_TW |
| dc.contributor.advisor | Hsin-Haou Huang | en |
| dc.contributor.author | 黃裕紘 | zh_TW |
| dc.contributor.author | Yu-Hong Huang | en |
| dc.date.accessioned | 2024-03-21T16:42:12Z | - |
| dc.date.available | 2024-03-22 | - |
| dc.date.copyright | 2024-03-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-26 | - |
| dc.identifier.citation | [1] V. G. Veselago, "Electrodynamics of substances with simultaneously negative and," Usp. fiz. nauk, vol. 92, no. 7, p. 517, 1967.
[2] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites," Physical review letters, vol. 71, no. 13, p. 2022, 1993. [3] Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, and C. T. Chan, "Locally resonant sonic materials," science, vol. 289, no. 5485, pp. 1734-1736, 2000. [4] N. Fang, D. Xi, J. Xu, M. Ambati, and W. Srituravanich, "Ultrasonic metamaterials with negative modulus," Nature materials, vol. 5, no. 6, pp. 452-456, 2006. [5] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, "Composite acoustic medium with simultaneously negative density and modulus," Physical review letters, vol. 104, no. 5, p. 054301, 2010. [6] J. Choi, I. Jung, and C.-Y. Kang, "A brief review of sound energy harvesting," Nano energy, vol. 56, pp. 169-183, 2019. [7] S. A. Cummer, J. Christensen, and A. Alù, "Controlling sound with acoustic metamaterials," Nature Reviews Materials, vol. 1, no. 3, pp. 1-13, 2016. [8] X. Duan, H. Wang, Z. Li, L. Zhu, R. Chen, and D. Kong, "Sound absorption of a flexible micro-perforated panel absorber based on PVDF piezoelectric film," Applied Acoustics, vol. 88, pp. 84-89, 2015. [9] X. Wang, J. Xu, J. Ding, C. Zhao, and Z. Huang, "A compact and low-frequency acoustic energy harvester using layered acoustic metamaterials," Smart Materials and Structures, vol. 28, no. 2, p. 025035, 2019. [10] H. Jiang and Y. Wang, "Phononic glass: A robust acoustic-absorption material," The Journal of the Acoustical Society of America, vol. 132, no. 2, pp. 694-699, 2012. [11] T. J. Lu, F. Chen, and D. He, "Sound absorption of cellular metals with semiopen cells," The Journal of the Acoustical Society of America, vol. 108, no. 4, pp. 1697-1709, 2000. [12] Y. Feng, J. Qiao, and L. Li, "Acoustic behavior of composites with gradient impedance," Materials & Design, vol. 193, p. 108870, 2020. [13] R. Liu, D. Pei, and Y. Wang, "Experimental research on sound absorption properties of impedance gradient composite with multiphase," in IOP Conference Series: Materials Science and Engineering, 2020, vol. 733, no. 1: IOP Publishing, p. 012009. [14] X. Ren, J. Wang, G. Sun, S. Zhou, J. Liu, and S. Han, "Effects of structural design including cellular structure precision controlling and sharp holes introducing on sound absorption behavior of polyimide foam," Polymer Testing, vol. 84, p. 106393, 2020. [15] R. Lane, "Absorption mechanisms for waterborne sound in Alberich anechoic layers," Ultrasonics, vol. 19, no. 1, pp. 28-30, 1981. [16] S. M. Ivansson, "Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes," The Journal of the Acoustical Society of America, vol. 124, no. 4, pp. 1974-1984, 2008. [17] D. Zhao, H. Zhao, H. Yang, and J. Wen, "Optimization and mechanism of acoustic absorption of Alberich coatings on a steel plate in water," Applied Acoustics, vol. 140, pp. 183-187, 2018. [18] G. S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, "Acoustic performance of gratings of cylindrical voids in a soft elastic medium with a steel backing," The Journal of the Acoustical Society of America, vol. 141, no. 6, pp. 4694-4704, 2017. [19] Z. Wang, Y. Huang, X. Zhang, L. Li, M. Chen, and D. Fang, "Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb," Journal of Sound and Vibration, vol. 479, p. 115375, 2020. [20] C. Ye, X. Liu, F. Xin, and T. J. Lu, "Influence of hole shape on sound absorption of underwater anechoic layers," Journal of Sound and Vibration, vol. 426, pp. 54-74, 2018. [21] T. Meng, "Simplified model for predicting acoustic performance of an underwater sound absorption coating," Journal of Vibration and Control, vol. 20, no. 3, pp. 339-354, 2014. [22] G. Gao, Y. Hu, H. Jia, P. Liu, P. Du, and D. Xu, "Acoustic and dielectric properties of epoxy resin/hollow glass microsphere composite acoustic materials," Journal of Physics and Chemistry of Solids, vol. 135, p. 109105, 2019. [23] G. S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, "Sound absorption by rubber coatings with periodic voids and hard inclusions," Applied Acoustics, vol. 143, pp. 200-210, 2019. [24] Y. Gu, H. Zhong, B. Bao, Q. Wang, and J. Wu, "Experimental investigation of underwater locally multi-resonant metamaterials under high hydrostatic pressure for low frequency sound absorption," Applied Acoustics, vol. 172, p. 107605, 2021. [25] K. Shi, G. Jin, R. Liu, T. Ye, and Y. Xue, "Underwater sound absorption performance of acoustic metamaterials with multilayered locally resonant scatterers," Results in Physics, vol. 12, pp. 132-142, 2019. [26] G. Jin, K. Shi, T. Ye, J. Zhou, and Y. Yin, "Sound absorption behaviors of metamaterials with periodic multi-resonator and voids in water," Applied Acoustics, vol. 166, p. 107351, 2020. [27] N. Gao and Y. Zhang, "A low frequency underwater metastructure composed by helix metal and viscoelastic damping rubber," Journal of Vibration and Control, vol. 25, no. 3, pp. 538-548, 2019. [28] L. B. Wang, C. Z. Ma, and J. H. Wu, "A thin meta-structure with multi-order resonance for underwater broadband sound absorption in low frequency," Applied Acoustics, vol. 179, p. 108025, 2021. [29] C. Yu, M. Duan, W. He, F. Xin, and T. J. Lu, "Underwater anechoic layer with parallel metallic plate insertions: Theoretical modelling," Journal of Micromechanics and Microengineering, vol. 31, no. 7, p. 074002, 2021. [30] H.-C. Lin, S.-C. Lu, and H.-H. Huang, "Evaluation of a Hybrid Underwater Sound-Absorbing Metastructure by Using the Transfer Matrix Method," Materials, vol. 16, no. 4, p. 1718, 2023. [31] Y. Fu, I. I. Kabir, G. H. Yeoh, and Z. Peng, "A review on polymer-based materials for underwater sound absorption," Polymer Testing, vol. 96, p. 107115, 2021. [32] S. Wang, B. Hu, and Y. Du, "Sound absorption of periodically cavities with gradient changes of radii and distances between cavities in a soft elastic medium," Applied Acoustics, vol. 170, p. 107501, 2020. [33] G. S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, "Acoustic performance of periodic steel cylinders embedded in a viscoelastic medium," Journal of Sound and Vibration, vol. 443, pp. 652-665, 2019. [34] 賴柏辰, "具斜面雙橡膠水下吸音材設計與分析," 2022. [35] 白明憲, 工程聲學. 全華, 2008. [36] K. Verdière, R. Panneton, S. Elkoun, T. Dupont, and P. Leclaire, "Transfer matrix method applied to the parallel assembly of sound absorbing materials," The Journal of the Acoustical Society of America, vol. 134, no. 6, pp. 4648-4658, 2013. [37] O. Doutres, N. Atalla, and H. Osman, "Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions," The Journal of the Acoustical Society of America, vol. 137, no. 6, pp. 3502-3513, 2015. [38] P. A. Martin and R. A. Dalrymple, "Scattering of long waves by cylindrical obstacles and gratings using matched asymptotic expansions," Journal of Fluid Mechanics, vol. 188, pp. 465-490, 1988. [39] S. Chen, M. t. Wambsganss, and J. Jendrzejczyk, "Added mass and damping of a vibrating rod in confined viscous fluids," American Society of Mechanical Engineers, 1976. [40] M. S. Kim, W. R. Lee, Y. Y. Kim, and J. H. Oh, "Transmodal elastic metasurface for broad angle total mode conversion," Applied Physics Letters, vol. 112, no. 24, 2018. [41] N. Gao and K. Lu, "An underwater metamaterial for broadband acoustic absorption at low frequency," Applied Acoustics, vol. 169, p. 107500, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92341 | - |
| dc.description.abstract | 近年水下載具研究興盛,根據研究顯示,台灣本土也有自製水下載具的能力,因此對於水下聲學隱形匿蹤有極大的需求。本研究欲設計一具傾斜雙橡膠之水下聲學超穎材料,主要利用斜面的波型轉換機制增加聲波衰減的性能,另外結構結合了週期性空氣腔與固體嵌入物等吸音機制,達成一具寬頻吸音的水下聲學超穎材料。研究中分別討論了三種形式的傳遞矩陣方法,分別為聲學馬賽克、均勻等效的週期性空氣腔以及均勻等效的週期性固體嵌入物,用以預測吸音係數,並與有限元素法模擬進行相互比較。接著,研究探討了三種不同吸音機制的物理意義,結果顯示傾斜雙橡膠的設計有助於提升有效吸音頻寬,並將有效吸音頻寬往低頻移動。最後在探討實際水下應用時,考慮了不同背襯條件、斜向入射以及三維模型,說明本研究提出之水下聲學超穎材料具有可行性。 | zh_TW |
| dc.description.abstract | In recent years, research on underwater vehicles has thrived. According to studies, Taiwan also possesses the capability to manufacture homemade underwater vehicles, creating a significant demand for underwater acoustic stealth technology. This study aims to design an underwater acoustic metamaterial with inclined dual rubber components. The primary focus is on enhancing the performance of sound wave attenuation through the mechanism of inclined wave conversion. Additionally, the structure incorporates absorbing mechanisms such as periodic air cavities and solid inclusions to achieve a broadband absorption underwater acoustic metamaterial. The study discusses three forms of transfer matrix methods: acoustic mosaic, uniformly equivalent periodic air cavities, and uniformly equivalent periodic solid inclusions. These methods are employed to predict absorption coefficients and are compared with finite element method simulations. Finally, the physical meanings of three different absorption mechanisms are explored. The results indicate that the design of inclined dual rubber components contributes to an increased effective absorption bandwidth, shifting it towards lower frequencies. In simulations for practical underwater applications, considering different backing conditions, oblique incidence, and three-dimensional models, the study demonstrates the feasibility of the researched underwater acoustic metamaterial. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:42:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-21T16:42:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv Abstract v 目 次 vi 圖 次 x 表 次 xiv 名詞對照表 xv 符號說明表 xvii 第一章 緒論 1 1.1動機 1 1.2研究背景 1 1.3研究目的 1 1.4重要性與貢獻 2 1.5研究架構與流程 3 第二章 文獻回顧 4 2.1超穎材料 4 2.2聲學超穎材料 5 2.3水下吸音材 7 2.3.1聚合物泡沫 8 2.3.2梯度聚合物 9 2.3.3空腔之結構 10 2.3.4具嵌入物之局部共振結構 13 2.3.5其他形式之水下吸音材 15 2.4水下吸音機制 16 2.4.1共振 16 2.4.2模態轉換 17 第三章 有限元素法模擬建立與驗證 18 3.1聲場統御方程式 18 3.1.1狀態方程式 18 3.1.2連續方程式 18 3.1.3動量方程式 19 3.1.4波動方程式 21 3.1.5波傳現象 23 3.2有限元素模擬建立 23 3.3有限元素模擬文獻驗證 26 3.4水下聲學超穎材料模型介紹 28 3.4.1均質水下吸音材 28 3.4.2具斜面雙橡膠水下吸音材 28 3.4.3純空氣腔之水下吸音材 29 3.4.4嵌入固體夾雜物之水下吸音材 30 3.4.5無嵌入物混和型水下吸音材 31 3.4.6含嵌入物混和型水下吸音材 32 3.5各機制模型有限元素吸音係數討論 33 第四章 傳遞矩陣法建立與吸音係數計算討論 36 4.1傳遞矩陣法介紹 36 4.2傳遞矩陣法與有限元模擬驗證 41 4.3聲學馬賽克之傳遞矩陣法 43 4.3.1傳遞矩陣數學模型建立 43 4.3.2 Model B TMM與FEM相互比較 46 4.3.3 Model B理論分析誤差參數討論 47 4.3.4不同角度之TMM與FEM比較 48 4.4具週期性排列空氣腔之傳遞矩陣法 49 4.4.1傳遞矩陣數學模型建立 49 4.4.2 Model C TMM與FEM相互比較 54 4.4.3極端幾何及材料參數討論 55 4.5具週期性排列嵌入固體夾雜物之傳遞矩陣法 57 4.5.1傳遞矩陣數學模型建立 57 4.5.2 Model D TMM與FEM相互比較 61 4.6無嵌入物混和型水下吸音結構之傳遞矩陣法 62 4.7含嵌入物混和型水下吸音結構之傳遞矩陣法 65 4.8傳遞矩陣法與有限元素法誤差原因分析 67 第五章 討論 68 5.1 Model B結構之吸音機制 68 5.2 Model C結構之吸音機制 69 5.2.1吸音峰值之位移旋度場分析 70 5.2.2吸音峰值之振動位移場及能量耗散分析 71 5.3 Model D結構之吸音機制 71 5.3.1吸音峰值之位移旋度場分析 72 5.3.2吸音峰值之振動位移場及能量耗散分析 73 5.4 Model E結構之吸音機制 74 5.4.1 Model E 的斜面雙橡膠吸音機制 74 5.4.2抗靜水壓分析 75 5.5 Model F結構之吸音機制 76 5.5.1 Model F的斜面雙橡膠吸音機制 76 5.5.2抗靜水壓分析 77 5.5.2不同背襯條件下的吸音性能 78 5.5.3斜向入射討論 81 5.5.4三維FEM與二維FEM討論 83 第六章 結論與未來展望 85 6.1結論 85 6.2未來展望 87 參考文獻 88 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 傳遞矩陣法 | zh_TW |
| dc.subject | 傾斜雙橡膠 | zh_TW |
| dc.subject | 超穎材料 | zh_TW |
| dc.subject | 水下隱形匿蹤 | zh_TW |
| dc.subject | 波形轉換 | zh_TW |
| dc.subject | Invisibility underwater | en |
| dc.subject | Metamaterial | en |
| dc.subject | Inclined dual rubber | en |
| dc.subject | Waveform conversion | en |
| dc.subject | Transfer matrix method | en |
| dc.title | 基於傳遞矩陣與有限元素法分析具傾斜雙橡膠之水下吸音材聲學性能 | zh_TW |
| dc.title | Acoustic performance analysis of underwater sound-absorbing materials with inclined dual rubber based on transfer matrix and finite element methods | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周光武;施博仁 ;王昭男;李佳翰 | zh_TW |
| dc.contributor.oralexamcommittee | Guang-Wu Zhou;Po-Jen Shih;Zhao-Nan Wang;Jia-Han Li | en |
| dc.subject.keyword | 水下隱形匿蹤,超穎材料,傾斜雙橡膠,波形轉換,傳遞矩陣法, | zh_TW |
| dc.subject.keyword | Invisibility underwater,Metamaterial,Inclined dual rubber,Waveform conversion,Transfer matrix method, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU202400225 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-01-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 11.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
