請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9230完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 常蘭陽(Lan-Yang Ch’ang) | |
| dc.contributor.author | Li-Ging Hsieh | en |
| dc.contributor.author | 謝立菁 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:13:49Z | - |
| dc.date.available | 2012-09-15 | |
| dc.date.available | 2021-05-20T20:13:49Z | - |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-21 | |
| dc.identifier.citation | 1. The International HapMap Consortium (2007). 'A second generation human haplotype map of over 3.1 million SNPs.' Nature 449(7164): 851-861.
2. Sebat, J., B. Lakshmi, J. Troge, et al. (2004). 'Large-Scale Copy Number Polymorphism in the Human Genome.' Science 305(5683): 525-528. 3. Iafrate, A.J., L. Feuk, M.N. Rivera, et al. (2004). 'Detection of large-scale variation in the human genome.' Nat Genet 36(9): 949-951. 4. Tuzun, E., A.J. Sharp, J.A. Bailey, et al. (2005). 'Fine-scale structural variation of the human genome.' Nat Genet 37(7): 727-732. 5. Feuk, L., A.R. Carson, and S.W. Scherer (2006). 'Structural variation in the human genome.' Nat Rev Genet 7(2): 85-97. 6. Khaja, R., J. Zhang, J.R. MacDonald, et al. (2006). 'Genome assembly comparison identifies structural variants in the human genome.' Nat Genet 38(12): 1413-1418. 7. Korbel, J.O., A.E. Urban, J.P. Affourtit, et al. (2007). 'Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome.' Science 318(5849): 420-426. 8. Hurles, M.E., E.T. Dermitzakis, and C. Tyler-Smith (2008). 'The functional impact of structural variation in humans.' Trends in Genetics 24(5): 238-245. 9. Nambiar, M., V. Kari, and S.C. Raghavan (2008). 'Chromosomal translocations in cancer.' Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1786(2): 139-152. 10. Mitelman, F., B. Johansson, and F. Mertens (2007). 'The impact of translocations and gene fusions on cancer causation.' Nat Rev Cancer 7(4): 233-245. 11. Lazorchak, A., M.E. Jones, and Y. Zhuang (2005). 'New insights into E-protein function in lymphocyte development.' Trends in Immunology 26(6): 334-338. 12. Wiemels, J.L., B.C. Leonard, Y. Wang, et al. (2002). 'Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia.' PNAS 99(23): 15101-15106. 13. Inaba, T., W. Roberts, L. Shapiro, et al. (1992). 'Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia.' Science 257(5069): 531-534. 14. Brambillasca, F., G. Mosna, M. Colombo, et al. (1999). 'Identification of a novel molecular partner of the E2A gene in childhood leukemia.' Leukemia. 13(3): 369-375. 15. Lupski, J.R. (2007). 'Genomic rearrangements and sporadic disease.' Nat Genet 39: 543-547. 16. Kurahashi, H. and B.S. Emanuel (2001). 'Unexpectedly high rate of de novo constitutional t(11;22) translocations in sperm from normal males.' Nat Genet 29(2): 139-140. 17. Gribble, S.M., I. Roberts, C. Grace, et al. (2000). 'Cytogenetics of the Chronic Myeloid Leukemia-Derived Cell Line K562: Karyotype Clarification by Multicolor Fluorescence In Situ Hybridization, Comparative Genomic Hybridization, and Locus-Specific Fluorescence In Situ Hybridization.' Cancer Genetics and Cytogenetics 118(1): 1-8. 18. Chissoe, S.L., A. Bodenteich, Y.-F. Wang, et al. (1995). 'Sequence and Analysis of the Human ABL Gene, the BCR Gene, and Regions Involved in the Philadelphia Chromosomal Translocation.' Genomics 27(1): 67-82. 19. Keeney, S., C.N. Giroux, and N. Kleckner (1997). 'Meiosis-Specific DNA Double-Strand Breaks Are Catalyzed by Spo11, a Member of a Widely Conserved Protein Family.' Cell 88(3): 375-384. 20. Neale, M.J., J. Pan, and S. Keeney (2005). 'Endonucleolytic processing of covalent protein-linked DNA double-strand breaks.' Nature 436(7053): 1053-1057. 21. International Human Genome Sequencing Consortium (2001). 'Initial sequencing and analysis of the human genome.' Nature 409(6822): 860-921. 22. Shrivastav, M., L.P. De Haro, and J.A. Nickoloff 'Regulation of DNA double-strand break repair pathway choice.' Cell Res 18(1): 134-147. 23. Boulton, S. and S. Jackson (1996). 'Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance.' Nucl. Acids Res. 24(23): 4639-4648. 24. Liang, F., P.J. Romanienko, D.T. Weaver, et al. (1996). 'Chromosomal double-strand break repair in Ku80-deficient cells.' PNAS 93: 8929-8933. 25. Yan, C.T., C. Boboila, E.K. Souza, et al. (2007). 'IgH class switching and translocations use a robust non-classical end-joining pathway.' Nature 449(7161): 478-482. 26. Corneo, B., R.L. Wendland, L. Deriano, et al. (2007). 'Rag mutations reveal robust alternative end joining.' Nature 449(7161): 483-486. 27. McVey, M. and S.E. Lee (2008). 'MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings.' Trends in Genetics 24(11): 529-538. 28. Hamer, G., H.B. Kal, C.H. Westphal, et al. (2004). 'Ataxia Telangiectasia Mutated Expression and Activation in the Testis.' Biol Reprod 70(4): 1206-1212. 29. Goedecke, W., M. Eijpe, H.H. Offenberg, et al. (1999). 'Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis.' Nat Genet 23(2): 194-198. 30. Bogue, M.A., C. Wang, C. Zhu, and D.B. Roth (1997). 'V(D)J Recombination in Ku86-Deficient Mice: Distinct Effects on Coding, Signal, and Hybrid Joint Formation.' Immunity 7(1): 37-47. 31. Jankovic, M., A. Nussenzweig, and M.C. Nussenzweig (2007). 'Antigen receptor diversification and chromosome translocations.' Nat Immunol 8(8): 801-808. 32. Nussenzweig, A. and M.C. Nussenzweig (2007). 'A Backup DNA Repair Pathway Moves to the Forefront.' Cell 131(2): 223-225. 33. Baudat, F. and B. de Massy (2007). 'Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis.' Chromosome Research 15(5): 565-577. 34. Jones, G.H. and F.C.H. Franklin (2006). 'Meiotic Crossing-over: Obligation and Interference.' Cell 126(2): 246-248. 35. Martini, E., R.L. Diaz, N. Hunter, and S. Keeney (2006). 'Crossover Homeostasis in Yeast Meiosis.' Cell 126(2): 285-295. 36. Baker, S.M., W. PlugAnnemieke, T.A. Prolla, et al. (1996). 'Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over.' Nat Genet 13(3): 336-342. 37. Myers, S., L. Bottolo, C. Freeman, et al. (2005). 'A Fine-Scale Map of Recombination Rates and Hotspots Across the Human Genome.' Science 310(5746): 321-324. 38. Lupski, J.R. and P. Stankiewicz (2005). 'Genomic Disorders: Molecular Mechanisms for Rearrangements and Conveyed Phenotypes.' PLoS Genet 1(6): e49. 39. Turner, D.J., M. Miretti, D. Rajan, et al. (2008). 'Germline rates of de novo meiotic deletions and duplications causing several genomic disorders.' Nat Genet 40(1): 90-95. 40. Gu, W., F. Zhang, and J. Lupski (2008). 'Mechanisms for human genomic rearrangements.' PathoGenetics 1(1): 4. 41. Jeffrey, A.B., M.Y. Amy, F.M. Hillary, et al. (2001). 'Segmental Duplications: Organization and Impact Within the Current Human Genome Project Assembly.' Genome Res. 11: 1005-1017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9230 | - |
| dc.description.abstract | 人類基因體計畫在2003年完成後,許多研究開始探討存在人類基因體的變異。國際人類基因體圖單型體計畫於2002年底至2007年底,已定出超過三百萬個單一核苷酸多型性(SNPs)位點。2004年開始,研究團隊以不同的策略,在表現型正常的個體間偵測>1kb之變異(結構變異),到目前為止,人類基因體變異數據庫(Database of Genomic Variants, DGV)中的結構變異資料,總數已達將近四萬個,顯示出結構變異在構成人類基因體變異的重要性。
對結構變異做genome-wide的偵測,主要以array-based的策略進行,受限於方法的特性與解析度,故無法對平衡結構變異做偵測或將結構變異精確定位。實驗室先前建立了Restriction Enhanced Capturing of Rearranged DNA(RECORD),此技術以Inverse PCR為基礎,用於目標基因結構變異的偵測,配合序列分析,進而可推測其可能的發生機制。 實驗室先前已利用RECORD技術對在新生兒及幼兒型血癌常見發生基因轉位的MLL,及在幼兒型骨癌常見發生基因轉位的EWSR1,在人類精蟲細胞中偵測到二種基因之轉位。本論文的目的是除選用已知基因轉位與兒童型淋巴性白血病相關的TCF3當作目標基因,探討在人類生殖細胞當中是否有類似結構變異牽涉到此基因;若有,則其可能的發生機制為何。另依據先前的實驗結果,顯示MLL-F2 (MLL-fragement 2)偵測到的染色體轉位斷裂點呈現明顯叢聚分布,故以此片段之環化模板利用RECORD技術配合基因轉位特異性引子進行確認試驗。 首先進行以HEK293與K562細胞株基因體混合DNA作為模版,檢測RECORD技術的偵測敏感度,約為5×10-4。接著在12個不同的精蟲細胞單套基因體DNA,共偵測到19個TCF3的結構變異,均為非同源性染色體轉位。經由序列對比判定4個轉位對象座落於基因內(geneic region),另15個則位於基因間(intergenic region)。而就染色體轉位之機制而言,斷裂點周邊重複序列並未參與,我們可排除其為同源性重組(homologous recombination, HR)造成之可能。而在染色體轉位之斷裂點交界處均有1-13個核苷酸的微同源性序列(microhomology sequence),與在體細胞由NHEJ及MMEJ(microhomology mediated end-joining)所造成的基因轉位類似。由於NHEJ核心因子Ku70/Ku80在減數分裂時並未表現,故並非NHEJ所造成。推測這些染色體轉位可能由類似MMEJ的機制所產生。 針對3個先前由同一捐贈者之精蟲細胞基因體DNA在MLL-F2偵測到的染色體轉位進行確認,但均未能被確認。故知其發生頻率可能低於或恰位於RECORD技術偵測之極限,應以敏感度更高的取代方法來驗證。此外,由十二個不同捐贈者的精蟲細胞基因體DNA,在MLL-F2偵測到20個染色體轉位。轉位對象8個位於基因內(geneic region),12個位於基因間(intergenic region)。在轉位斷裂點交界處均具有2-10個核苷酸的微同源性序列(microhomology sequence)。 若將目標基因序列調整為正股時,依轉位對象位於染色體長臂或短臂、microhomology位於正股或負股及目標基因以5’端或3’端序列發生轉位,產物形式可分為八種,以5’或3’ PCR分別可偵測到四種。我們發現偵測到的染色體轉位均可依上述規則分類,由5’及3’ PCR均偵測到預期形式的產物,且屬於平衡互換(balanced exchange);此外,亦顯示出這些轉位的發生需遵循微同源性序列(microhomology sequence)間的base-pairing rule,應為微同源性序列媒介的機制。為了與在體細胞發生的MMEJ有所區隔,我們將之命名為MMIT(microhomology mediated interchromosomal translocation)。 生殖細胞進行減數分裂重組的重要目的即是在修復減數分裂時產生的DNA雙股斷裂(double strand break)。由於我們在不同來源的精細胞基因體DNA中,普遍均能偵測到基因轉位的存在,且這些序列之特性,明顯異於由同源性重組(HR)修復者,故我們推測MMIT應屬於人類生殖細胞中修復DNA雙股斷裂的機制之ㄧ。 | zh_TW |
| dc.description.abstract | Since the human genome project finished in 2003, many studies focused on the variations in the human genome. From 2002 to 2007, the international HapMap project mapped over 3.1 million single nucleotide polymorphisms (SNPs). Using different approaches, until recently, about 40000 >1kb structural variations (SVs) had been detected between non-disease phenotype individuals. Theses observations reflected the important contribution of SVs to human genome variation.
To interrogate which mechanisms involve in SVs formation in human genome, PCR-based approach is the most sensitive one. Previously, an inverse PCR-based approach, RECORD (Restriction Enhanced Capturing of Rearrange DNA), was used to identify MLL and EWSR1 translocations in human germline. MLL and EWSR1 are frequently involved in recurrent translocation associated with infant and childhood leukemia and childhood sarcoma, respectively. The aim of my project is to use human TCF3, which is a known target of recurrent translocation associated with childhood acute lymphoblastic leukemia (ALL), as an anchor gene to examine whether similar event occurs in human sperm and to explore the underlying mechanisms involved. Moreover, we will use RECORD and translocation specific PCR to validate germline translocations which identified previously. To assess the detection limit of RECORD, we used HEK293 spiked with K562 genomic DNA as template, and examined the recovery of BCR-ABL fusion from K562 cells. We found that the detection limit by RECORD is about 5×10-4. By using TCF3 as an anchor gene, we identified 19 non-homologous interchromosomal translocation events from 12 donors. These 19 translocation events include four translocation partners in geneic region and 15 in intergenic region. Sequence analysis of the 2 kb regions flanking both sides of breakpoints excluded the involvement of non-allelic homologous recombination (NAHR). A microhomology of 1-13 base pairs at the breakpoint junction indicates that either non-homologous end joining (NHEJ) or microhomology mediated endjoining (MMEJ) may be responsible for germline translocation. though the core factors, Ku70/Ku80 of NHEJ are not expressed during meiotic recombination. Using MLL as an anchor gene, we identified 20 additional MLL-F2 translocations from the haploid genomes of 12 sperm donors. Eight of which were mapped in the genic region and 12 in intergenic region of partners. At the breakpoint junctions, there are microhomologies of 2-10 nucleotides. When microhomology of the anchor gene is considered always on the top strand, the translocation partners can be classified into four groups, based on its location on the p or q arm, and its sequence from top or bottom strand. Thus 8 derivatives of translocation products can be defined by using 5’ and 3’ iPCR in our studies. This germline balanced exchange between non-homologous chromosomes is mediated by microhomology. To distinguish from MMEJ reported only in somatic cells, we proposed this putative mechanism as microhomology mediated interchromosomal translocation (MMIT). As the important purpose of meiotic recombination is to repair DNA double-strand breaks (DSBs), we suggest that MMIT may be another meiotic DSBs repair pathway in male germ cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:13:49Z (GMT). No. of bitstreams: 1 ntu-98-R96424026-1.pdf: 4525980 bytes, checksum: b871851060fbf61f957f8bf3cd92587f (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄................I
緒論附圖目錄.......III 表目錄............IV 圖目錄.............V 誌謝..............VII 中文摘要.........VIII Abstract............X 壹、緒論..........1 1.1 人類基因體的結構變異..............1 1.2 基因體結構變異的偵測技術..........2 1.3 基因轉位與疾病的相關性............3 1.4 TCF3(Transcription factor 3)簡介..4 1.5 RECORD(Restriction Enhanced Capturing of Rearranged DNA)技術簡介..........................4 1.6 研究方向..........................5 貳、實驗材料與方法 ..........7 2.1 實驗材料..........................7 2.2 實驗方法.........................12 参、實驗結果..........18 3.1 RECORD技術偵測敏感度的評估.......18 3.2 TCF3之實驗設計...................20 3.3由人類精蟲細胞偵測TCF3結構變異....21 3.3.1 模版有無二級限制酶處理之5’及3’PCR結果比較......21 3.3.2 3’PCR結果.....................22 3.3.3 5’PCR結果.....................23 3.3.4 推斷之TCF3轉位(putative translocations)..........23 3.3.5 染色體轉位斷裂點之定位.........27 3.3.6 TCF3染色體轉位斷裂點的分布.....29 3.3.7 TCF3染色體轉位序列的分析.......30 3.4 染色體轉位確認試驗之實驗設計.....31 3.5 確認試驗之結果...................32 3.5.1 MLL染色體轉位的確認............32 3.5.2 評估生殖細胞DNA重排圖譜之可行性..................33 3.5.3 生殖細胞DNA重排圖譜之真實性......................33 3.5.4 確認試驗由MLL-F2偵測到的染色體轉位...............34 3.5.5 MLL-F2染色體轉位斷裂點的分布.....................38 3.5.6 精蟲細胞染色體轉位之對象在各染色體長短臂上的分布.39 3.5.7 精蟲細胞染色體轉位形式為相對互調的可能性.........39 肆、討論..........41 4.1 哺乳類細胞對DNA雙股斷裂之修復機制..................41 4.2 生殖細胞染色體轉位發生機制之探討...................42 4.3 相對互調存在生殖細胞基因轉位的可能性...............43 4.4 生殖細胞的基因轉位與減數分裂DNA雙股斷裂修復之關係..44 4.5 實驗結果整合.......................................45 參考文獻..........47 | |
| dc.language.iso | zh-TW | |
| dc.title | 非同源性染色體轉位在人類生殖細胞發生機制之探討 | zh_TW |
| dc.title | Interrogate the mechanism of non-homologous chromosomal translocations in human germ cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林文昌(Wen-Chang Lin),張淑媛(Sui-Yuan Chang) | |
| dc.subject.keyword | 精蟲細胞,非同源性染色體轉位, | zh_TW |
| dc.subject.keyword | sperm,microhomology-mediated chromosomal translocation, | en |
| dc.relation.page | 129 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-07-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 4.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
