Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9229
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群(Yi-Chun Wu)
dc.contributor.authorChau-Yuan Yuen
dc.contributor.author游詔淵zh_TW
dc.date.accessioned2021-05-20T20:13:47Z-
dc.date.available2009-08-14
dc.date.available2021-05-20T20:13:47Z-
dc.date.copyright2009-08-14
dc.date.issued2009
dc.date.submitted2009-07-21
dc.identifier.citationBouillet, P. and A. Strasser (2002). 'BH3-only proteins - evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death.' Journal of Cell Science 115(8): 1567-1574.
Brenner, S. (1974). 'Genetics of Caenorhabsitis elegans.' Genetics 77(1): 71-94.
Buchsbaum, R. J. (2007). 'Rho activation at a glance.' Journal of Cell Science 120(7): 1149-1152.
Conradt, B. and H. R. Horvitz (1998). 'The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9.' Cell 93(4): 519-529.
Conradt, B. and H. R. Horvitz (1999). 'The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene.' Cell 98(3): 317-327.
del Peso, L., V. M. Gonzalez, et al. (1998). 'Caenorhabditis elegans EGL-1 disrupts the interaction of CED-9 with CED-4 and promotes CED-3 activation.' Journal of Biological Chemistry 273(50): 33495-33500.
Ellis, H. M. and H. R. Horvitz (1986). 'Genetic control of programmed cell death in the nematode C. elegans.' Cell 44(6): 817-829.
Gumienny, T. L., E. Brugnera, et al. (2001). 'CED-12/ELMO, a novel member of the crkII/dock180/rac pathway, is required for phagocytosis and cell migration.' Cell 107(1): 27-41.
Hoeppner, D. J., M. O. Hengartner, et al. (2001). 'Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans.' Nature 412(6843): 202-206.
Hoppe, A. D. and J. A. Swanson (2004). 'Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis.' Molecular Biology of the Cell 15(8): 3509-3519.
Jacobson, M. D., M. Weil, et al. (1997). 'Programmed cell death in animal development.' Cell 88(3): 347-354.
Kinchen, J. M., K. Doukoumetzidis, et al. (2008). 'A pathway for phagosome maturation during engulfment of apoptotic cells.' Nature Cell Biology 10(5): 556-566.
Liu, Q. A. and M. O. Hengartner (1999). 'Human CED-6 encodes a functional homologue of the Caenorhabditis elegans engulfment protein CED-6.' Current Biology 9(22): 1347-1350.
Lorenzi, R., P. M. Brickell, et al. (2000). 'Wiskott-Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis.' Blood 95(9): 2943-2946.
Lu, Q., Y. Zhang, et al. (2008). 'C. elegans Rab GTPase 2 is required for the degradation of apoptotic cells.' Development 135(6): 1069-1080.
Lundquist, E. A., P. W. Reddien, et al. (2001). 'Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis.' Development 128(22): 4475-4488.
Mangahas, P. M., X. M. Yu, et al. (2008). 'The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans.' Journal of Cell Biology 180(2): 357-373.
Mangahas, P. M. and Z. Zhou (2005). 'Clearance of apoptotic cells in Caenorhabditis elegans.' Seminars in Cell & Developmental Biology 16(2): 295-306.
Metzstein, M. M., M. O. Hengartner, et al. (1996). 'Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2.' Nature 382(6591): 545-547.
Nakaya, M., M. Tanaka, et al. (2006). 'Opposite effects of Rho family GTPases on engulfment of apoptotic cells by macrophages.' Journal of Biological Chemistry 281(13): 8836-8842.
Parrish, J., H. Metters, et al. (2000). 'Demonstration of the in vivo interaction of key cell death regulators by structure-based design of second-site suppressors.' Proceedings of the National Academy of Sciences of the United States of America 97(22): 11916-11921.
Prakash, S. K., R. Paylor, et al. (2000). 'Functional analysis of ARHGAP6, a novel GTPase-activating protein for RhoA.' Human Molecular Genetics 9(4): 477-488.
Ravichandran, K. S. and U. Lorenz (2007). 'Engulfment of apoptotic cells: signals for a good meal.' Nature Reviews Immunology 7: 964-974.
Reddien, P. W. and H. R. Horvitz (2000). 'CED-2/Crkll and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans.' Nature Cell Biology 2(3): 131-136.
Ridley, A. J. (2001). 'Rho family proteins: coordinating cell responses.' Trends in Cell Biology 11(12): 471-477.
Robertson, A. M. G. and J. N. Thomson (1982). 'Morphology of programmed cell death in the ventral nerve cord of caenorhabditis elegans larval.' Journal of Embryology and Experimental Morphology 67(FEB): 89-100.
Rohatgi, R., H. Y. H. Ho, et al. (2000). 'Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate.' Journal of Cell Biology 150(6): 1299-1309.
Steller, H. (1995). 'Mechanisms and genes of cellular suicide.' Science 267(5203): 1445-1449.
Sulston, J. E. and H. R. Horvitz (1977). 'Post embryonic cell lineages of nematode, Caenorhabditis elegans.' Developmental Biology 56(1): 110-156.
Sulston, J. E., E. Schierenberg, et al. (1983). 'The embryonic cell lineages of nematode, the Caenorhabditis elegans.' Developmental Biology 100(1): 64-119.
Thellmann, M., J. Hatzold, et al. (2003). 'The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins.' Development 130(17): 4057-4071.
Tosello-Trampont, A. C., K. Nakada-Tsukui, et al. (2003). 'Engulfment of apoptotic cells is negatively regulated by Rho-mediated signaling.' Journal of Biological Chemistry 278(50): 49911-49919.
Wu, Y. C. and H. R. Horvitz (1998). 'The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters.' Cell 93(6): 951-960.
Wu, Y. C. and H. R. Horvitz (1998). 'C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180.' Nature 392(6675): 501-504.
Wu, Y. C., M. C. Tsai, et al. (2001). 'C-elegans CED-12 acts in the conserved CrkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment.' Developmental Cell 1(4): 491-502.
Xu, J. S., F. Wang, et al. (2003). 'Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils.' Cell 114(2): 201-214.
Yan, N. G., L. C. Gu, et al. (2004). 'Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4.' Molecular Cell 15(6): 999-1006.
Yang, X. L., H. Y. Chang, et al. (1998). 'Essential role of CED-4 oligomerization in CED-3 activation and apoptosis.' Science 281(5381): 1355-1357.
Yu, X. M., N. Lu, et al. (2008). 'Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells.' Plos Biology 6(3): 581-600.
Yu, X. M., S. Odera, et al. (2006). 'C. elegans dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells.' Developmental Cell 10(6): 743-757.
Zhou, Z., E. Hartwieg, et al. (2001). 'CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans.' Cell 104(1): 43-56.
Zhou, Z. and X. M. Yu (2008). 'Phagosome maturation during the removal of apoptotic cells: receptors lead the way.' Trends in Cell Biology 18(10): 474-485.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9229-
dc.description.abstract清除凋亡細胞於計畫性細胞凋亡中是重要過程。在線蟲的研究中發現,於凋亡細胞吞噬過程中,有兩條訊息傳導路徑可活化CED-10/Rac GTPase,其一為ced-1, ced-6, ced-7;另一為ced-2, ced-5, ced-12,造成細胞骨架之重組以吞噬凋亡細胞。於哺乳類細胞株的研究中發現另外兩個同屬Rho-family GTPase的蛋白可調控細胞吞噬作用:RhoA與Cdc42。近年研究認為,特定Rho-family GTPase之活化與去活化在凋亡細胞吞噬過程中均伴演重要角色。這些調控具有時間性與空間性,且需要完善控制。為了尋找參與凋亡細胞吞噬過程中新的Rho-family GTPase之負向調控分子,我們篩檢了十六個於線蟲中會轉錄具有RhoGAP domain蛋白之基因突變體。我們發現,於C01F4.2(ok1316)線蟲中,胚胎時期之凋亡細胞屍體數較野生種高。將C01F4.2a蛋白進行序列比對結果發現其與人類之ARHGAP6蛋白具高度相似性,此蛋白具有特定調控RhoA之活性。藉由分析細胞屍體之殘留時間,我們推測於C01F4.2(ok1316)突變株中所增加之細胞屍體數乃導因於細胞屍體清除機能的缺失。於進一步的遺傳分析中,我們發現C01F4.2基因的缺失並不會增強吞噬基因突變株之性狀。由此我們推測C01F4.2應與兩條訊息傳導路徑之吞噬基因共同作用以調控凋亡細胞之吞噬過程。
重要名詞:計畫性細胞凋亡、細胞吞噬作用、Rho-family GTPases、GAP。
zh_TW
dc.description.abstractClearance of apoptotic cells is an ultimate step of programmed cell death. In C. elegans, two partially redundant signaling pathways, ced-1, ced-6, ced-7 in one, and ced-2, ced-5, ced-12 in the other, converge at CED-10, a Rho-family small GTPase, leading to actin cytoskeleton rearrangement during the engulfment of apoptotic cells. Studies in mammalian cell lines also linked the function of two additional Rho-family GTPases (RhoA and Cdc42) to phagocytosis. Recent studies suggested that the activation and inactivation of specific Rho-family proteins is important during the engulfment of apoptotic cells. These regulations should be tightly controlled spatially and temporally. In order to identify novel negative regulator for Rho-family GTPases during engulfment process, we examined 16 potential gap (GTPase-activating protein) genes that encode protein with RhoGAP domain in C. elegans and identified C01F4.2. The C01F4.2(ok1316) mutant and C01F4.2(RNAi) have increased embryonic cell corpse number compared with that of wild-type. The C01F4.2a protein is similar to human ARHGAP6 protein, which has a GTPase-activating activity specific for RhoA. The cell corpse duration analysis showed that the elevated cell corpses number in C01F4.2(ok1316) embryos was due to the defect in the clearance of apoptotic cells. Our double mutant analysis showed that the C01F4.2(ok1316) mutation did not enhance the cell-corpse number of mutants defective in either of the two previously identified engulfment pathways. Therefore C01F4.2 appear to be required functions in both pathways to regulate cell corpses engulfment.
Keywords: Programmed cell death, Engulfment, Rho-family GTPases, GAP
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:13:47Z (GMT). No. of bitstreams: 1
ntu-98-R96b43019-1.pdf: 1065303 bytes, checksum: 266f083539882edaff2145fc593ea62d (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 2
Abstract 3
1. Introduction 7
2. Material and method 13
2.1 C.elegans strain used and genetics 13
2.2 Maintaing C. elegans 13
2.3 Quantification of cell corpses 13
2.4 RNAi experiments 14
2.5 4D analysis of corpse duration time 14
3. Results 15
3.1 C01F4.2(ok1316) animal has increased embryonic cell corpse number 15
3.2 C01F4.2 encodes a protein orthologue of human ARHGAP6 16
3.3 The elevated cell corpse number in C01F4.2(ok1316) was due to failure of corpse removal 17
3.4 C01F4.2 functions together with engulfment genes to promote cell corpse Clearance 18
4. Discussion 20
4.1 How do C01F4.2 work during engulfment process? 20
4.2 What’s the relationship between ced-1 and C01F4.2? 22
5. References 24
6. Figures and Tables 32
Table 1. The embryonic cell-corpse profile of mutants defective in genes coding for the GAP- domian containing protein 32
Table 2. The number of cell corpses increased in outcrossed C01F4.2(ok1316) and C01F4.2 (RNAi) embryos 33
Table 3. C01F4.2(ok1316) does not enhance the engulfment defects in the mutants of both pathways 34
Figure 1. (a) Morphology of cell corpse in an embryo of C. elegans under Normaski optics. (b) Embryonic developmental stages of C. elegans 35
Figure 2. (a) Gene structure of C01F4.2 in C. elegans. (b) Predicted protein structure of C01F4.2a by SMART database. (c) Amino acid sequence of C. elegans C01F4.2a protein 36-37
Figure 3. Alignment of C. elegans C01F4.2a GAP (GTPase activationg protein) domain with human ARHGAP6 isoform 1 GAP domain 38
Figure 4. Four-dimensional microscopy analysis of durations of persistence of cell corpses 39
dc.language.isoen
dc.title遺傳分析C01F4.2/Arhgap6 基因於線蟲細胞吞噬作用中所扮演之角色zh_TW
dc.titleGenetic analysis of the role of C. elegans C01F4.2/Arhgap6 in engulfment processen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee汪宏達(Horng-Dar Wang),陳昌熙
dc.subject.keyword計畫性細胞凋亡,細胞吞噬作用,Rho-family GTPases,GAP,zh_TW
dc.subject.keywordProgrammed cell death,Engulfment,Rho-family GTPases,GAP,en
dc.relation.page39
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf1.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved