請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92272完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳岳隆 | zh_TW |
| dc.contributor.advisor | Yueh-Lung Wu | en |
| dc.contributor.author | 許淳閔 | zh_TW |
| dc.contributor.author | Chun-Min Hsu | en |
| dc.date.accessioned | 2024-03-21T16:22:25Z | - |
| dc.date.available | 2024-03-23 | - |
| dc.date.copyright | 2024-03-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-02 | - |
| dc.identifier.citation | 參考文獻
AHRENS, C. H. & ROHRMANN, G. F. 1996. The DNA polymerase and helicase genes of a baculovirus of Orgyia pseudotsugata. Journal of General Virology, 77, 825-837. ARGAUD, O., CROIZIER, L., LÓPEZ-FERBER, M. & CROIZIER, G. 1998. Two key mutations in the host-range specificity domain of the p143 gene of Autographa californica nucleopolyhedrovirus are required to kill Bombyx mori larvae. Journal of General Virology, 79, 931-935. ARIAS-GONZALEZ, J. R. 2017. A DNA-centered explanation of the DNA polymerase translocation mechanism. Scientific Reports, 7, 7566. AZUMA, M. & YAMASHITA, O. 1985. Cellular localization and proposed function of midguttrehalase in the silkworm larva, Bombyx mori. Tissue and Cell, 17, 539-551. BALAKRISHNAN, L. & BAMBARA, R. A. 2013. Flap Endonuclease 1. Annual Review of Biochemistry, 82, 119-138. BERTANI, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol, 62, 293-300. BRAUNAGEL, S. C., PARR, R., BELYAVSKYI, M. & SUMMERS, M. D. 1998. Autographa californicaNucleopolyhedrovirus Infection Results in Sf9 Cell Cycle Arrest at G2/M Phase. Virology, 244, 195-211. CARSTENS, E. B. 2009. AcMNPV as a model for baculovirus DNA replication. Virologica Sinica, 24, 243-267. CHANG, Y., ZHANG, B., DU, M., GENG, Z., WEI, J., GUAN, R., AN, S. & ZHAO, W. 2022. The vital hormone 20-hydroxyecdysone controls ATP production by upregulating binding of trehalase 1 with ATP synthase subunit α in Helicoverpa armigera. Journal of Biological Chemistry, 298, 101565. CHEN, R. & WOLD, M. S. 2014. Replication protein A: Single-stranded DNA's first responder. BioEssays, 36, 1156-1161. CHEN, T., SAHRI, D. & CARSTENS, E. B. 2004. Characterization of the Interaction between P143 and LEF-3 from Two Different Baculovirus Species: <i>Choristoneura fumiferana</i> Nucleopolyhedrovirus LEF-3 Can Complement <i>Autographa californica</i> Nucleopolyhedrovirus LEF-3 in Supporting DNA Replication. Journal of Virology, 78, 329-339. CHESNOKOV, I., REMUS, D. & BOTCHAN, M. 2001. Functional analysis of mutant and wild-type <i>Drosophila</i> origin recognition complex. Proceedings of the National Academy of Sciences, 98, 11997-12002. CROIZIER, G., CROIZIER, L., ARGAUD, O. & POUDEVIGNE, D. 1994. Extension of Autographa californica nuclear polyhedrosis virus host range by interspecific replacement of a short DNA sequence in the p143 helicase gene. Proceedings of the National Academy of Sciences, 91, 48-52. DIAMOND, D. L., SYDER, A. J., JACOBS, J. M., SORENSEN, C. M., WALTERS, K.-A., PROLL, S. C., MCDERMOTT, J. E., GRITSENKO, M. A., ZHANG, Q., ZHAO, R., METZ, T. O., CAMP, D. G., II, WATERS, K. M., SMITH, R. D., RICE, C. M. & KATZE, M. G. 2010. Temporal Proteome and Lipidome Profiles Reveal Hepatitis C Virus-Associated Reprogramming of Hepatocellular Metabolism and Bioenergetics. PLOS Pathogens, 6, e1000719. DUNN, J. & GRIDER, M. H. 2023. Physiology, Adenosine Triphosphate. StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2023, StatPearls Publishing LLC. ENOMOTO, T., TANUMA, S. & YAMADA, M. A. 1981. ATP requirement for the processes of DNA replication in isolated HeLa cell nuclei. J Biochem, 89, 801-7. FANG, J. E., LI, H., KONG, D., CAO, S., PENG, G., ZHOU, R., CHEN, H. & SONG, Y. 2016. Structure-based discovery of two antiviral inhibitors targeting the NS3 helicase of Japanese encephalitis virus. Scientific Reports, 6, 34550. FELBERBAUM, R. S. 2015. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J, 10, 702-14. FERNIE, A. R., CARRARI, F. & SWEETLOVE, L. J. 2004. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology, 7, 254-261. FULLAM, A. & SCHRÖDER, M. 2013. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1829, 854-865. GHOSH, S., PARVEZ, M. K., BANERJEE, K., SARIN, S. K. & HASNAIN, S. E. 2002. Baculovirus as Mammalian Cell Expression Vector for Gene Therapy: An Emerging Strategy. Molecular Therapy, 6, 5-11. GIRDHAR, K., POWIS, A., RAISINGANI, A., CHRUDINOVÁ, M., HUANG, R., TRAN, T., SEVGI, K., DOGUS DOGRU, Y. & ALTINDIS, E. 2021. Viruses and Metabolism: The Effects of Viral Infections and Viral Insulins on Host Metabolism. Annu Rev Virol, 8, 373-391. GOMI, S., MAJIMA, K., MAEDA, S. & EFSTATHIOU, S. 1999. Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. Journal of General Virology, 80, 1323-1337. HAO, B., LIU, L., LIU, N., SUN, L., FAN, F. & HUANG, J. 2022. The Bombyx mori Nucleopolyhedrovirus GP64 Retains the Transmembrane Helix of Signal Peptide to Contribute to Secretion across the Cytomembrane. Microbiol Spectr, 10, e0191322. HUANG, N., WU, W., YANG, K., PASSARELLI, A. L., ROHRMANN, G. F. & CLEM, R. J. 2011. Baculovirus Infection Induces a DNA Damage Response That Is Required for Efficient Viral Replication. Journal of Virology, 85, 12547-12556. INCEOGLU, A. B., KAMITA, S. G., HINTON, A. C., HUANG, Q., SEVERSON, T. F., KANG, K. & HAMMOCK, B. D. 2001. Recombinant baculoviruses for insect control. Pest Manag Sci, 57, 981-7. KAMITA, S. G. & MAEDA, S. 1997. Sequencing of the putative DNA helicase-encoding gene of the Bombyx mori nuclear polyhedrosis virus and fine-mapping of a region involved in host range expansion. Gene, 190, 173-179. KAWAKAMI, H., OHASHI, E., KANAMOTO, S., TSURIMOTO, T. & KATAYAMA, T. 2015. Specific binding of eukaryotic ORC to DNA replication origins depends on highly conserved basic residues. Scientific Reports, 5, 14929. KONDO, A. & MAEDA, S. 1991. Host range expansion by recombination of the baculoviruses Bombyx mori nuclear polyhedrosis virus and Autographa californica nuclear polyhedrosis virus. Journal of Virology, 65, 3625-3632. KOST, T. A., CONDREAY, J. P. & JARVIS, D. L. 2005. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature Biotechnology, 23, 567-575. KWONG, A. D., RAO, B. G. & JEANG, K.-T. 2005. Viral and cellular RNA helicases as antiviral targets. Nature Reviews Drug Discovery, 4, 845-853. LACHMANN, R. H., SADARANGANI, M., ATKINSON, H. R. & EFSTATHIOU, S. 1999. An analysis of herpes simplex virus gene expression during latency establishment and reactivation. Journal of General Virology, 80, 1271-1282. LANE, A. N. & FAN, T. W.-M. 2015. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Research, 43, 2466-2485. LI, Z.-Q., YU, H. & HUANG, G.-H. 2018. Changes in lipid, protein and carbohydrate metabolism in Spodoptera exigua larvae associated with infection by Heliothis virescens ascovirus 3h. Journal of Invertebrate Pathology, 155, 55-63. LO, H. R. & CHAO, Y. C. 2004. Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnol Prog, 20, 354-60. LOPEZ, A., NICHOLS DOYLE, R., SANDOVAL, C., NISSON, K., YANG, V. & FREGOSO, O. I. 2022. Viral Modulation of the DNA Damage Response and Innate Immunity: Two Sides of the Same Coin. Journal of Molecular Biology, 434, 167327. LOWENSTEIN, J. M. 1972. Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol Rev, 52, 382-414. LU, A. & CARSTENS, E. B. 1991. Nucleotide sequence of a gene essential for viral DNA replication in the baculovirus Autographa californica nuclear polyhedrosis virus. Virology, 181, 336-347. LU, A., KRELL, P. J., VLAK, J. M. & ROHRMANN, G. F. 1997. Baculovirus DNA Replication. In: MILLER, L. K. (ed.) The Baculoviruses. Boston, MA: Springer US. LUJAN, S. A., WILLIAMS, J. S. & KUNKEL, T. A. 2016. DNA Polymerases Divide the Labor of Genome Replication. Trends in Cell Biology, 26, 640-654. MAHMOUDABADI, G., MILO, R. & PHILLIPS, R. 2017. Energetic cost of building a virus. Proc Natl Acad Sci U S A, 114, E4324-e4333. MARSDEN, W. L., GRAY, P. P., NIPPARD, G. J. & QUINLAN, M. R. 1982. Evaluation of the DNS method for analysing lignocellulosic hydrolysates. Journal of Chemical Technology and Biotechnology, 32, 1016-1022. MARTIN, O. & CROIZIER, G. 1997. Infection of a Spodoptera frugiperda cell line with Bombyx mori nucleopolyhedrovirus. Virus Research, 47, 179-185. MARUNIAK, J. E., GARCIA-MARUNIAK, A., SOUZA, M. L., ZANOTTO, P. M. A. & MOSCARDI, F. 1999. Physical maps and virulence of Anticarsia gemmatalis nucleopolyhedrovirus genomic variants. Archives of Virology, 144, 1991-2006. MCDOUGAL, V. V. & GUARINO, L. A. 2000. The <i>Autographa californica</i> Nuclear Polyhedrosis Virus <i>p143</i> Gene Encodes a DNA Helicase. Journal of Virology, 74, 5273-5279. MCDOUGAL, V. V. & GUARINO, L. A. 2001. DNA and ATP Binding Activities of the Baculovirus DNA Helicase P143. Journal of Virology, 75, 7206-7209. MONTEIRO, F., CARINHAS, N., CARRONDO, M., BERNAL, V. & ALVES, P. 2012. Toward system-level understanding of baculovirus–host cell interactions: from molecular fundamental studies to large-scale proteomics approaches. Frontiers in Microbiology, 3. MORENO-ALTAMIRANO, M. M. B., KOLSTOE, S. E. & SÁNCHEZ-GARCÍA, F. J. 2019. Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses. Front Cell Infect Microbiol, 9, 95. PASSARELLI, A. L. 2021. Baculovirus–Host Interactions: Repurposing Host-Acquired Genes (Baculoviridae). In: BAMFORD, D. H. & ZUCKERMAN, M. (eds.) Encyclopedia of Virology (Fourth Edition). Oxford: Academic Press. PONNUVEL, K. M., NAKAZAWA, H., FURUKAWA, S., ASAOKA, A., ISHIBASHI, J., TANAKA, H. & YAMAKAWA, M. 2003. A Lipase Isolated from the Silkworm <i>Bombyx mori</i> Shows Antiviral Activity against Nucleopolyhedrovirus. Journal of Virology, 77, 10725-10729. PURSELL, Z. F., ISOZ, I., LUNDSTRÖM, E.-B., JOHANSSON, E. & KUNKEL, T. A. 2007. Yeast DNA Polymerase ε Participates in Leading-Strand DNA Replication. Science, 317, 127-130. RAPAPORT, E., GARCIA-BLANCO, M. A. & ZAMECNIK, P. C. 1979. Regulation of DNA replication in S phase nuclei by ATP and ADP pools. Proceedings of the National Academy of Sciences, 76, 1643-1647. ROHRMANN, G. F. 2019. Baculovirus Molecular Biology. 4th ed. Bethesda (MD). SAKURAI, M., SHIKATA, M., SANO, Y., HASHIMOTO, Y. & MATSUMOTO, T. 1998. Virulence of <i>Autographs californica</i> nucleopolyhedrovirus infection of non-permissive cultured cells of the silkworm, <i>Bombyx mori</i>. The Journal of Sericultural Science of Japan, 67, 211-216. SANCHEZ, E. L. & LAGUNOFF, M. 2015. Viral activation of cellular metabolism. Virology, 479-480, 609-618. SCHILD, T. & KESHARI, K. R. 2022. Revealing de novo pyrimidine synthesis as a key vulnerability in brain tumors. Cancer Cell, 40, 1457-1458. SCHRÖDER, M. 2010. Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation. Biochemical Pharmacology, 79, 297-306. SOULTANAS, P. & JANNIERE, L. 2023. The metabolic control of DNA replication: mechanism and function. Open Biol, 13, 230220. SPEARMAN, C. 1908. THE METHOD OF ‘RIGHT AND WRONG CASES’ (‘CONSTANT STIMULI’) WITHOUT GAUSS'S FORMULAE. British Journal of Psychology, 1904-1920, 2, 227-242. SUETSUGU, Y., MINAMI, H., SHIMOMURA, M., SASANUMA, S., NARUKAWA, J., MITA, K. & YAMAMOTO, K. 2007. End-sequencing and characterization of silkworm (Bombyx mori) bacterial artificial chromosome libraries. BMC Genomics, 8, 314. SUMBRIA, D., BERBER, E., MATHAYAN, M. & ROUSE, B. T. 2021. Virus Infections and Host Metabolism—Can We Manage the Interactions? Frontiers in Immunology, 11. SUMPTER, R., LOO, Y.-M., FOY, E., LI, K., YONEYAMA, M., FUJITA, T., LEMON, S. M. & GALE, M. 2005. Regulating Intracellular Antiviral Defense and Permissiveness to Hepatitis C Virus RNA Replication through a Cellular RNA Helicase, RIG-I. Journal of Virology, 79, 2689-2699. SWENNE, I. 1985. Glucose-stimulated DNA replication of the pancreatic islets during the development of the rat fetus. Effects of nutrients, growth hormone, and triiodothyronine. Diabetes, 34, 803-7. TSAI, C.-H., CHUANG, Y.-C., LU, Y.-H., LIN, C.-Y., TANG, C.-K., WEI, S.-C. & WU, Y.-L. 2022. Carbohydrate metabolism is a determinant for the host specificity of baculovirus infections. iScience, 25, 103648. TUTEJA, N. & TUTEJA, R. 2004a. Prokaryotic and eukaryotic DNA helicases. European Journal of Biochemistry, 271, 1835-1848. TUTEJA, N. & TUTEJA, R. 2004b. Unraveling DNA helicases. European Journal of Biochemistry, 271, 1849-1863. UZMAN, A. 2003. Molecular biology of the cell (4th ed.): Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. Biochemistry and Molecular Biology Education, 31, 212-214. VOLKMAN, L. E. & GOLDSMITH, P. A. 1985. Mechanism of neutralization of budded Autographs californica nuclear polyhedrosis virus by a monoclonal antibody: Inhibition of entry by adsorptive endocytosis. Virology, 143, 185-195. WANG, M. & HU, Z. 2019. Cross-talking between baculoviruses and host insects towards a successful infection. Philos Trans R Soc Lond B Biol Sci, 374, 20180324. WANG, Y., WANG, W., XU, L., ZHOU, X., SHOKROLLAHI, E., FELCZAK, K., LAAN, L. J. W. V. D., PANKIEWICZ, K. W., SPRENGERS, D., RAAT, N. J. H., METSELAAR, H. J., PEPPELENBOSCH, M. P. & PAN, Q. 2016. Cross Talk between Nucleotide Synthesis Pathways with Cellular Immunity in Constraining Hepatitis E Virus Replication. Antimicrobial Agents and Chemotherapy, 60, 2834-2848. WARNER, D. F., EVANS, J. C. & MIZRAHI, V. 2014. Nucleotide Metabolism and DNA Replication. Microbiology Spectrum, 2, 10.1128/microbiolspec.mgm2-0001-2013. WHITAKER-DOWLING, P. & YOUNGNER, J. S. 1999. Virus-Host Cell Interactions. Encyclopedia of Virology, 61, 17. WU, Y. L., WU, C. P., HUANG, Y. H., HUANG, S. P., LO, H. R., CHANG, H. S., LIN, P. H., WU, M. C., CHANG, C. J. & CHAO, Y. C. 2014. Identification of a high-efficiency baculovirus DNA replication origin that functions in insect and mammalian cells. J Virol, 88, 13073-85. YANO, S. T. & ROTHMAN-DENES, L. B. 2011. A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader. Molecular Microbiology, 79, 1325-1338. YAO, C., PAN, S., XU, Y., LU, M., ZHAO, Y., HUO, J., HAO, B. & HUANG, J. 2023. Bombyx mori Nucleopolyhedrovirus Hijacks Multivesicular Body as an Alternative Envelopment Platform for Budded Virus Egress. Journal of Virology, 97, e00041-23. YI, B., FU, Q., ZHENG, Z., ZHANG, M., LIU, D., LIANG, Z., XU, S. & ZHANG, Z. 2023. Pan-cancer analysis reveals the prognostic and immunotherapeutic value of cytoskeleton-associated protein 2-like. Scientific Reports, 13, 8368. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92272 | - |
| dc.description.abstract | 桿狀病毒 (Baculovirus) ,是一種專門感染節肢動物的雙股DNA病毒,目前已發現有600多種昆蟲會被感染,包含農業害蟲斜紋夜蛾(Spodoptera litura),與經濟昆蟲家蠶(Bombyx mori),前者能被加州苜蓿夜蛾核多角體病毒(AcMNPV)感染,後者能被家蠶核多角體病毒(BmNPV)感染。目前已知此兩種病毒的基因組序列高度相似,然而它們的寄主範圍並不重疊。先前的研究發現,將此兩種病毒的DNA 解旋酶基因p143種間置換使AcMNPV能夠感染非寄主範圍的細胞株,顯示解旋酶P143為寄主專一性的關鍵之一,然而目前該機制的具體細節仍不清楚。前人研究指出,哺乳類細胞能以自身的解旋酶競爭病毒的DNA複製起始點位,直接抑制病毒DNA複製作為防禦,基於此,本研究假設桿狀病毒之P143蛋白能影響寄主DNA複製。我們將病毒之p143大量表現或基因敲落,探討其對於寄主DNA複製的影響,並觀察病毒P143與寄主DNA複製起始點位的接合。結果顯示寄主在允許感染(permissive infection)下基因組DNA含量與新生成DNA含量皆呈現下降趨勢,將p143基因敲落後則影響減弱,而這些現象在非允許感染(non-permissive infection)的狀況下則無,顯示與寄主範圍的關聯性。桿狀病毒的允許感染對於寄主的葡萄糖含量、核苷酸合成、與DNA複製相關基因的表現沒有全面的顯著差異,顯示對DNA複製的影響應主要來自病毒的P143。由桿狀病毒P143蛋白與複製起始點接合的實驗可證實,桿狀病毒DNA解旋酶會接合寄主的複製起始點,與寄主自身解旋酶競爭。本研究探討了桿狀病毒運用P143蛋白抑制寄主DNA複製的機制,同時排除其他能影響DNA複製的可能途徑,以p143的作用為基礎為桿狀病毒的寄主範圍提出解釋,更好地理解桿狀病毒的生物學特性。 | zh_TW |
| dc.description.abstract | Baculovirus, a type of double-stranded DNA virus, specifically infects arthropods. Currently, over 600 insect species have been found to be susceptible to this virus, including agricultural pests such as tobacco cutworm (Spodoptera litura) and the economically significant silkworm (Bombyx mori). While the former is susceptible to the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the latter is infected by the Bombyx mori nucleopolyhedrovirus (BmNPV). Although the genomic sequences of these viruses exhibit high similarity, their host ranges do not overlap. Previous research identified mutations in the DNA helicase gene p143 of these viruses, allowing AcMNPV or BmNPV to infect non-host cell lines, indicating that the helicase P143 plays a crucial role in host specificity. However, the specific details of this mechanism remain unclear. Earlier studies suggested that mammalian cells competitively use their own helicases to impede the virus's DNA replication initiation, serving as a defense mechanism. Based on this, we hypothesized that the P143 protein of baculoviruses might affect host DNA replication. We either overexpressed or knocked down the virus's p143 gene and examined the impact on host DNA replication. Additionally, we observed the interaction between the virus's P143 and the host’s DNA replication origin. The results indicated a declining trend in both the genomic DNA content and newly synthesized DNA content of the host under permissive infection. However, this effect was mitigated upon p143 gene knockdown. These phenomena were absent under non-permissive infection, indicating their correlation with host range. Permissive infection by baculovirus showed no comprehensive impacts on the host's glucose content, nucleotide synthesis, and expression of genes related to DNA replication. This suggested that the influence on DNA replication primarily stems from the virus's P143, rather than physiological modulations. The interaction between baculovirus P143 protein and the DNA replication origin sites confirmed that the baculovirus DNA helicase binds to the host's replication origin, competing with the host's own helicase. This study delves into the mechanisms by which baculovirus utilizes the P143 protein to inhibit host DNA replication, offering insights into the host range of baculoviruses and enhancing our understanding of their biological characteristics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:22:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-21T16:22:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
中文摘要 ii Abstract iii 目次 iv 圖目次 vi 前言 1 往昔研究 3 一、 桿狀病毒(Baculovirus) 3 二、 加州苜蓿蛾多角體病毒(AcMNPV) 3 三、 家蠶核多角體病毒(BmNPV) 4 四、 桿狀病毒立即早期基因p143 5 五、 蟲體能量代謝 5 六、 核苷酸合成 6 七、 基因複製 7 八、 病毒對寄主代謝途徑的調控 7 材料與方法 9 一、 細胞株 9 二、 斜紋夜蛾及家蠶 9 三、 細菌 9 四、 質體DNA的萃取 9 五、 病毒 10 六、 細胞轉染 (Transfection) 10 七、 細胞核酸萃取 11 八、 基因表現量測定 11 九、 p143基因抑制 12 十、 病毒滴度(Virus titer) 12 十一、 抽取斜紋夜蛾及家蠶血淋巴 12 十二、 葡萄糖(glucose)濃度測定 13 十三、 ATP濃度測定 13 十四、 細胞增殖分析 (Edu assay) 13 十五、 凝膠阻滯分析 (Electrophoretic mobility shift assay) 14 十六、 統計分析與作圖 15 結果 16 一、受桿狀病毒感染對寄主DNA複製的影響 16 二、p143基因對寄主DNA複製的影響 16 三、P143蛋白對寄主新生成DNA的影響 17 四、影響基因複製的因素 18 五、P143調控寄主DNA複製 19 討論 21 圖說 26 參考文獻 48 附錄 55 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 寄主專一性 | zh_TW |
| dc.subject | DNA複製 | zh_TW |
| dc.subject | p143 | zh_TW |
| dc.subject | 桿狀病毒 | zh_TW |
| dc.subject | Baculovirus | en |
| dc.subject | p143 | en |
| dc.subject | DNA replication | en |
| dc.subject | host specificity | en |
| dc.title | 探討桿狀病毒立即早期基因 p143 對寄主 DNA 複製 的調控 | zh_TW |
| dc.title | Regulation of host DNA replication by baculovirus immediate early gene p143 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李松泰;蔡智瑄 | zh_TW |
| dc.contributor.oralexamcommittee | Song-Tay Lee;Chih-Hsuan Tsai | en |
| dc.subject.keyword | 桿狀病毒,p143,DNA複製,寄主專一性, | zh_TW |
| dc.subject.keyword | Baculovirus,p143,DNA replication,host specificity, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202400375 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-05 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 昆蟲學系 | - |
| dc.date.embargo-lift | 2029-01-30 | - |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 此日期後於網路公開 2029-01-30 | 5.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
