請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92252
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳佩貞 | zh_TW |
dc.contributor.advisor | Pei-Jen Chen | en |
dc.contributor.author | 曾捷 | zh_TW |
dc.contributor.author | Jonathan Tseng | en |
dc.date.accessioned | 2024-03-21T16:16:31Z | - |
dc.date.available | 2024-03-22 | - |
dc.date.copyright | 2024-03-21 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-01-31 | - |
dc.identifier.citation | 2014 RNAlater® Tissue Collection_ RNA Stabilization Solution User Guide Thermo Fisher Scientific.
Abdel-Khalek, A.A. 2018. Chronic exposure to water of lake qaroun induced metal-related testicular damage and endocrine disruption in male fish. Biological trace element research 185(1), 197-204. Ahsan, M., Islam, S.R., Razzak, M.A., Ali, M. and Haque, M.M. 2022. Assessment of heavy metals from pangasius and tilapia aquaculture in Bangladesh and human consumption risk. Aquaculture International, 1-28. Aldana, G., Hernández, M., Cram, S., Arellano, O., Morton, O. and Ponce de León, C. 2018. Trace metal speciation in a wastewater wetland and its bioaccumulation in tilapia Oreochromis niloticus. Chemical Speciation & Bioavailability 30(1), 23-32. Ali, H. and Khan, E. 2018. Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environmental chemistry letters 16(3), 903-917. Alibo, D.S., Nozaki, Y. and Jeandel, C. 1999. Indium and yttrium in North Atlantic and Mediterranean waters: comparison to the Pacific data. Geochimica et cosmochimica acta 63(13-14), 1991-1999. Amakawa, H., Alibo, D. and Nozaki, Y. 1996. Indium concentration in Pacific seawater. Geophysical research letters 23(18), 2473-2476. Arnold, P., Lord, N., Smith, A. and Bybee, S. 2016. The effects of non-ideal temperature regimes on RNA quality from samples stored in RNAlater-like buffer: an attempt to replicate field conditions. J Anal Mol Tech 2(1), 1-8. Atli, G. and Canli, M. 2010. Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures. Ecotoxicology and Environmental Safety 73(8), 1884-1889. AUO AUO Solar SunBravo Mono-Crystalline Modules, AUOSolar. AUO Products and Technology - Solar Photovoltaic, AUO Crystal. Bakr, M., Aboelhassan, M., Elgindy, A., Gad, N. and Mahrous, K. 2016. Genotoxic and histopathological effects of water pollutants in three population fish (Oreochromis niloticus) in Egypt. International Journal of Pharmaceutical Sciences Review and Research 38, 206-215. Bang, Y.-Y., Hong, N.-J., Sung Lee, D. and Lim, S.-R. 2018. Comparative assessment of solar photovoltaic panels based on metal-derived hazardous waste, resource depletion, and toxicity potentials. International Journal of Green Energy 15(10), 550-557. Bateman, K.S., Stentiford, G.D. and Feist, S.W. 2004. A ranking system for the evaluation of intersex condition in European flounder (Platichthys flesus). Environmental Toxicology and Chemistry: An International Journal 23(12), 2831-2836. Beardmore, J.A., Mair, G.C. and Lewis, R. 2001. Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Reproductive biotechnology in finfish aquaculture, 283-301. Boughriet, A., Proix, N., Billon, G., Recourt, P. and Ouddane, B. 2007. Environmental impacts of heavy metal discharges from a smelter in Deûle-canal sediments (Northern France): concentration levels and chemical fractionation. Water, Air, and Soil Pollution 180(1), 83-95. Brun, N.R., Wehrli, B. and Fent, K. 2016. Ecotoxicological assessment of solar cell leachates:Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells. Science of the Total Environment 543, 703-714. Cai, J., Zhou, X., Yan, X., Lucente, D. and Lagana, C. 2022. Top 10 species groups in global aquaculture 2020. Food and Agriculture Organization of the United Nations, FAO Fisheries and Aquaculture Department. Chen, C.-M., Yu, S.-C. and Liu, M.-C. 2001. Use of Japanese medaka (Oryzias latipes) and tilapia (Oreochromis mossambicus) in toxicity tests on different industrial effluents in Taiwan. Archives of Environmental Contamination and Toxicology 40(3), 363-370. Chen, C.-P. (2003) 桃園大圳及光復圳系統埤塘調查研究, 行政院客家委員會. Chen, H.-W. 2006. Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bulletin of Environmental Contamination & Toxicology 77(2). Chen, H.-W. 2007. Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bulletin of environmental contamination and toxicology 78(2), 123-127. Chen, H., Guo, Z., Zhou, Y., Li, D., Mu, L., Klerks, P.L., Luo, Y. and Xie, L. 2018. Accumulation, depuration dynamics and effects of dissolved hexavalent chromium in juvenile Japanese medaka (Oryzias latipes). Ecotoxicology and environmental safety 148, 254-260. Chen, H., Mu, L., Cao, J., Mu, J., Klerks, P.L., Luo, Y., Guo, Z. and Xie, L. 2016. Accumulation and effects of Cr (VI) in Japanese medaka (Oryzias latipes) during chronic dissolved and dietary exposures. Aquatic Toxicology 176, 208-216. Chia-Yu, H. (2018) 光電埤塘提供民生用電之最佳規劃, National Central University. Chiueh, Y.-w., Wu, T.-Y., Yeh, S.-s. and Lu, J.-h. NA. The Feasibility Study of Land-Use from Paddy Field Production to Tilapia Raising. Chukwuka, A., Ogbeide, O. and Uhunamure, G. 2019. Gonad pathology and intersex severity in pelagic (Tilapia zilli) and benthic (Neochanna diversus and Clarias gariepinus) species from a pesticide-impacted agrarian catchment, south-south Nigeria. Chemosphere 225, 535-547. Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N., Rauch, S., Salaun, P., Schäfer, J. and Zimmermann, S. 2015. COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats. Environmental Science and Pollution Research 22(19), 15188-15194. Corporation, C. and Laboratory, I.E.R. (1977) Heavy metal pollution from spillage at ore smelters and mills, Environmental Protection Agency, Office of Research and Development. di Sungai Kelantan, P.S., YAACOB, W.Z.W. and MOHAMED, C.A.R. 2019. Distribution of chromium and gallium in the Total suspended solid and surface sediments of Sungai Kelantan, Kelantan, Malaysia. Sains Malaysiana 48(11), 2343-2353. Dietrich, D. and Krieger, H.O. (2009) Histological analysis of endocrine disruptive effects in small laboratory fish, John Wiley & Sons. Dodbiba, G., Nagai, H., Wang, L.P., Okaya, K. and Fujita, T. 2012. Leaching of indium from obsolete liquid crystal displays: Comparing grinding with electrical disintegration in context of LCA. Waste Management 32(10), 1937-1944. Driessnack, M.K., Jamwal, A. and Niyogi, S. 2017. Effects of chronic exposure to waterborne copper and nickel in binary mixture on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas). Chemosphere 185, 964-974. El-Sayed, A.-F.M. (2019) Tilapia culture, Academic Press. Emenike, E.C., Iwuozor, K.O. and Anidiobi, S.U. 2021. Heavy metal pollution in aquaculture: sources, impacts and mitigation techniques. Biological Trace Element Research, 1-17. EPA 2002 底泥品質指標之分類管理及用途限制辦法. EPA 2019 Effluent standards. FAO (2020) The State of World Fisheries and Aquaculture, 2020, Food & Agriculture Org. Fifth Edition 2002 Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, US Environmental Protection Agency US EPA: Washington, DC, USA. Fortier, S.M., Hammarstrom, J., Ryker, S.J., Day, W.C. and Seal, R. 2019. USGS critical minerals review. Mining Engineering 71(5), 35-47. Gerber, K. 2009. User''s guide and technical documentation KABAM version 1.0 (Kow (based) Aquatic Bioaccumulation Model). Report of Environmental Fate and Effects Division Office of Pesticide Programs, US Environmental Protection Agency, Washington, DC. Gibson, J.A. and Odze, R.D. (2019) Clinical Gastrointestinal Endoscopy, pp. 51-68. e56, Elsevier. Gonçalves-de-Freitas, E., Bolognesi, M.C., Gauy, A.C.d.S., Brandão, M.L., Giaquinto, P.C. andFernandes-Castilho, M. 2019. Social behavior and welfare in Nile tilapia. Fishes 4(2), 23. Hossain, Z., Hossain, M.S., Ema, N.S. and Omri, A. 2021. Heavy metal toxicity in Buriganga river alters the immunology of Nile tilapia (Oreochromis niloticus L). Heliyon 7(11), e08285. Hsu 2019. 從環境正義觀點探討千塘之鄉埤塘光電綠能計畫. Hsu, S.-C., Hsieh, H.-L., Chen, C.-P., Tseng, C.-M., Huang, S.-C., Huang, C.-H., Huang, Y.-T., Radashevsky, V. and Lin, S.-H. 2011. Tungsten and other heavy metal contamination in aquatic environments receiving wastewater from semiconductor manufacturing. Journal of Hazardous Materials 189(1-2), 193-202. Ibor, O.R., Adeogun, A.O., Fagbohun, O.A. and Arukwe, A. 2016. Gonado-histopathological changes, intersex and endocrine disruptor responses in relation to contaminant burden in Tilapia species from Ogun River, Nigeria. Chemosphere 164, 248-262. Iwamatsu, T. 1978. Studies on oocyte maturation of the medaka, Oryzias latipes. VI. Relationship between the circadian cycle of oocyte maturation and activity of the pituitary gland. Journal of Experimental Zoology 206(3), 355-363. Jabłońska-Czapla, M. and Grygoyć, K. 2022. Selected technology-critical elements as indicators of anthropogenic contamination of surface water and suspended solids on the example of the Biała Przemsza River (Poland). Chemosphere 307, 135801. Ju, Y.-R., Chen, C.-W., Chen, C.-F., Chuang, X.-Y. and Dong, C.-D. 2017. Assessment of heavy metals in aquaculture fishes collected from southwest coast of Taiwan and human consumption risk. International Biodeterioration & Biodegradation 124, 314-325. Kabata-Pendias, A. and Mukherjee, A.B. 2007. Trace elements of group 12 (Previously group IIb). Trace elements from soil to human, 283-319. Kawaguchi, H., Shimizu, T., Shirakashi, T. and Shijo, Y. 1998. Determination of ultratrace gallium in river water by electrothermal atomic absorption spectrometry after preconcentration with solvent extraction and back extraction. Bulletin of the Chemical Society of Japan 71(3), 647-650. Kouhail, Y., Amiel, N., Dror, I. and Berkowitz, B. 2020. Influence of humic substances on the transport of indium and gallium in porous media. Chemosphere 249, 126099. Kumar, G. and Engle, C.R. 2016. Technological advances that led to growth of shrimp, salmon, and tilapia farming. Reviews in Fisheries Science & Aquaculture 24(2), 136-152. Kwak, J.I., Nam, S.-H., Kim, L. and An, Y.-J. 2020. Potential environmental risk of solar cells: Current knowledge and future challenges. Journal of hazardous materials 392, 122297. Ladenberger, A., Demetriades, A., Reimann, C., Birke, M., Sadeghi, M., Uhlbäck, J., Andersson, M., Jonsson, E. and Team, T.G.P. 2015. GEMAS: Indium in agricultural and grazing land soil of Europe—Its source and geochemical distribution patterns. Journal of geochemical exploration 154, 61-80. Lee, W.-D. 2020. 審視水-糧食-能源鏈結關係下之水庫與光電埤塘智慧管理. Li, C., Li, P., Tan, Y.M., Lam, S.H., Chan, E.C. and Gong, Z. 2016. Metabolomic characterizations of liver injury caused by acute arsenic toxicity in zebrafish. PLoS One 11(3), e0151225. Lin 2021 農委會公布養殖漁業白皮書,4 年投 87 億拚產業轉型,2025 漁電共生規劃一萬公頃. Lin, H. and Hwang, P. 1998a. Acute and chronic effects of gallium chloride (GaCl3) on tilapia (Oreochromis mossambicus) larvae. Bulletin of environmental contamination and toxicology 60(6), 931-935. Lin, H.C. and Hwang, P.P. 1998b. Acute and chronic effects of gallium chloride (GaCl3) on tilapia (Oreochromis mossambicus) larvae. Bull Environ Contam Toxicol 60(6), 931-935. Liu, F. 2010. Chapter 2- Tilapia. FRI special. Lokanc, M., Eggert, R. and Redlinger, M. 2015 The availability of indium: the present, medium term, and long term, National Renewable Energy Lab.(NREL), Golden, CO (United States). Lottermoser, B.G. and Ashley, P.M. 2006. Mobility and retention of trace elements in hardpancemented cassiterite tailings, north Queensland, Australia. Environmental Geology 50, 835-846. Martin, C.W., Valentine, M.M. and Valentine, J.F. 2010. Competitive interactions between invasive Nile tilapia and native fish: the potential for altered trophic exchange and modification of food webs. PloS one 5(12), e14395. Martínez-Durazo, Á., Cruz-Acevedo, E., Betancourt-Lozano, M. and Jara-Marini, M.E. 2021. Comparative Assessment of Metal Bioaccumulation in Tilapia and Largemouth Bass from Three Dams of the Yaqui River. Biological Trace Element Research 199(8), 3112-3125. Mashima, T., Seimiya, H. and Tsuruo, T. 2009. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British journal of cancer 100(9), 1369-1372. Matos, L.A., Cunha, A.C., Sousa, A.A., Maranhão, J.P., Santos, N.R., de MC Gonçalves, M., Dantas, S.M.d.M., e Sousa, J.M.d.C., Peron, A.P. and da Silva, F.C.C. 2017. The influence of heavy metals on toxicogenetic damage in a Brazilian tropical river. Chemosphere 185, 852-859. Matschinsky, F.M. 2009. Assessing the potential of glucokinase activators in diabetes therapy.Nature reviews Drug discovery 8(5), 399-416. McAlister, J. and Orians, K. 2012. Calculation of river-seawater endmembers and differential trace metal scavenging in the Columbia River plume. Estuarine, Coastal and Shelf Science 99, 31-41. Miura, N. and Koizumi, S. 2005. Gene expression profiles in the liver and kidney of metallothionein-null mice. Biochemical and biophysical research communications 332(4), 949-955. Nagananthini, R., Nagavinothini, R. and Balamurugan, P. 2020. Floating photovoltaic thin film technology—a review. Intelligent Manufacturing and Energy Sustainability, 329-338. Nain, P. and Kumar, A. 2020. Metal dissolution from end-of-life solar photovoltaics in real landfill leachate versus synthetic solutions: One-year study. Waste Management 114, 351-361. Naylor, R.L., Hardy, R.W., Buschmann, A.H., Bush, S.R., Cao, L., Klinger, D.H., Little, D.C., Lubchenco, J., Shumway, S.E. and Troell, M. 2021. A 20-year retrospective review of global aquaculture. Nature 591(7851), 551-563. Nozaki, Y., Lerche, D., Alibo, D.S. and Tsutsumi, M. 2000. Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: Evidence for anthropogenic Gd and In. Geochimica et Cosmochimica Acta 64(23), 3975-3982. Ogawa, Y., Ishiyama, D., Shikazono, N., Iwane, K., Kajiwara, M. and Tsuchiya, N. 2012. The role of hydrous ferric oxide precipitation in the fractionation of arsenic, gallium, and indium during the neutralization of acidic hot spring water by river water in the Tama River watershed, Japan. Geochimica et Cosmochimica Acta 86, 367-383. Ogawa, Y., Ishiyama, D., Shikazono, N., Suto, K., Inoue, C., Tsuchiya, N., Saini-Eidukat, B. and Wood, S.A. 2018. Factors Controlling the Fractionation and Seasonal Mobility Variations of Ga and In in Systems Impacted by Acidic Thermal Waters: Effects of Thermodynamics and Bacterial Activity. Aquatic geochemistry 24(1), 5-25. Orians, K.J. and Bruland, K.W. 1988. Dissolved gallium in the open ocean. Nature 332(6166), 717-719. Paschoalini, A.L. and Bazzoli, N. 2021. Heavy metals affecting Neotropical freshwater fish: A review of the last 10 years of research. Aquatic Toxicology 237, 105906. Pichardo, S., Jos, A., Zurita, J., Salguero, M., Cameán, A. and Repetto, G. 2007. Acute and subacute toxic effects produced by microcystin-YR on the fish cell lines RTG-2 and PLHC1. Toxicology in vitro 21(8), 1460-1467. Połedniok, J., Kita, A. and Zerzucha, P. 2012. Spectrophotometric and inductively coupled plasma–optical emission spectroscopy determination of gallium in natural soils and soils polluted by industry: relationships between elements. Communications in soil science and plant analysis 43(8), 1121-1135. Poonlaphdecha, S., Pepey, E., Huang, S.-H., Canonne, M., Soler, L., Mortaji, S., Morand, S., Pfennig, F., Mélard, C. and Baroiller, J.-F. 2011. Elevated amh gene expression in the brain of male tilapia (Oreochromis niloticus) during testis differentiation. Sexual Development 5(1), 33-47. Qin, S., Sun, Y., Li, Y., Wang, J., Zhao, C. and Gao, K. 2015. Coal deposits as promising alternative sources for gallium. Earth-Science Reviews 150, 95-101. Rajeshkumar, S., Liu, Y., Ma, J., Duan, H.Y. and Li, X. 2017. Effects of exposure to multiple heavy metals on biochemical and histopathological alterations in common carp, Cyprinus carpio L. Fish & shellfish immunology 70, 461-472. Rengmark, A.H. and Lingaas, F. 2007. Genomic structure of the Nile tilapia (Oreochromis niloticus) transferrin gene and a haplotype associated with saltwater tolerance. Aquaculture 272(1-4), 146-155. Ringering, K., Kouhail, Y., Yecheskel, Y., Dror, I. and Berkowitz, B. 2019. Mobility and retention of indium and gallium in saturated porous media. Journal of hazardous materials 363, 394-400. Rodrigues, C.G., Garcia, B.F., Verdegem, M., Santos, M.R., Amorim, R.V. and Valenti, W.C. 2019. Integrated culture of Nile tilapia and Amazon river prawn in stagnant ponds, using nutrient-rich water and substrates. Aquaculture 503, 111-117. Sauliutė, G., Markuckas, A. and Stankevičiūtė, M. 2020. Response patterns of biomarkers in omnivorous and carnivorous fish species exposed to multicomponent metal (Cd, Cr, Cu, Ni, Pb and Zn) mixture. Part III. Ecotoxicology 29(3), 258-274. Shahjahan, M., Taslima, K., Rahman, M.S., Al-Emran, M., Alam, S.I. and Faggio, C. 2022. Effects of heavy metals on fish physiology–A review. Chemosphere, 134519. Shiller, A.M. 1998. Dissolved gallium in the Atlantic Ocean. Marine chemistry 61(1-2), 87-99. Shiller, A.M. and Frilot, D.M. 1996. The geochemistry of gallium relative to aluminum in Californian streams. Geochimica et Cosmochimica Acta 60(8), 1323-1328. Simmen, F.A., Alhallak, I. and Simmen, R.C. 2020. Malic enzyme 1 (ME1) in the biology of cancer: it is not just intermediary metabolism. Journal of molecular endocrinology 65(4), R77-R90. Smith, I., Carson, B. and Hoffmeister, F. 1978. Trace metals in the environment, Volume 5–Indium. Ann Arbor Science Publishers Inc., Ann Arbor. Speckmann, B., Schulz, S., Hiller, F., Hesse, D., Schumacher, F., Kleuser, B., Geisel, J., Obeid, R., Grune, T. and Kipp, A.P. 2017. Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice. The Journal of Nutritional Biochemistry 48, 112-119. Sriuttha, M., Khammanichanh, A., Patawang, I., Tanomtong, A., Tengjaroenkul, B. and Neeratanaphan, L. 2017. Cytotoxic assessment of Nile tilapia (Oreochromis niloticus) from a domestic wastewater canal with heavy metal contamination. Cytologia 82(1), 41-50. Sturgill, J., Swartzbaugh, J. and Randall, P. 2000. Pollution prevention in the semiconductor industry through recovery and recycling of gallium and arsenic from GaAs polishing wastes. Clean Products and Processes 2(1), 18-27. Tokumaru, T., Ozaki, H., Onwona-Agyeman, S., Ofosu-Anim, J. and Watanabe, I. 2017. Determination of the extent of trace metals pollution in soils, sediments and human hair at e-waste recycling site in Ghana. Archives of environmental contamination and toxicology 73, 377-390. Trapani, K. and Redón Santafé, M. 2015. A review of floating photovoltaic installations: 2007–2013. Progress in Photovoltaics: Research and Applications 23(4), 524-532. Tsai, G.-W. 2019. 全氟烷基化合物, 鄰苯二甲酸酯, 雙酚類, 鎵與銦之環境與食品監測. Tsave, O., Yavropoulou, M., Kafantari, M., Gabriel, C., Yovos, J. and Salifoglou, A. 2016. The adipogenic potential of Cr (III). A molecular approach exemplifying metal-induced enhancement of insulin mimesis in diabetes mellitus II. Journal of Inorganic Biochemistry 163, 323-331. Tsave, O., Yavropoulou, M., Kafantari, M., Gabriel, C., Yovos, J. and Salifoglou, A. 2018. Comparative assessment of metal-specific adipogenic activity in zinc and vanadiumcitrates through associated gene expression. Journal of Inorganic Biochemistry 186, 217-227. Velma, V. and Tchounwou, P.B. 2011. Hexavalent chromium‐induced multiple biomarker responses in liver and kidney of goldfish, Carassius auratus. Environmental toxicology 26(6), 649-656. Wang, M. and Lu, M. 2016. Tilapia polyculture: a global review. Aquaculture research 47(8), 2363-2374. Wang, T.W., Chang, P.H., Huang, Y.S., Lin, T.S., Yang, S.D., Yeh, S.L., Tung, C.H., Kuo, S.R., Lai, H.T. and Chen, C.C. 2022. Effects of floating photovoltaic systems on water quality of aquaculture ponds. Aquaculture Research 53(4), 1304-1315. Wang, W.-X. (2016) Marine Ecotoxicology, pp. 99-119, Elsevier. White, S.J.O. and Hemond, H.F. 2012. The anthrobiogeochemical cycle of indium: a review of the natural and anthropogenic cycling of indium in the environment. Critical reviews in environmental science and technology 42(2), 155-186. White, S.J.O. and Shine, J.P. 2016. Exposure potential and health impacts of indium and gallium, metals critical to emerging electronics and energy technologies. Current environmental health reports 3(4), 459-467. Wittbrodt, J., Shima, A. and Schartl, M. 2002. Medaka—a model organism from the far East. Nature Reviews Genetics 3(1), 53-64. Wood, S.A. and Samson, I.M. 2006. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews 28(1), 57-102. Yang 2014a. 桃園航空城區段徵收範圍內桃園農田水利會埤塘漁業之研究. Yang 2018 桃園市太陽光電推動作為-現況與願景-最新版. Yang, J.-L. 2014b. Comparative acute toxicity of gallium (III), antimony (III), indium (III), cadmium (II), and copper (II) on freshwater swamp shrimp (Macrobrachium nipponense). Biological Research 47(1), 1-4. Yang, J.-L. and Chen, H.-C. 2003. Serum metabolic enzyme activities and hepatocyte ultrastructure of common carp after gallium exposure. Zoological studies 42(3), 455-461. Yu, H.-S. and Liao, W.-T. 2011. Gallium: environmental pollution and health effects. Yuan, E. 2021 Forward-looking Infrastructure Development Program, Executive Yuan, https://english.ey.gov.tw/News3/9E5540D592A5FECD/4a3d5b2e-bef2-4c61-8aad3f7e0650150a. Zeng, C., Gonzalez-Alvarez, A., Orenstein, E., Field, J.A., Shadman, F. and Sierra-Alvarez, R. 2017. Ecotoxicity assessment of ionic As (III), As (V), In (III) and Ga (III) species potentially released from novel III-V semiconductor materials. Ecotoxicology and environmental safety 140, 30-36. Zhou, Y., Addai, F.P., Zhang, X., Liu, Y., Wang, Y., Lin, F., Tuffour, A., Gu, J., Liu, G. and Shi, H. 2022. Heavy metal-induced lipogenic gene aberration, lipid dysregulation and obesogenic effect: a review. Environmental Chemistry Letters, 1-33. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92252 | - |
dc.description.abstract | 光電埤塘(Photovoltaic pond)為政府近年推行漁電共生政策,廣泛於漁業養殖用地鋪設太陽能光電板之建設,鎵與銦則為光電板重要材料的成分。本研究透過生物累積與毒性潛勢分析探討光電埤塘中養殖吳郭魚暴露於鎵與銦的風險。吾人於桃園縣大觀地區兩處光電埤塘,石厝埤(ST)與大埔埤(DP),及一處未設有光電板之觀光埤塘桃園 3-5 圳(REF)採集水樣、底泥及吳郭魚(Oreochromis niloticus)樣品,進行鎵、銦與六種重金屬(鉛、鉻、鋅、銅、鎳、鎘)之濃度分析,以及魚樣肝臟之次世代定序差異基因表達分析(Next Generation Sequencing-Differential GeneExpression, NGS-DGE)。結果顯示,相較於參考點,兩處光電埤塘的水體皆能檢測出微量鎵濃度(0.21-1.02 µg/L);即便水體中未檢出銦,三處埤塘之底泥皆可測得鎵(3.91~7.57 mg/kg)與銦(<0.030mg/kg)。兩處光電埤塘採集之魚體內部器官,包括性腺、肝、腦與肉,皆測得相較於參考點魚樣較高的鎵含量,其中光電埤塘二的吳郭魚性腺中鎵之生物濃縮係數(Bioconcentration Factor,BCF)可達 3267 L/kg。銦於魚體內部器官之分布相對較低(12.35~317.20 µg/kg)。水體其他重金屬物種如鉛、鉻於性腺之 BCF 可高達 19315 L/kg。由 NGS-DGE 之途徑豐度分析(Pathwayenrichment analysis)指出,兩處光電埤塘採集之魚樣相較於參考點有 25 個途徑受到顯著影響,其中以甘油脂代謝(Glycerolipid metabolism)、固醇類生合成(Steroid biosynthesis)、PPAR 傳訊途徑(Peroxisome proliferators-activated receptor signaling pathway, PPAR pathway)等脂肪酸代謝相關途徑最為明顯。吾人挑選與這些途徑最高度相關的差異基因設計引子進行定量聚合酶連鎖反應(Quantitative polymerase chain reaction, qPCR)驗證,結果顯示調控葡萄糖激酶之 gck 、蘋果酸酶的 me1、乙醯乙醯輔酶 A 之 aacs 與二未命名基因最能反應鎵對吳郭魚的差異效應,具高潛力做評估光電板對生態影響之生物指標。 | zh_TW |
dc.description.abstract | Gallium (Ga) and indium (In) are technology-critical elements (TCEs) commonly used in the manufacturing of electronic products as essential materials of semiconductorselectro-optics, photovoltaic panels and etc. In the recent decades, the rise in the consumer markets for electronic devices has led to the drastic escalation in Ga and In production. Although increasing occurrences of Ga and In through anthropogenic activities were recognized as emerging contaminants and regulated in discharge of wastewaters of related industries in certain countries, these two TCEs are still reported with environmental concentrations below the legislated standards their sub-lethal toxic effects under environmentally relevant concentrations are less studied. At which their risks of exposure and toxicity remain undetermined with inadequate in-situ case studies and biomarkers. Originally used for aquaculture practice, Photovoltaic ponds installing with photovoltaic panels to produce electricity happened to be befitting sites for in-situ Ga and In risk assessments. Two photovoltaic ponds, ShihTsuo (ST) and DaPu (DP) in Taoyuan city of Taiwan, were selected to study possible exposure routes of Ga and In through aquaculture practice leading to potential risks of environmental toxicity and human health hazard, as compared to a referencepond (REF). With cultured tilapias (Oreochromis sp.) being the major biological indicators of these selected ponds, the objectives of this study include (1) to evaluate exposure risks of Ga and In towards tilapias, (2) to investigate toxic responses of tilapias by exploring biomarkers with RNA sequencing (RNAseq) and (3) to validate molecular biomarkers from tilapias using laboratory medakas fish (Oryzias latipes). In result, ST pond presented the highest concentrations of Ga in pond water (1.02 µg/L), fish gonad (2835.8 µg/kg) and liver (66.1 µg/kg) among all comparisons, while DP pond reached higher bioconcentration factor (3267 L/kg, gonadal BCF) for its lower Ga concentration in water (0.21 µg/L). The presence of In in gonads (81.7-121.5 µg/kg) and livers (17.4-31.9 µg/kg) from photovoltaic ponds were higher than REF (2.2 and 13.5 µg/kg, respectively), despite non-detectable in water samples among all sites (<0.04 µg/L). Neither Ga nor In exceeded current regulated water standards (0.01 mg/L), while their exposure were proven to be reflected by the more sensitive bioindicator, thus concluding possible risks of Ga and In towards cultivated tilapias. Hence, 25 bio-molecular pathways were identified to be potentially affected by Ga and In from the results of Next Generation SequencingDifferential Gene Expression (NGS-DGE) on tilapias following pathway enrichment analysis. In which the most significantly disturbed pathways were all lipid related, such as Glycerolipid metabolism, steroid biosynthesis and Peroxisome proliferators-activated receptor (PPAR) signaling pathways. Differentially expressed genes (DEGs) were then filtered from these pathways and further validated with quantitative polymerase chain reaction (qPCR) in Ga-exposed medakas. Overall resulting in five DEGs, gck, me1, aacs, ENSONIG27834 and ENSONIG13592, to be the most suitable biomarkers for Ga exposure and potential in situ biomonitoring indicators for future risk assessments on photovoltaic ponds. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:16:31Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-21T16:16:31Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Abstract ... III
中文摘要 ... V Graphical abstract ... VII Table of Contents ... VIII 1. Introduction, Research background and Motivation ... 1 2. Review of Literatures ... 4 2.1 Production, major applications and environmental concerns of Ga and In ... 4 2.2 Occurrence of Ga and In in the aquatic environment ... 5 2.3 Background of Photovoltaic ponds in Taoyuan ... 9 2.4 Tilapia as bio-indicator of biomonitoring in pollution of photovoltaic ponds ... 10 2.5 Increased risks of Ga and In when consuming contaminated fish from photovoltaic ponds ... 12 2.6 Toxicity of Ga and In in fish and potential biomarkers ... 13 2.7 Medaka fish as a sensitive laboratory model for ecotoxicologyical studies ...14 2.8 Research Objectives ... 15 3. Materials and Methods ... 16 3.1 Research framework and description ... 16 3.2 Site survey and selection ... 19 3.3 Analytical assessments in photovoltaic ponds ... 22 3.3.1 Sampling and storage of collected water, sediment and fish samples ... 22 3.3.2 Measurements of metal concentrations for water, sediment and tissues samples ... 24 3.4 Toxicological assessments of in-situ tilapia ... 25 3.4.1 Global transcriptional analysis with Next Generation Sequencing (NGS) in livers of male tilapia ... 25 3.4.2 Validation of hepatic gene expression with Quantitative real-time Polymerase Chain Reaction (qPCR) in tilapia ... 26 3.4.3 Histopathological analysis ... 26 3.5 Validation of Ga- or In-induced toxic effects with medaka fish ... 27 3.6 Statistical Analysis ... 28 4. Results ... 29 4.1 Detected concentrations of Ga, In and selected heavy metals in water and sediments of the 3 ponds ... 29 4.2 Bioconcentration factors of Ga, In and selected heavy metals in collected tilapia tissues ... 31 4.3 Transcriptomic results of in-situ tilapia ... 37 4.3.1 Differentially expressed genes (DEGs) in tilapia liver ... 37 4.3.2 Term enrichment analysis of the DEGs with GO ... 44 4.3.3 Pathway enrichment analysis of the DEGs with KEGG ... 49 4.3.4 Expression validation of selected biomarker genes with qPCR ... 54 4.4 Histopathology of tilapia gonad ... 56 4.5 Assessing tilapia sex with qPCR... 61 4.6 Concentrations of Ga, In in liver and gonad of treated medaka ... 65 4.7 Expression of the selected biomarkers in the liver of treated medaka ... 67 5. Discussions ... 69 5.1 Photovoltaic ponds have higher exposure risks of Ga and In for cultured fish ... 69 5.2 Bioconcentrative effects of Ga and In through water and/or sediment exposure to fish ... 71 5.3 Novel biomarkers for identifying Ga-exposure via RNAseq and qPCR analyses ... 73 5.4 Possible mechanism regarding Ga- and In-induced toxic effects on fish (Tilapia vs. medaka) ... 75 6. Conclusions ... 76 Appendices ... 78 Appendix. Temperature, pH and the dissolved oxygen of pond water ... 78 Appendix. Maintenance and care of medaka ... 79 Appendix. Exposure design for 28 day sub-lethal medaka exposure ... 82 Appendix. Primers assessed in qPCR ... 85 Reference ... 87 | - |
dc.language.iso | en | - |
dc.title | 由光電埤塘吳郭魚與模式青鱂魚評估鎵與銦對魚體之暴露風險及毒性潛勢指標 | zh_TW |
dc.title | Assessing biomarkers for exposure and toxicity of Gallium and Indium in fish: from tilapia cultured in photovoltaic ponds to the model organism medaka fish | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 任秀慧;周佩欣 | zh_TW |
dc.contributor.oralexamcommittee | Rita Yam;Pei-Hsin Chou | en |
dc.subject.keyword | 鎵(Gallium),銦(Indium),新興科技元素(Technology-critical elements, TCEs),光電埤塘(Photovoltaic pond),吳郭魚(Oreochromis sp., Tilapia),青鱂魚 (Oryzias latipes, medaka),次世代定序基因表達差異分析(NGS-DGE), | zh_TW |
dc.subject.keyword | Gallium (Ga),Indium (In),Emerging contaminants,TTechnology-critical elements (TCEs),Photovoltaic pond,Tilapia (Oreochromis sp.),Medaka (Oryzias latipes),Next Generation Sequencing-Differential Gene Expression (NGS-DGE), | en |
dc.relation.page | 93 | - |
dc.identifier.doi | 10.6342/NTU202304086 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-02-02 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農業化學系 | - |
dc.date.embargo-lift | 2026-01-25 | - |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 3.98 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。