Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92241
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林頌然zh_TW
dc.contributor.advisorSung-Jan Linen
dc.contributor.author蘇宇康zh_TW
dc.contributor.authorYu-Kang Suen
dc.date.accessioned2024-03-21T16:13:12Z-
dc.date.available2024-03-22-
dc.date.copyright2024-03-21-
dc.date.issued2024-
dc.date.submitted2024-02-19-
dc.identifier.citation1. Montagna, W., The structure and function of skin. 2012: Elsevier.
2. Zakariya, N.I. and M. Kahn, Benefits and biological effects of ionizing radiation. Sch. Acad. J. Biosci, 2014. 2(9): p. 583-591.
3. Kamiya, K., et al., Long-term effects of radiation exposure on health. The lancet, 2015. 386(9992): p. 469-478.
4. Wolbarst, A.B., et al., Medical response to a major radiologic emergency: a primer for medical and public health practitioners. Radiology, 2010. 254(3): p. 660-677.
5. Mendelsohn, F.A., et al., Wound care after radiation therapy. Advances in skin & wound care, 2002. 15(5): p. 216-224.
6. McQuestion, M. Evidence-based skin care management in radiation therapy: clinical update. in Seminars in oncology nursing. 2011. Elsevier.
7. Hymes, S.R., E.A. Strom, and C. Fife, Radiation dermatitis: clinical presentation, pathophysiology, and treatment 2006. Journal of the American Academy of Dermatology, 2006. 54(1): p. 28-46.
8. Archambeau, J. and R. Shymko, Tissue population configuration as a modifier of organ dose response. International Journal of Radiation Oncology* Biology* Physics, 1988. 15(3): p. 727-734.
9. Ratliff, C., Impaired skin integrity related to radiation therapy. Journal of enterostomal therapy, 1990. 17(5): p. 193-198.
10. Denham, J.W. and M. Hauer-Jensen, The radiotherapeutic injury–a complex ‘wound’. Radiotherapy and Oncology, 2002. 63(2): p. 129-145.
11. Brown, K.R. and E. Rzucidlo, Acute and chronic radiation injury. 2011, Elsevier. p. 15S-21S.
12. Bridges, B., A. Adam, and D. Holt, High dose radiation effect and tissue injury. Report of the independent advisory group on ionizing radiation. Radiation, Chemical, and Environmental Hazards, Elsevier, 2009. 10.
13. Hickok, J.T., et al., Occurrence, severity, and longitudinal course of twelve common symptoms in 1129 consecutive patients during radiotherapy for cancer. Journal of pain and symptom management, 2005. 30(5): p. 433-442.
14. Porock and KristJanson, Skin reactions during radiotherapy for breast cancer: the use and impact of topical agents and dressings. European journal of cancer care, 1999. 8(3): p. 143-153.
15. Pignol, J.-P., et al., A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. Journal of Clinical Oncology, 2008. 26(13): p. 2085-2092.
16. Bonner, J.A., et al., Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. New England Journal of Medicine, 2006. 354(6): p. 567-578.
17. Hoeller, U., et al., Increasing the rate of late toxicity by changing the score? A comparison of RTOG/EORTC and LENT/SOMA scores. International Journal of Radiation Oncology* Biology* Physics, 2003. 55(4): p. 1013-1018.
18. Khanna, N.R., et al., Radiation dermatitis: An overview. Indian journal of Burns, 2013. 21(1): p. 24-31.
19. Bensadoun, R.-J., et al., Daily baseline skin care in the prevention, treatment, and supportive care of skin toxicity in oncology patients: recommendations from a multinational expert panel. 2013, Taylor & Francis. p. 401-408.
20. Dreno, B., et al., Algorithm for dermocosmetic use in the management of cutaneous side‐effects associated with targeted therapy in oncology. Journal of the European Academy of Dermatology and Venereology, 2013. 27(9): p. 1071-1080.
21. Lacouture, M.E., Mechanisms of cutaneous toxicities to EGFR inhibitors. Nature Reviews Cancer, 2006. 6(10): p. 803-812.
22. Roy, I., A. Fortin, and M. Larochelle, The impact of skin washing with water and soap during breast irradiation: a randomized study. Radiotherapy and Oncology, 2001. 58(3): p. 333-339.
23. Bernier, J., et al., Consensus guidelines for the management of radiation dermatitis and coexisting acne-like rash in patients receiving radiotherapy plus EGFR inhibitors for the treatment of squamous cell carcinoma of the head and neck. Annals of Oncology, 2008. 19(1): p. 142-149.
24. Miller, R.C., et al., Mometasone furoate effect on acute skin toxicity in breast cancer patients receiving radiotherapy: a phase III double-blind, randomized trial from the North Central Cancer Treatment Group N06C4. International Journal of Radiation Oncology* Biology* Physics, 2011. 79(5): p. 1460-1466.
25. Hindley, A., et al., Mometasone furoate cream reduces acute radiation dermatitis in patients receiving breast radiation therapy: results of a randomized trial. International Journal of Radiation Oncology* Biology* Physics, 2014. 90(4): p. 748-755.
26. Omidvari, S., et al., Topical betamethasone for prevention of radiation dermatitis. Indian Journal of Dermatology, Venereology and Leprology, 2007. 73: p. 209.
27. Ulff, E., et al., A potent steroid cream is superior to emollients in reducing acute radiation dermatitis in breast cancer patients treated with adjuvant radiotherapy. A randomised study of betamethasone versus two moisturizing creams. Radiotherapy and Oncology, 2013. 108(2): p. 287-292.
28. Field, C.K. and M.D. Kerstein, Overview of wound healing in a moist environment. The American journal of surgery, 1994. 167(1): p. S2-S6.
29. Rodriguez, P.G., et al., The role of oxygen in wound healing: a review of the literature. Dermatologic surgery, 2008. 34(9): p. 1159-1169.
30. Nakai, K. and D. Tsuruta, What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? International journal of molecular sciences, 2021. 22(19): p. 10799.
31. Doctrow, S.R., et al., A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin. Journal of Investigative Dermatology, 2013. 133(4): p. 1088-1096.
32. Sasse, A.D., et al., Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. International Journal of Radiation Oncology* Biology* Physics, 2006. 64(3): p. 784-791.
33. Singh, V.K. and T.M. Seed, The efficacy and safety of amifostine for the acute radiation syndrome. Expert opinion on drug safety, 2019. 18(11): p. 1077-1090.
34. Mraz, M. and M. Haluzik, The role of adipose tissue immune cells in obesity and low-grade inflammation. Journal of Endocrinology, 2014. 222(3): p. R113-R127.
35. Guerrero-Juarez, C.F. and M.V. Plikus, Emerging nonmetabolic functions of skin fat. Nature Reviews Endocrinology, 2018. 14(3): p. 163-173.
36. Avram, A.S., M.M. Avram, and W.D. James, Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. Journal of the American Academy of Dermatology, 2005. 53(4): p. 671-683.
37. Zwick, R.K., et al., Anatomical, physiological, and functional diversity of adipose tissue. Cell metabolism, 2018. 27(1): p. 68-83.
38. Kershaw, E.E. and J.S. Flier, Adipose tissue as an endocrine organ. The Journal of Clinical Endocrinology & Metabolism, 2004. 89(6): p. 2548-2556.
39. Wang, Z.V. and P.E. Scherer, Adiponectin, the past two decades. Journal of molecular cell biology, 2016. 8(2): p. 93-100.
40. Maffei, á., et al., Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature medicine, 1995. 1(11): p. 1155-1161.
41. Lampidonis, A.D., et al., The resurgence of Hormone-Sensitive Lipase (HSL) in mammalian lipolysis. Gene, 2011. 477(1-2): p. 1-11.
42. Watt, M.J., et al., Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. American Journal of Physiology-Endocrinology and Metabolism, 2006. 290(3): p. E500-E508.
43. Schreiber, R., H. Xie, and M. Schweiger, Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2019. 1864(6): p. 880-899.
44. Smirnova, E., et al., ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO reports, 2006. 7(1): p. 106-113.
45. Janson, C.A. and W. Cleland, The kinetic mechanism of glycerokinase. Journal of Biological Chemistry, 1974. 249(8): p. 2562-2566.
46. Wieland, O. and M. Suyter, Glycerokinase: isolation and properties of the enzyme. Biochem. Ztschr., 1957. 239: p. 320-331.
47. Coppack, S.W., M.D. Jensen, and J.M. Miles, In vivo regulation of lipolysis in humans. Journal of lipid research, 1994. 35(2): p. 177-193.
48. Vernon, R.G., Effects of diet on lipolysis and its regulation. Proceedings of the Nutrition Society, 1992. 51(3): p. 397-408.
49. Pereira, M.J., et al., Direct effects of glucagon on glucose uptake and lipolysis in human adipocytes. Molecular and cellular endocrinology, 2020. 503: p. 110696.
50. Goodman, H. and G. Grichting, Growth hormone and lipolysis: a reevaluation. Endocrinology, 1983. 113(5): p. 1697-1702.
51. Ottosson, M., et al., Effects of cortisol and growth hormone on lipolysis in human adipose tissue. The Journal of Clinical Endocrinology & Metabolism, 2000. 85(2): p. 799-803.
52. Morigny, P., et al., Adipocyte lipolysis and insulin resistance. Biochimie, 2016. 125: p. 259-266.
53. Reilly, S.M. and A.R. Saltiel, Adapting to obesity with adipose tissue inflammation. Nature Reviews Endocrinology, 2017. 13(11): p. 633-643.
54. Hotamisligil, G.S., et al., Differential regulation of the p80 tumor necrosis factor receptor in human obesity and insulin resistance. Diabetes, 1997. 46(3): p. 451-455.
55. Kern, P.A., et al., The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. The Journal of clinical investigation, 1995. 95(5): p. 2111-2119.
56. Chung, K.-J., et al., Innate immune cells in the adipose tissue. Reviews in Endocrine and Metabolic Disorders, 2018. 19: p. 283-292.
57. Kanda, H., et al., MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. The Journal of clinical investigation, 2006. 116(6): p. 1494-1505.
58. Engin, A., The pathogenesis of obesity-associated adipose tissue inflammation. Obesity and lipotoxicity, 2017: p. 221-245.
59. Miller, S.I., R.K. Ernst, and M.W. Bader, LPS, TLR4 and infectious disease diversity. Nature Reviews Microbiology, 2005. 3(1): p. 36-46.
60. Shi, H., et al., TLR4 links innate immunity and fatty acid–induced insulin resistance. The Journal of clinical investigation, 2006. 116(11): p. 3015-3025.
61. Park, B.S., et al., The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature, 2009. 458(7242): p. 1191-1195.
62. Lai, J.-l., et al., Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways. Inflammation, 2017. 40: p. 1-12.
63. Verstrepen, L., et al., TLR-4, IL-1R and TNF-R signaling to NF-κB: variations on a common theme. Cellular and molecular life sciences, 2008. 65: p. 2964-2978.
64. Poglio, S., et al., Adipose tissue sensitivity to radiation exposure. The American journal of pathology, 2009. 174(1): p. 44-53.
65. Lane, D.P., p53, guardian of the genome. Nature, 1992. 358(6381): p. 15-16.
66. Huang, Q., et al., Role of p53 in preadipocyte differentiation. Cell biology international, 2014. 38(12): p. 1384-1393.
67. Krstic, J., et al., p53 functions in adipose tissue metabolism and homeostasis. International Journal of Molecular Sciences, 2018. 19(9): p. 2622.
68. Eller, K., et al., Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes, 2011. 60(11): p. 2954-2962.
69. Hams, E., et al., Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. The Journal of Immunology, 2013. 191(11): p. 5349-5353.
70. Lumeng, C.N., J.L. Bodzin, and A.R. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization. The Journal of clinical investigation, 2007. 117(1): p. 175-184.
71. Lumeng, C.N., et al., Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes, 2008. 57(12): p. 3239-3246.
72. Hug, C. and H.F. Lodish, Visfatin: a new adipokine. Science, 2005. 307(5708): p. 366-367.
73. Steppan, C.M., et al., The hormone resistin links obesity to diabetes. Nature, 2001. 409(6818): p. 307-312.
74. Monteiro, L., et al., Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. Journal of leukocyte biology, 2019. 106(3): p. 703-716.
75. De Rosa, V., et al., A key role of leptin in the control of regulatory T cell proliferation. Immunity, 2007. 26(2): p. 241-255.
76. Ohashi, K., et al., Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. Journal of Biological Chemistry, 2010. 285(9): p. 6153-6160.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92241-
dc.description.abstract放射性治療是為了有效去除癌細胞的治療方法之一,然而在治療的同時卻也會造成正常細胞的損傷,在皮膚可引起放射性皮膚炎,對癌症患者造成二次傷害。儘管放射性治療已於臨床上運用一百多年,但截至目前對於放射性皮膚炎的確切機制仍不清楚。過去的研究發現,在放射線傷害後,小鼠脂肪組織內脂肪細胞會縮小。此研究中,我們探討此現象是否與放射性皮膚炎的發病有關。我們看到嚴重的放射性皮膚炎出現之前,皮膚的真皮白色脂肪組織會先有發炎現象,並且同時伴隨有脂肪細胞變小。我們透過免疫螢光染色的方法,發現巨噬細胞、T細胞以及嗜中性球在放射性皮膚炎的發病過程在皮膚中會逐漸增加,最後出現皮膚發炎及潰爛的現象。我們猜想放射線誘發真皮白色脂肪組織脂肪分解,而真皮白色脂肪組織脂肪分解可能會惡化放射線皮膚炎。我們透過藥物及基因轉殖小鼠抑制真皮白色脂肪組織脂肪分解,觀察到可以放射線傷害後小鼠皮下的脂肪細胞並未有縮小的現象產生,同時也減輕了放射線皮膚炎的症狀。我們也探討免疫細胞在誘發真皮白色脂肪組織脂肪分解以及放射線皮膚炎的角色。我們的結果顯示脂肪組織與免疫細胞的交互作用,可能是惡化放射線皮膚炎的可能原因。未來可以更深入探討這樣的交互作用,如何惡化放射線皮膚炎的詳細分子機制。zh_TW
dc.description.abstractRadiotherapy not only kill cancer cells, but also damage normal cells. In skin, it often leads to radiation dermatitis that causes secondary damage to cancer patients. Although radiation therapy has been used clinically for more than 100 years, the exact mechanism of radiation dermatitis remains unclear. Prior research showed that adipocytes in mouse adipose tissue shrink after radiation damage. In this study, we investigated whether this phenomenon is related to the development of radiation dermatitis. We found that, before severe radiation dermatitis occurred, the skin dermal white adipose tissue first became inflamed, and at the same time, the adipocytes also became shrank in size. Through immunofluorescence staining, we found that macrophages, T cells, and neutrophils gradually increased in the skin during the development of radiation dermatitis, and eventually skin ulceration occurred. We speculated that radiation induces dermal white adipose tissue lipolysis and that dermal white adipose tissue lipolysis may worsen radiation dermatitis. We used drugs and genetically modified mice to inhibit lipolysis in dermal white adipose tissue and observed that adipocytes in dermal white adipose tissue did not shrink after radiation damage, and the signs of radiation dermatitis were also alleviated. We also explored the role of immune cells in inducing dermal white adipose tissue lipolysis and radiation dermatitis. Our results suggest that the interaction of dermal white adipose tissue with immune cells may play a possible role in worsening radiation dermatitis. The detailed molecular mechanisms of how such interactions worsen radiation dermatitis can be explored in more depth in the future.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:13:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-21T16:13:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 vi
圖次 x
表次 xii
第一章 緒論 1
1.1 放射性皮膚炎 1
1.1.1 皮膚結構及組成 1
1.1.2 游離輻射 2
1.1.3 放射性皮膚炎病原學 4
1.1.4 放射性皮膚炎發病率 5
1.1.5 放射性皮膚炎分級 5
1.1.6 放射性皮膚炎預防方法 7
1.1.7 放射性皮膚炎治療方法 7
1.2 真皮白色脂肪組織(dWAT) 8
1.2.1 dWAT結構及組成 8
1.2.2 脂肪分解 9
1.2.3 脂肪發炎 11
1.2.4 Toll-like receptor4(TLR4) 與脂肪發炎之間的聯繫 12
1.2.5 dWAT對於輻射的反應 12
1.2.6 P53與WAT之間的關係 13
1.3 dWAT中的免疫調節 14
1.3.1 dWAT免疫系統組成 14
1.3.2 脂肪因子 14
1.4 研究動機 15
1.5 實驗假設 15
第二章 驗材料與方法 16
2.1 動物實驗 16
2.1.1 游離輻射造成小鼠產生放射性皮膚炎模型 16
2.1.2轉基因小鼠 17
2.1.2 小鼠皮膚取樣保存 19
2.1.3小鼠皮膚組織石蠟切片 19
2.1.4小鼠皮膚組織冷凍切片 20
2.1.5 利用他莫昔分(tamoxifen)誘導主轉基因小鼠的基因表現 20
2.1.6嗜中性球去除(neutrophil depletion)給藥方式 20
2.1.7巨噬細胞去除(macrophage depletion)給藥方式 20
2.1.9 類固醇乳膏/油膏(steroid cream/ointment)給藥方式 21
2.1.10小鼠皮膚厚度定量 21
2.1.11小鼠脂肪細胞大小定量 21
2.1.12小鼠潰瘍面積大小定量 21
2.2小鼠皮膚組織染色 22
2.2.1蘇木精—伊紅染色(hematoxylin and eosin stain, H&E stain) 22
2.2.2 免疫螢光染色(immunofluorescence staining) 22
2.3組織切片拍攝 24
2.3.1蘇木精—伊紅染色切片拍攝 24
2.3.2冷凍切片染色 24
第三章 實驗結果 25
3.1 游離輻射誘導放射性皮膚炎動物模型建立 25
3.1.1以蘇木精—伊紅染色切片測量皮膚厚度變化 27
3.1.2利用Bodipy以及Perilipin標示出脂肪細胞並進行大小定量 29
3.2放射性皮膚炎病程中存在於皮膚的免疫細胞 31
3.2.1巨噬細胞(macrophage) 31
3.2.2 T細胞(T cell) 34
3.2.3 嗜中性球(neutrophil) 35
3.3分別去除各種免疫細胞並觀察放射性皮膚炎病程發展 36
3.3.1 Rag1轉基因鼠照射游離輻射後的結果 36
3.3.2 CCR2RFP ; CX3CR1GFP轉基因小鼠照射游離輻射後的結果 38
3.3.3 利用anti-Ly6G抑制小鼠體內嗜中性球功能 40
3.3.4 注射Clodrosome 使小鼠體內巨噬細胞凋亡 42
3.4抑制脂肪分解對於放射性皮膚炎病程發展的影響 44
3.4.1Adipoq-cre ; Atglflox轉基因鼠照射游離輻射的結果 44
3.4.2抑制脂肪分解後皮膚中的巨噬細胞變化 48
3.4.3透過抑制劑Atglistatin抑制脂肪分解 51
3.5 Toll-like receptor4(TLR4)對於放射性皮膚炎的影響 54
3.5.1 Adipoq-Cre ; TLR4FLOX照射游離輻射的結果 54
3.5.2Lysm-Cre ; TLR4FLOX照射游離輻射的結果 56
3.6 腫瘤抑制蛋白(P53)對於放射性皮膚炎的影響 58
3.6.1 Adipoq-Cre ; P53FLOX轉基因小鼠照射游離輻射後的結果 58
3.7固醇類藥膏對於放射性皮膚炎的預防效果 60
3.7.1妥膚淨乳膏(Topsym cream)對於放射性皮膚炎的影響 60
3.7.2乃利爽脂肪性軟膏(Nerisone ointment) 61
第四章 討論 62
4.1免疫細胞對於放射性皮膚炎的影響 62
4.2 dWAT對於放射性皮膚炎的影響 64
4.3 Toll-like receptor4對於放射性皮膚炎的影響 65
4.4 p53對於放射性皮膚炎的影響 66
4.5固醇類藥膏對於放射性皮膚炎的預防功效 67
第五章 結論 68
第六章 參考文獻 69
-
dc.language.isozh_TW-
dc.subject脂肪細胞zh_TW
dc.subject放射性皮膚炎zh_TW
dc.subject脂肪分解zh_TW
dc.subject游離輻射zh_TW
dc.subject放射性治療zh_TW
dc.subjectradiation dermatitisen
dc.subjectionizing radiationen
dc.subjectlipolysisen
dc.subjectdermal white adipose tissueen
dc.subjectradiotherapyen
dc.title真皮白色脂肪組織在放射性皮膚炎發展中的角色zh_TW
dc.titleRole of dermal white fat in the development of radiation dermatitisen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林水龍;官振翔;蔡沛學zh_TW
dc.contributor.oralexamcommitteeShuei-Liong Lin;Chen-Hsiang Kuan;Pei-Shiue Tsaien
dc.subject.keyword放射性皮膚炎,脂肪細胞,游離輻射,脂肪分解,放射性治療,zh_TW
dc.subject.keywordradiation dermatitis,dermal white adipose tissue,lipolysis,ionizing radiation,radiotherapy,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202400738-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-19-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2026-02-19-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
36.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved