請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9223
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 董成淵 | |
dc.contributor.author | Li-Ling Yang | en |
dc.contributor.author | 楊禮綾 | zh_TW |
dc.date.accessioned | 2021-05-20T20:13:34Z | - |
dc.date.available | 2010-07-23 | |
dc.date.available | 2021-05-20T20:13:34Z | - |
dc.date.copyright | 2009-07-23 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-22 | |
dc.identifier.citation | 1. Moerner, W.E. and L. Kador, Optical detection and spectroscopy of single molecules in a solid. Physical Review Letters, 1989. 62(21): p. 2535.
2. Weiss, S., Fluorescence Spectroscopy of Single Biomolecules. Science, 1999. 283(5408): p. 1676-1683. 3. R. Rigler, M.O.a.I.B., Single Molecule Spectroscopy - Nobel Conference Lectues. 2001: Springer. 4. Adachi, K., et al., Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(13): p. 7243-7247. 5. Zhuang, X., et al., Correlating Structural Dynamics and Function in Single Ribozyme Molecules. Science, 2002. 296(5572): p. 1473-1476. 6. Ha, T., et al., Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(3): p. 893-898. 7. Michel, O., Photon Statistics in Single Molecule Experiments. Single Molecule, 2002. 3(5-6): p. 255-265. 8. Orrit, M., Single-molecule spectroscopy: The road ahead. The Journal of Chemical Physics, 2002. 117(24): p. 10938-10946. 9. Markus Lippitz, F.K.M.O., Statistical Evaluation of Single Nano-Object Fluorescence. Chem Phys Chem, 2005. 6(5): p. 770-789. 10. Copy right belongs to Nikon Microscope U. 11. Copy right belongs to Nikon Microscope U. 12. Copy right belongs to Nikon Microscope U. 13. T, F., Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik, 1948. 2(6): p. 55-74. 14. Hanson, J.A., et al., Illuminating the mechanistic roles of enzyme conformational dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104 (46): p. 18055-18060. 15. Xie, Z., et al., Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(2): p. 534-539. 16. The energy transfer mechanism of FRET does not have radiative process involved though spectrum of dyes are essentail to determine the forster radius of a chosen dye pair. 17. Wiener, N., Extrapolation, interpolation and smoothing of stationary time series. MIT Press, 1949. 18. Magde, D., E. Elson, and W.W. Webb, Thermodynamic Fluctuations in a Reacting System - Measurement by Fluorescence Correlation Spectroscopy. Physical Review Letters, 1972. 29(11): p. 705. 19. Elliot L. Elson, D.M., Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers, 1974. 13: p. 1-27. 20. Douglas Magde, E.L.E., Watt W. Webb, Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers, 1974. 13: p. 29-61. 21. Jerker Widengren, R.R.a.Ü.M., Triplet-state monitoring by fluorescence correlation spectroscopy. Journal of Fluorescence, 1994. 4(3): p. 255-258. 22. Widergren, R.R.a.J., Ultrasensitive detection of single moleculres by fluorescence correlation spectroscopy. BioScience, 1990. 3: p. 180-183. 23. Rigler, Ü.M.a.R., Submillisecond detection of single rhodamine molecules in water. Journal of Fluorescence, 1994. 4 (3): p. 259-264. 24. Dephasing time (T2 time) is on the order of 100 fs. 25. Biophysical Society, Educational Resourceshttp://www.biophysics.org/education/schwille.pdf 26. Schubert, M., et al., Photon antibunching and non-Poissonian fluorescence of a single three-level ion. Physical Review Letters, 1992. 68 (20): p. 3016. 27. Twiss, R.H.a.R.Q., Nature, 1956. 177: p. 27. 28. Biophysical Society, Educational Resourceshttp://www.biophysics.org/education/schwille.pdf 29. Laurence, T.A., et al., Photon Arrival-Time Interval Distribution (PAID): A Novel Tool for Analyzing Molecular Interactions. 2004. 108 p. 3051-3067. 30. Basch, T., et al., Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Physical Review Letters, 1992. 69 (10): p. 1516. 31. Paul C. Brister, K.K.K., Volker Buschmann and Kenneth D. Weston, Fluorescence correlation spectroscopy for flow rate imaging and monitoring-optimization, limitations and artifacts. Lab on a chip, 2005. 5: p. 785-791. 32. Bernard, J., et al., Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing. The Journal of Chemical Physics, 1993. 98 (2): p. 850-859. 33. Zumbusch, A., et al., Probing individual two-level systems in a polymer by correlation of single molecule fluorescence. Physical Review Letters, 1993. 70 (23): p. 3584. 34. Kulzer, F. and M. Orrit, SINGLE-MOLECULE OPTICS. Annual Review of Physical Chemistry, 2004. 55 (1): p. 585-611. 35. Moerner, W.E., Science, 1997. 277: p. 1059. 36. Rasnik, I., S.A. McKinney, and T. Ha, Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Meth, 2006. 3 (11): p. 891-893. 37. Grewer, C. and H.D. Brauer, Mechanism of the Triplet-State Quenching by Molecular-Oxygen in Solution. Journal of Physical Chemistry, 1994. 98 (16): p. 4230-4235. 38. Aitken, C.E., R.A. Marshall, and J.D. Puglisi, An Oxygen Scavenging System for Improvement of Dye Stability in Single-Molecule Fluorescence Experiments. Biophysical Journal, 2008. 94(5): p. 1826-1835. 39. Xiangyun, Q., et al., Measuring Inter-DNA Potentials in Solution. Physical Review letters, 2006. 96 (13): p. 138101. 40. Holt, K.B., Phil. Trans. R. Soc. A, 2007. 65: p. 2845-2861. 41. Y.-R. Chang, H.-Y.L., K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu,T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, W. Fann, Nature Nanotech, 2008. 3: p. 284-288. 42. S.-J. Yu, M.W.L., H.-C. Chang, K.-M. Chen, Y.-C. Yu, J. Am. Chem. Soc., 2005 127: p. 17604-17065. 43. C.-C. Fu, H.-Y. Lee,K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, W. Fann, Proc. Natl. Acad. Sci. USA, 2007. 104: p. 727-732. 44. Heikal, A.A., et al., Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: Coral red (dsRed) and yellow (Citrine). Proceedings of the National Academy of Sciences, 2000. 97 (22): p. 11996-12001. 45. H. Qian, M.P.S., E.L. Elson, Single particle tracking. Analysis of diffusion and flow in two-dimensional systems Biophysical Journal, 1991. 60 (4): p. 910-921. 46. According to the Einstein-Stokes relation, the diffusivity is closely related to the diameter of particles. However, its shape will aslo affect the diffusivity, which is beyone the scope of our discussion. 47. Knight, J.B., et al., Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds. Physical Review Letters, 1998. 80 (17): p. 3863. 48. David E. Hertzog, X.M., Marcus Jager, Xiangxu Kong, Juan G. Santiago, Shimon Weiss, and Olgica Bakajin, Femtomole mixer for microsecond kinetics studies of protein folding. Anal. Chem., 2004. 76: p. 7169-7178. 49. Hye Yoon Park, X.Q., Elizabeth Rhoades, Jonas Korlach, Lias W. Kwok, Warren R. Zipfel, Watt W. Webb, and Lois Pollack, Achieving uniform mixing in a microfluidic devices : Hydrodynamic Focusing Prior to Mixing. Anal. Chem., 2006. 78: p. 4465-4473. 50. Lipman, E.A., et al., Single-molecule measurement of protein folding kinetics. Science, 2003. 301 (5637): p. 1233-1235. 51. Yang, L.-L., Setup of an UltraFast Mixing Laminar Micro-fluidics for Protein Folding Study, in Physics Department. 2003, National Taiwan University: Taipei. p. 97. 52. (劉慶川), C.-C.Liu., Investigations on Hydrodynamic Focusing by Con-focal Microscopy and Fluorescence Correlation Spectroscopy (共焦顯微鏡與螢光相關光譜分析於微流體聚焦之研究), in Institute of Applied Mechanics. 2008, National Taiwan Unversity: Taipei. 53. The upper limit of the flow rate of side channels is determined by the geometry of crossed channels. 54. L.-L. Yang, H.-Y.Lee., M.-K. Wang, W.-Y. Lin, K.-H. Hsu, Y.-R. Chang, W. Fann, J.D. White, Real-time data acquisition incorporating high-speed software correlator for single-molecule spectroscopy. Journal of Microscopy, 2009. 234 (9): p. 302-310. 55. Harry, L., III, Thioflavine T interaction with synthetic Alzheimer's disease β-amyloid peptides: Detection of amyloid aggregation in solution. Protein Science, 1993. 2(3): p. 404-410. 56. Voropai, E.S., et al., Spectral Properties of Thioflavin T and Its Complexes with Amyloid Fibrils. Journal of Applied Spectroscopy, 2003. 70 (6): p. 868-874. 57. Evan S.-H. Chang, T.-Y.L., Tsong-shin Lim, Wunshain Fann, and Rita P.-Y. Chen, A new amyloid-like B-aggregate with amyloid characteristics, except fibril morphology. Journal of Molecular Biology, 2009. 385: p. 1257-1265. 58. Nettels, D., et al., Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104 (8): p. 2655-2660. 59. Nettels, D., A. Hoffmann, and B. Schuler, Unfolded Protein and Peptide Dynamics Investigated with Single-Molecule FRET and Correlation Spectroscopy from Picoseconds to Seconds. Proceedings of the National Academy of Sciences of the United States of America, 2008. 112 (19): p. 6137-6146. 60. This simulation is done by Dr. T.S. Lim in Physics Department, Tunghai University, Taichung, Taiwan. 61. Briggs, M.S. and H. Roder, Early Hydrogen-Bonding Events in the Folding Reaction of Ubiquitin. Biophysical Journal, 1992. 89 (6): p. 2017-2021. 62. Anfinsen, C.B., Principles that govern the folding of protein chains. Science 1973. 181: p. 223-229. 63. R. E. Lenkinski, D.M.C., J. D. Glickson and G. Goldstein, Biochim. Biophys. Acta, 1977. 494: p. 126-130. 64. Makhatadze, G.I., et al., Anion binding to the ubiquitin molecule. Protein Science, 1998. 7 (3): p. 689-697. 65. Ibarra-Molero, B., et al., Thermal versus Guanidine-Induced Unfolding of Ubiquitin. An Analysis in Terms of the Contributions from Charge-Charge Interactions to Protein Stability. Biochemistry, 1999. 38 (25): p. 8138-8149. 66. Khorasanizadeh, S., I.D. Peters, and H. Roder, Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat Struct Mol Biol, 1996. 3 (2): p. 193-205. 67. Sosnick, T.R., R.S. Dothager, and B.A. Krantz, Differences in the folding transition state of ubiquitin indicated by Φ and Ψ analyses. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101 (50): p. 17377-17382. 68. Went, H.M. and S.E. Jackson, Ubiquitin folds through a highly polarized transition state. Protein Engineering, Design & Selection, 2005. 18(5): p. 229-237. 69. Jackson, S.E., Ubiquitin : a small protein folding paradigm. Organic & Biomolecular Chemistry, 2006. 4: p. 9. 70. Loladze, V.V. and G.I. Makhatadze, Removal of surface charge-charge interactions from ubiquitin leaves the protein folded and very stable. Protein Science, 2002. 11 (1): p. 174-177. 71. Hochstrasser, M., Lingering mysteries of ubiquitin-chain assembly. Cell, 2006. 124: p. 27-34. 72. Hershko A, C.A., The ubiquitin system Annu Rev Biochem, 1998. 67: p. 425-479. 73. Ciechanover, A., The ubiquitin–proteasome pathway: on protein death and cell life. The EMBO Jornal, 1998. 17: p. 7151 74. Hochstrasser, M., Ubiquitin signalling: what's in a chain?, Nature Cell Biology, 2004. 6: p. 571-572 75. Ratner, V., et al., A general strategy for site-specific double labeling of globular proteins for kinetic FRET studies. Bioconjug. Chem., 2002. 13 (5): p. 1163-70. 76. Jacob, M.H., et al., Predicting Reactivities of Protein Surface Cysteines as Part of a Strategy for Selective Multiple Labeling. Biochemistry, 2005. 44 (42): p. 13664-13672. 77. Kao, M.W.-P., et al., Strategy for Efficient Site-Specific FRET-Dye Labeling of Ubiquitin. Bioconjugate Chemistry, 2008. 19 (6): p. 1124-1126. 78. We divide all the molecules into three main categories. One is donor-only protein; another is acceptor-photobleaching one, and the other stands for those revealing conformational dynamics. 79. The case of acceptor photobleaching will result into a FRET histogram centering at E = 0 % and 95 % respectively. 'Switching' is different from this case. 80. Kao, M.W.-P., et al., Strategy for Efficient Site-Specific FRET-Dye Labeling of Ubiquitin. 2008. 19 (6): p. 1124-1126. 81. The bin size of FRET histogram is 2.5 %. 82. Werner, J.H., et al., Increasing the Resolution of Single Pair Fluorescence Resonance Energy Transfer Measurements in Solution via Molecular Cytometry. Analytical Chemistry, 2007. 79 (9): p. 3509-3513. 83. The equation is valid under tha assumption that donor and acceptor are governed by Poisson statistics. 84. Jager, M., E. Nir, and S. Weiss, Site-specific labeling of proteins for single-molecule FRET by combining chemical and enzymatic modification. Protein Science, 2006. 15 (3): p. 640-646. 85. Kim, P.S. and R.L. Baldwin, Specific Intermediates in the Folding Reactions of Small Proteins and the Mechanism of Protein Folding. Annual Reviews, 1982. 51 (1): p. 459-489. 86. Kim, P.S. and R.L. Baldwin, Intermediates in the Folding Reactions of Small Proteins. Annual Reviews, 1990. 59 (1): p. 631-660. 87. Kapanidis, A.N. and S. Weiss, Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. Journal of Chemical Physics, 2002. 117 (24): p. 10953-10964. 88. Benjamin, S., Single-Molecule Fluorescence Spectroscopy of Protein Folding. Chem Phys Chem, 2005. 6(7): p. 1206-1220. 89. Hamadani, K.M. and S. Weiss, Nonequilibrium Single Molecule Protein Folding in a Coaxial Mixer. Biophysical Journal, 2008. 95 (1): p. 352-365. 90. Johnson, C.K., et al., Single-Molecule Fluorescence Spectroscopy: New Probes of Protein Function and Dynamics. 2005. p. 10-14. 91. Bilsel, O. and C.R. Matthews, Molecular dimensions and their distributions in early folding intermediates. Current Opinion in Structural Biology, 2006. 16 (1): p. 86-93. 92. Eliezer, D., Biophysical characterization of intrinsically disordered proteins. Current Opinion in Structural Biology, 2009. 19 (1): p. 23-30. 93. Lionel Costenaro, J.G.G., Christine Ebel, and Anthony Maxwell, Small-Angle X-Ray Scattering Reveals the Solution Structure of the Full-Length DNA Gyrase A Subunit. Structure, 2005. 13 (2): p. 287-296. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9223 | - |
dc.description.abstract | 單分子測量術近年來受到廣泛的應用,尤其在生物分子的構形、動態與其動力學的研究上。系綜測量下無法獲得的資訊,如:總體分佈及變異,則可藉由單一分子的觀察而得。本篇論文的工作旨在建立單分子光學實驗系統及方法,及其相關應用,主要涵蓋兩大部分:
1. 泛素之動態構形研究 – 單分子螢光能量移轉光譜學 2. 時間相關螢光光譜學與單光子探測技術之應用 – 共軛高分子、螢光奈米鑽石、生物分子與微流體混合器 單分子螢光能量移轉光譜學為一奈米尺度下丈量尺規,其能量移轉效率與兩標定染間的距離變化有極大的關聯。透過染料分子的標定,生物分子的構形變化與動態則會反映在螢光能量移轉效率的變化。觀測系統主要為共焦顯微鏡,根據實驗的需要將生物分子固定與玻片表面或於溶液中直接觀測。另一方面,我們亦由螢光光子資料的擷取與分析上著手,透過螢光關聯分子與光子-光子間時距的紀錄獲得額外的資訊,並成功的應用於其他相關實驗上。這些努力主要是爲蛋白質早期摺疊過程之研究而準備,希望能結合快速混合微流體元件、螢光關聯分析與螢光能量移轉光譜以解析摺疊動態。 | zh_TW |
dc.description.abstract | Single-molecule detections have been known for the potential to provide additional information beside ensemble measurements. Population heterogeneities and synchronous (or asynchronous) reaction pathways pertaining to conformational dynamics and molecular interactions are veiled by ensemble averaging. The scope of this thesis is to establish general experimental methodologies on the basis of single-molecule detection, and the applications have been covered as well. The frame of this work is mainly composed of two parts:
1. Conformational dynamics of ubiquitin are investigated by spFRET (single-paired Förster Resonance Energy Transfer). 2. Applications of TCSPC (Time-Correlated Single Photon Counting) and FCS (Fluorescence Correlation Spectroscopy) on conjugated polymers, FND (Fluorescence Nano Diamond), biomolecules and micro-fluidics. FRET serves as a distance ruler in close proximity (~ 1 nm to ~ 10 nm), and dynamic changes in structure of proteins can be thus recorded accurately. We have established optical methods to observe ubiquitin molecules either immobilized on the cover-slip surface or in free solution. On the other hand, detections based on single photon counting and correlation analysis has also been applied for further information aside from intensity analysis. At the same time, a continuous-flow micro-fluidic mixer is under development, which has claimed sub-ms mixing dead time. Cooperating FCS, TCSPC, microscopy, micro-fluidic mixer and FRET provides us with the perspective on investigations population evolution and structural variations in along the kinetics of biomolecules. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:13:34Z (GMT). No. of bitstreams: 1 ntu-98-D93222027-1.pdf: 3495312 bytes, checksum: 1e521a544d7c1928e381d8968d34d17e (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | CHAPTER 1 7
INTRODUCTION 7 1.1: OVERVIEW ON THESIS 7 1.2: DEVELOPMENT OF SINGLE MOLECULE SPECTROSCOPY 7 CHAPTER 2 9 EXPERIMENTAL METHODS & APPARATUS 9 2.1: CONFOCAL MICROSCOPY 9 2.2: FÖRSTER RESONANCE ENERGY TRANSFER (FRET) 11 2.2.1: Derivation of FRET Efficiency 13 2.3: FLUORESCENCE CORRELATION SPECTROSCOPY (FCS) 15 2.3.1: Basics of Correlation Function 16 2.3.2: Derivation of 3D diffusion 21 2.3.3: Bunching and Antibunching 24 2.3.4: Other Sources of Fluorescence Fluctuations 26 CHAPTER 3 28 APPLICATIONS OF CORRELATION ANALYSIS 28 3.1: SIZE CHARACTERIZATION OF FLUORESCENCE NANODIAMOND (FND) 28 3.2: DETERMINATION OF FLOW VELOCITY OF MICROFLUIDIC MIXER 30 3.3: DEVELOPMENT OF REAL-TIME DATA ACQUISITION 35 3.4: APPLICATIONS OF TCSPC 38 3.4.1:The Number of Chromophores of DO-PPV Aggregates 38 3.4.2: Fluorescence Intensity Burst Analysis 42 3.4.3: Fluorescence Intensity Burst Analysis on FRET 46 CHAPTER 4 50 INVESTIGATIONS ON UBIQUITIN BY SPFRET 50 4.1: INTRODUCTION TO UBIQUITIN 50 4.1.1: History of Ubiquitin 51 4.1.2: Ubiquitylation 51 4.2 : DYE-LABELING ON UBIQUITN 53 4.2.1: Design of labelling sites 53 4.2.2: Design of solid-phase labeling strategy 54 4.2.3: Coupling efficiency of the designed labeling sites 55 4.3: STRUCTURAL CHARACTERIZATION 57 4.4: OBSERVATIONS ON UBIQUITIN BY SPFRET 58 4.4.1: Surface Immobilization by Agarose gel 58 4.5: RESULTS, DISCUSSION & CONCLUSION 62 4.5.1: Conformational Heterogeneity of A488-m[C]q/S65C-A594 63 4.5.2: Structural Switching 66 4.5.3: Effects of Swapping Positions of spFRET pair 68 4.5.4: Issues on Dye Molecules 69 4.5.5: Concluding Remarks 72 CHAPTER 5 74 CONCLUSIONS & PERSPECTIVE 74 5.1: CONCLUSIONS 74 5.2: PERSPECTIVE 75 BIBLIOGRAPHY 76 | |
dc.language.iso | en | |
dc.title | 單分子量測系統與關聯分析之應用 | zh_TW |
dc.title | Applications of Single-Molecule Spectroscopy and Correlation Analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳佩燁,曹培熙,林宗欣,章為皓,徐瑞鴻 | |
dc.subject.keyword | 單分子量測,泛素,螢光能量轉移, | zh_TW |
dc.subject.keyword | single molecule,FRET,ubiquitin,TCSPC,FCS, | en |
dc.relation.page | 80 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-07-22 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 3.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。