Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92235
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡明哲zh_TW
dc.contributor.advisorMing-Jer Tsaien
dc.contributor.author李佳如zh_TW
dc.contributor.authorChia-Ju Leeen
dc.date.accessioned2024-03-17T16:17:02Z-
dc.date.available2024-03-18-
dc.date.copyright2024-03-16-
dc.date.issued2024-
dc.date.submitted2024-02-16-
dc.identifier.citation1. 王松永(1993)木材物理學。國立編譯館主編,徐氏基金會出版。816頁。
2. 王松永(2018)木材物理學:物理性質篇。新學林出版股份有限公司。
3. 王松永和丁昭義(1984)林產學(上)。臺灣商務印書館。
4. 吳元成(2006)機械應力分等技術於針葉樹結構用材之應用。國立屏東科技大學木材科學與設計系。79頁。
5. 李佳如、林蘭東、林志憲、楊德新(2016)柳杉集成元之配置對結構用集成材抗彎性質之影響。林產工業。35:11–19。
6. 李佳如、楊德新(2010)應用非破壞檢測技術評估杉木集成元之抗彎性質。林業研究季刊。32:45–60。
7. 李佳如、楊德新(2015)直交集成柳杉地板之物理與機械性質評估。林產工業。34:1–10。
8. 李銘鐘(2012)非破壞性打音法測定木材強度性質之研究。國立中興大學碩士論文。
9. 卓志隆(2000a)定向粒片板的振動性質。中華林學季刊33(4):549–558。
10. 卓志隆(2000b)應用複合振動法測定結構用製材品之彈性係數及剪斷係數。林產工業19(1):37–48。
11. 卓志隆、李俊威(2014)熱處理對孟宗竹材性質之影響(Ⅰ)‒物理性質及耐腐朽性。林產工業。33:79‒88。
12. 卓志隆、林育玄 (2016)台灣製材業及其原物料利用率之現況。林產工業35(2):115‒22。
13. 卓志隆、林莉純、顏廷諭(2008)柳杉疏伐木製作結構用製材品之目視與機械分等。林產工業。27(3):187–198。
14. 卓志隆、許碧娟、楊德新、陳佑安(2019)國產柳杉及巒大杉結構用製材品抗彎容許應力評估。林產工業。38(3):135–146。
15. 卓志隆、顏廷諭、洪崇彬(2010)柳杉疏伐木製造之集成材抗彎性質評估。林產工業。29(4):227-236。
16. 周子晴(2021)柳杉材等級區分法及ACQ防腐處理之集成材性質。臺灣大學森林環境暨資源學研究所碩士論文。92頁。
17. 周子晴、李佳如、莊閔傑、林志憲、蔡明哲(2021)柳杉材等級區分法及銅烷基銨化合物防腐處理之抗彎性質探討。國立臺灣大學生物資源暨農學院實驗林研究報告。35(4):277-292。
18. 林志憲(2011)三種針葉樹製造直交式結構用板材之基本性質探討。國立中興大學森林學研究所碩士論文。81頁。
19. 林志憲(2020)國產材於直交集成板之製造及其工程性能評估。國立中興大學森林學研究所博士論文。153頁。
20. 林依涵(2021)國產材製成直交集成板之防火性能初探。國立臺灣科技大學建築系碩士論文。98頁。
21. 林憲德(2003)熱濕氣候的綠色建築:人類居住環境的永續發展生態、節能、減廢、健康。詹氏書局。555頁。
22. 黃彥三、熊如珍、陳欣欣(1990)打音頻譜分析應用於材質評估之可行性。林產工業。9(1):43–54。
23. 黃得瑞(2013)木質內裝與屋頂綠化對住宅室內溫濕度與節能減碳之效應。臺灣大學森林環境暨資源學研究所碩士論文。93頁。
24. 塗三賢(2007)臺灣地區木構造住宅對碳貯存與二氧化碳減量之貢獻。臺灣大學森林環境暨資源學研究所博士論文。117頁。
25. 楊筑安(2019)防腐藥劑處理對杉木集成材物理及力學性質影響。臺灣大學森林環境暨資源學研究所碩士論文。80頁。
26. 楊德新(2007)中小徑木製造構造用集成材及其工程性能之研究。國立臺灣大學森林環境暨資源學系博士論文。155頁。
27. 楊德新、林振榮、李佳如、莊閔傑(2014)簡述國產孟宗竹材與集成材之基本性質及其應用。林業研究專訊。21:46-50。
28. 楊德新、邱志明、郭博文、莊鴻濱、林振榮(2005)超音波檢測技術評估商用地板材質之研究。台灣林業科學。20:113–21。
29. 楊德新、陳柏璋和王松永(2002)長薄片含浸酚甲醛樹脂之輕量化定向粒片板性質探討。林產工業21(1): 39–50。
30. 葉民權、李文雄、林玉麗(2006)國產柳杉造林木開發結構用集成材之研究。台灣林業科學。21:531‒46。
31. 劉正字(1984)木器用膠合劑種類與性質。林產工業。3:92–98。
32. Andrew, M.E., M. Enrico, S. Raffaele and B. Michal (2020) Past, present and future of industrial plantation forestry and implication on future timber harvesting technology. Journal of Forestry Research 31:339–351.
33. Bergman, R., M. Puettmann, A. Taylor and K.E. Skog (2014) The carbon impacts of wood products. Forest Products Journal 64: 220–231.
34. Brandner, R., G. Flatscher, A. Ringhofer, G. Schickhofer and A. Thiel (2016) Cross laminated timber (CLT): overview and development. European Journal of Wood and Wood Products74:331–351.
35. Brashaw, B.K., V. Bucur, F. Divos, R. Gonçalves, J. Lu, R. Meder, R.F. Pellerin, S. Potter, R.J. Ross, X. Wang and Y. Yin (2009) Nondestructive testing and evaluation of wood: A worldwide research update. Forest Products Journal 59:7–14.
36. BS EN 16351 (2015) Timber structures Cross laminated timber Requirements. European Committee for Standardization, Brussels.
37. BS EN 384 (2010) Structural timber-determination of characteristic values of mechanical properties and density. CEN European Committee for Standardization, Brussels.
38. BS EN 408 (2010) Timber structures-structural timber and glued laminated timber-determination of some physical and mechanical properties. European Committee for Standardization, Brussels.
39. Buchanan, A.H. and S.B. Levine (1999) Wood-based building materials and atmospheric carbon emissions. Environmental Science & Policy 2: 427-437.
40. Burdzik, W. M. G. and P.D. Nkwera (2002) Transverse vibration tests for prediction of stiffness and strength properties of full-size eucalyptus grandis. Forest Product Journal 52(6): 63-67.
41. Cao, Y., J. Street, M. Li and H. Lim (2019) Evaluation of the effect of knots on rolling shear strength of cross laminated timber (CLT). Construction and Building Materials 222:579–587.
42. Chen, R., P. Wei and J. Liu (2005) Utilization of compressed Chinese fir thinning wood. The Journal of Applied Ecology 16:2306–2310.
43. CNS 11031 (2006) Structural glulam. Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C.
44. CNS 11818 (2006) Laminated veneer lumber. Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C.
45. CNS 12514(2020)Fire-resistance tests − Elements of building construction.
46. CNS 14630 (2017) Structural coniferous sawn lumber. Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C.
47. CNS 14631 (2002) Structural sawn lumber used in platform construction. Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C.
48. CNS 16114 (2019) Cross laminated timber. Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C.
49. CNS 453 (2005) Wood–Determination of compression properties. Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C.
50. Crielaard, R., J. W. van de Kuilen, K. Terwel, G. Ravenshorst, P. Steenbakkers and A. Breunese (2019) Self-extinguishment of cross-laminated timber. World Conference on Timber Engineering. August 22-25, In Vienna, Austria.
51. Crielaard, R., J.W. van de Kuilen, K. Terwel, G. Ravenshorst and P. Steenbakkers (2019) Self-extinguishment of cross-laminated timber. Fire Safety Journal 105: 244-260.
52. Dietsch, P. and T. Tannert (2015) Assessing the integrity of glued-laminated timber elements. Construction and Building Materials 101: 1259-1270.
53. Emberley, R., C.G. Putynska, A. Bolanos, A. Lucherini, A. Solarte, D. Soriguer, M.G. Gonzalez, K. Humphreys, J.P. Hidalgo, C. Maluk and A. Law (2017) Description of small and large-scale cross laminated timber fire tests. Fire Safety Journal 91: 327-335.
54. Espinoza, O., V. R. Trujillo, M. F. L. Mallo and U. Buehlmann (2016) Cross-laminated timber: Status and research needs in Europe. BioResources 11(1): 281–295.
55. Firmanti, A., E.T. Bachtiar, S. Surjokusumo, K. Komatsu and S. Kawai (2005) Mechanical stress grading of tropical timbers without regard to species. Journal of Wood Science 51:339–347.
56. Flores, E. I. S., K. Saavedra, J. Hinojosa, Y. Chandra and R. Das (2016) Multi-scale modelling of rolling shear failure in cross-laminated timber structures by homogenisation and cohesive zone models. International Journal of Solids and Structures 81:219-232.
57. Frangi, A., M. Fontana, E. Hugi and R. Jübstl (2009) Experimental analysis of cross-laminated timber panels in fire. Fire Safety Journal 44: 1078–1087.
58. Frangi, A., M. Fontana, M. Knobloch and G. Bochicchio (2008) Fire behavior of cross-laminated solid timber panels. Fire Safety Science 1279–1290.
59. Franke, B., S. Franke, M. Schiere and A. Müller (2018) Moisture content and moisture-induced stresses of large glulam members: laboratory tests, in-situ measurements and modelling, Wood Material Science & Engineering, DOI:10.1080/17480272.2018.1551930
60. G.J. Nabuurs and R. Sikkema (2001) International trade in wood products: Its role in the land use change and forestry carbon cycle. Climatic Change. 49, pages 377–395. https://doi.org/10.1023/A:1010732726540.
61. Gaff, M., M. Babiak, V. Vokatý, M. Gašparík, and D. Ruman (2017) Bendability characteristics of hardwood lamellae in elastic region. Compos Part B: Eng.116:61–75.
62. Gsell, D., G. Feltrin, S. Schubert, R. Steiger and M. Motavalli (2007) Cross-Laminated Timber Plates: Evaluation and Verification of Homogenized Elastic Properties. Journal of Structural Engineering 133(1):132–138.
63. Gülzow, A., R. Steiger and D. Gsell (2010) Non destructive evaluation of stiffness properties of cross-laminated solid wood panels. WCTE 2010.
64. Halabe, U. B., G. M. Bidigalu, H. V. S. Gangarao and R. J. Ross (1997) Nondestructive evaluation of green wood using stress wave and transverse vibration techniques. Materials Evaluation 55(9): 1013-1018.
65. Hayashi, T. and A. Miyatake (2015) Recent research and development on sugi (Japanese cedar) structural glued laminated timber. Journal of Wood Science 61:337–342.
66. Hernandez, R. D.W. Green, E.D. Kretschmann and S.P. Verrill (2005) Improved utilization of small-diameter ponderosa pine in glulam timber. Res. Pap. FPL-RP-625. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory 38 p.
67. Hildebrandt, J., N. Hagemann and D. Thrän (2017) The contribution of wood-based construction materials for leveraging a low carbon building sector in Europe. Sustainable Cities and Society 34: 405-418.
68. Holmberg, H. (2000) Influence of grain angle on Brinell hardness of Scots pine (Pinus sylvestris L.). Holz als Roh- und Werkstoff 58: 91–95.
69. Ilic, J. (2001) Relationship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis R. Baker. Holz als Roh- und Werkstoff 59:169–175.
70. ISO 834-1 (1999) Fire resistance test - Elements of building construction, Part 1: 744 General Requirements, International Organization for Standardization ISO 834, 745 Geneva, Switzerland.
71. Karacabeyli, E. and B. Douglas (2013) CLT Handbook: Cross-Laminated Timber: US Edition. (Special publication, ISSN 1925-0495qpslcm@ikd SP-529E) FP Innovations and Binational Softwood Lumber Council.
72. Kawahara, K., K. Ando and Y. Taniguchi (2015) Time dependence of Poisson’s effect in wood IV: influence of grain angle. Journal of Wood Science 61: 372–383.
73. Kovryga, A., P. Schlotzhauer, P. Stapel, H. Militz and J.Wi.G. Kuilen (2019) Visual and machine strength grading of European ash and maple for glulam application. Holzforschung 73: 773–787.
74. Kretschmann, D.E. and R. Hernandez (2006) Grading timber and glued structural members. Primary Wood Processing p. 339–390.
75. Lachenbruch, B., G.R. Johnson, G.M. Downes and R. Evans (2010) Relationships of density, microfibril angle, and sound velocity with stiffness and strength in mature wood of Douglas-fir. Canadian Journal of Forest Research 40: 55–64.
76. Lee, C., C. Lin, M. Chung and M. Tsai (2022) Evaluation of the Strength Characteristics of Cunninghamia lanceolata Timber Using Continuous Mechanical Stress Rating Equipment. BioResources 17(1):1411-1426.
77. Liao, Y. D. Tu, J. Zhou, H. Zhou, H. Yun and C. Hu (2017) Feasibility of manufacturing cross-laminated timber using fast-grown small diameter eucalyptus lumbers. Construction and Building Materials 132: 508–515.
78. Lukacs, I., A. Björnfot and R. Tomasi (2019) Strength and stiffness of cross-laminated timber (CLT) shear walls: State-of-the-art of analytical approaches. Engineering Structures 178: 136-147.
79. Mallo, M. F. L. and O. A. Espinoza (2014) Outlook for cross-laminated timber in the United States. BioResources 9(4): 7427–7443
80. Mcnatt, J. D. (1984) Static bending properties of structural wood-base panels: large-panel versus small-specimen tests. Forest Product Journal 34(4):50–54.
81. Muraleedharan, A., S. M. Reiterer (2016) Combined glued laminated timber using hardwood and softwood lamellas. Master’s Thesis in Structural Engineering of Linnaeus University. Pp.57.
82. O’Ceallaigh, C., K. Sikora and A. M. Harte (2018) The Influence of panel lay-Up on the characteristic bending and rolling shear strength of CLT. Building 8:114.
83. Pang, S. J. and G. Y. Jeong (2019) Effects of combinations of lamina grade and thickness, and span-to-depth ratios on bending properties of cross-laminated timber (CLT) floor. Construction and Building Materials 222: 142-151.
84. Park, C. Y., H. K. Kim, J. J. Lee and G. C. Kim (2013) Evaluation of the partial compressive strength according to the wood grain direction. Journal of the Korean Wood Science and Technology 41(2): 100–104.
85. Pirard, R., L.D. Secco and R. Warman (2016) Do timber plantations contribute to forest conservation? Environmental Science & Policy 57:122–130.
86. Riswana S. and G. Jerin Mathew. (2016) Static Analysis of Notched Glulam Beams Reinforced by Fiber Reinforced Polymers. International Journal of Engineering Research and. V5. 10.17577/IJERTV5IS080155.
87. Ronquillo, G., D. Hopkin and M. Spearpoint (2021) Review of large-scale fire tests on cross-laminated timber. Journal of fire sciences 3: 327–369.
88. Ross, R. J. (2015) Nondestructive Evaluation of Wood: Second Edition. Gen. Tech. Rep. FPL-GTR-238. Forest Products Laboratory, Madison, WI, 167 pp.
89. Ross, R. J. and R. F. Pellerin (1988) NDE of wood-based composites with longitudinal stress waves. Forest Product Journal 38(5): 39-45.
90. Ross, R. J. and R. F. Pellerin (1991) Stress wave evaluation of green material: Preliminary results using dimension lumber. Forest Product Journal 41(6): 57-59.
91. Samson, M. (1987) Effect of speed on the accuracy of stress-grading machines for lumber. Wood Science and Technology. 21:281–292.
92. Sandoz, J. L. (1989) Grading of construction timber by ultrasound Wood Sci. Technol. 23: 95-108.
93. Schmid, J., M. Klippel, A. Just and A. Frangi (2014) Review and analysis of fire resistance tests of timber members in bending, tension and compression with respect to the reduced cross-section method. Fire safety journal 68: 81–99.
94. Shangguan, W., Y. Zhong, X. Xing, R. Zhao and H. Ren (2014) 2D Model of strength parameters for bamboo scrimber. BioResources 9(4): 7073–7085.
95. Shukla, S. R. and P. Kamdem (2008) Properties of laminated veneer lumber (LVL) made with low density hardwood species: effect of the pressure duration. Holz Roh Werkst 66: 119–127.
96. Sikora, K. S., D. O. McPolin and A. M. Harte (2016) Effects of the thickness of cross-laminated timber (CLT) panels made from Irish Sitka spruce on mechanical performance in bending and shear. Construction and Building Materials 116:141-150.
97. Stark, N., Z. Cai and C. Carll (2010) Wood-based composite materials: panel products, glued laminated timber, structural composite lumber, and wood–nonwood composite materials. In: Wood Handbook: Wood as an engineering material, United Stated Department of Agriculture, Uniter States, Ch. 11, pp. 11.1-11.28.
98. Steiger, R., A. Gülzow and D. Gsell (2008) Nondestructive evaluation of elastic material properties of cross laminated timber (CLT). Conference COST E53, 29-30 October, The Netherlands.
99. Suleiman, B.M., J. Larfeldt, B. Leckner and M. Gustavsson (1999) Thermal conductivity and diffusivity of wood. Wood Science and Technology 33: 465–473.
100. Vessby, J., B. Enquist, H. Petersson and T. Alsmarker (2009) Experimental study of cross-laminated timber wall panels. European Journal of Wood and Wood Products 67: 211–218.
101. Wang, S. Y., J. H. Chen, M. J. Tsai, C. J. Lin and T. H. Yang (2008) Grading of softwood lumber using non-destructive techniques. Journal of Materials Processing Technology 208(1):149–158.
102. Wei, P., B.J. Wang, H. Li, L. Wang, S. Peng and L. Zhang (2019) A comparative study of compression behaviors of cross-laminated timber and glued-laminated timber columns. Construction and Building Materials 222: 86-95.
103. White, H. R. and E. V. Nordheim (1992) Charring rate of wood for ASTM E 119 exposure. Fire Technology 28:5–30.
104. Wiesner, F. and L. bisby (2016) The structural capacity of laminated timber compression elements in fire: A meta-analysis. Fire Safety Journal 85:23–34.
105. Yang, T. H., S. Y. Wang, C. J. Lin and M. J. Tsai (2008) Evaluation of the mechanical properties of Douglas-fir and Japanese cedar lumber and its structural glulam by nondestructive techniques. Construction and Building Materials 22:487–493.
106. Yang, T.H. (2007) Engineering performance of structural glued laminated timber made from small diameter trees. PhD Thesis, National Taiwan University. p. 1–155.
107. Yihune, T.S. and D.W. Nega (2023) Review on recent advancements in mechanical properties of cross-laminated timber (CLT). Advancement of Science and Technology: Materials and Energy 349-365.
108. Yusof, N. M., P. M. Tahir, S. H. Lee, M. A. Khan and R. M. S. James (2019) Mechanical and physical properties of Cross‑Laminated Timber made from Acacia mangium wood as function of adhesive types. Journal of Wood Science 65:20.
109. Zhou, Q. M., Gong, Y.H. Chui and M. Mohammad (2014) Measurement of rolling shear modulus and strength of cross laminated timber fabricated with black spruce. Construction and Building 64: 379-386.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92235-
dc.description.abstract本試驗以伐自臺灣大學實驗林管理處之柳杉(Cryptomeria japonica, Japanese Cedar)、臺灣杉(Taiwania cryptomerioides Hayata, Taiwania)及杉木(Cunninghamia lanceolata, China fir)國產材製作成集成元,依據CNS 16114(2019)之標準,以連續性機械分等機將集成元分等後使用間苯二酚甲醛樹酯(Resorcinol formaldehyde resin, RF)及乙烯脲酯膠合劑(Vinyl urethane adhesive, KR)二種膠合劑配置成各組5層5單片直交集成材試材。
木材應用於工程和結構用途之前,需要對木材的集成元強度進行分級。為了快速、準確地獲得木材的靜態彈性模數,本研究採用超音波和連續機械應力分等機以及兩種非破壞檢測方法,分析非破壞檢測測量值與靜態彈性模量之間的相關性的彈性值。亦評估了板材的送料方向、正向進料和反向進料方向、送料速度和孔洞造成斷面積比的影響。分析結果表明,透過連續機械應力評級設備測定的彈性模量值與靜態彈性模量值相關性最高。而且,根據結果,板材的送料方向、正向和反向送料方向以及送料速度並不影響連續機械應力額定設備彈性模量值的預測。同時,為確保連續機械應力評級設備彈性模量檢測值的準確性和均勻性,需要避免木材在製備過程中斷裂面積率過高。
本研究以三種樹種、三種集成元等級、兩種膠合劑及兩種燃燒時間做為檢測CLT燃燒性質之試驗變因,其結果指出炭化速率方面,燃燒60分鐘之試材有較高之炭化速率,隨著集成元等級之提升,會有炭化速率減緩之趨勢。而檢視不同試材之升溫曲線可發現,第一層集成元於燃燒過程中會有溫度快速提升之趨勢,相較於此第二層集成元於則無明顯溫度劇烈變化,說明燃燒熱之影響對曝火面影響最大,而其中隨著集成元等級之提升,CLT表面之耐燃性質亦隨之增加,另一方面使用KR之CLT表面其耐燃性質會較RF穩定,使用RF及KR二種膠合劑對於CLT燃燒性質的影響程度並不顯著。另一方面,由CLT煮沸剝離率方面可以發現,RF之剝離率明顯低於KR,說明其具有較佳之膠合性質。抗壓載重方面可發現經燃燒後,樹種變因之強度趨勢皆為柳杉>臺灣杉>杉木,顯示選用較高的集成元強度等級將可獲得較高的抗壓載重,當隨著燃燒時間增加,其抗壓性能將顯著下降。
zh_TW
dc.description.abstractThis study evaluates the combustion properties of lamina made respectively of three different coniferous wood from Taiwan: Taiwania cryptomerioides, Cunninghamia lanceolate and Cryptomeria japonica from the Experimental Forest of the College of Bioresources and Agriculture, National Taiwan University. The fabrication process followed the standards outlined in CNS 16114 (2019). A continuous mechanical stress rating method was employed to classify the composite components, followed by applying two types of adhesives: Resorcinol formaldehyde resin (RF) and Vinyl urethane adhesive (KR). The resulting mixture was configured into test materials, each consisting of five layers and five pieces of orthogonal laminated material.
The laminas are graded into three levels and are glued with two types of adhesives being resorcinol formaldehyde (RF) and vinyl urethane (KR) adhesive to compose cross laminated timbers (CLTs). The test results show that the weight loss in the CLTs after initial combustion holds an inverse relationship with their mechanical stress grading. Specifically, CLTs made of C. japonica with M30 and M90 laminas show the significant difference (p < 0.05). After 30 min combustion tests shows that the separate combinations of different grades of C. japonica along with KR and RF as the adhesive holds similar amounts of weight loss and charring rate (p > 0.05). After 60 min of combustion test, RF can be used as CLT adhesive to obtain lower weight loss and charring rate than KR. There was no significant difference in weight loss and charring rate between non-edge-glued and edge-glued CLT of the same grade after burning for 30 min (p > 0.05). Additionally, with a gluing shear strength in the range of 0~3%, RF glued CLTs have lower delamination rate than KR which indicates that using RF as adhesive holds better gluing properties compared to KR. In addition, the compressive strength reduction rate of CLT after combustion was between 30-40% of which the variable factors such as timber species, adhesive type and lamina grading level show no significant effect on strength reduction.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-17T16:17:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-17T16:17:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
謝誌 II
摘要 III
Abstract V
目次 VII
圖次 IX
表次 XII
第一章 前言 1
第二章 文獻回顧 3
一、集成材之發展現況 3
(一)結構用集成材 3
(二)結構用集成材特點 5
(三)集成材組合構件的類型 7
(四)木材乾燥和分級 9
二、非破壞性檢測方法應用於木材等級區分 9
(一)目視分等 9
(二)機械分等 15
三、結構集成材性質評估 22
(一)集成材(Glulam) 22
(二)直交集成板(Cross laminated timber) 27
(三)燃燒性質(Combustion properties) 29
第三章 材料與方法 33
一、非破壞性檢測與抗彎性質之關係部分 33
二、連續式機械應力分等評估集成元之強度特性部分 37
(一)試驗材料 37
(二)試驗方法 37
(三)不同抗彎彈性模數分析方法之關係評估部分 39
(四)不同進料速度分析特性部分 39
(五)進料板面方向及進料方式之差異部分 39
(六)模擬不同尺寸貫穿空洞對MSR分等之影響部分 40
三、直交集成板之板材性質評估部分 41
(一)試驗材料 41
(二)試驗方法 43
四、直交集成板之燃燒性質部分 48
(一)試驗材料 48
(二)集成元機械等級區分 48
(三)直交集成板配置 48
(四)燃燒試驗之溫度量測 49
(五)燃燒試驗 51
(六)密度與炭化速率 52
五、實大尺寸直交集成板牆板之燃燒性質 52
(一)試驗材料 52
(二)試驗方法 54
六、統計分析 57
第四章 結果與討論 58
一、非破壞性檢測與抗彎性質之關係 58
(一)評估不同抗彎彈性模數分析方法之關係性 58
二、MSR評估國產規格材之強度特性 61
(一)連續式機械應力分等機進料板面方向及進料方式之差異試驗 61
(二)不同CMSR之進料速度差異試驗 63
(三)不同尺寸之貫穿空洞對MSR檢測結果之影響試驗 66
(四)靜態抗彎彈性模數(MOEstatic)與連續式機械應力分等抗彎彈性模數(MOECMSR)之關係 67
三、實大尺寸直交集成板之板材性質評估 68
(一)全域彈性模數與局部彈性模數之關係 68
(二)同等級CLT之彈性模數與抗彎強度 69
(三)異等級CLT之彈性模數與抗彎強度 70
(四)不同樹種CLT之彈性模數與抗彎強度 71
(五)不同厚度CLT之彈性模數與抗彎強度 73
(六)不同寬度CLT之彈性模數與抗彎強度 74
(七)不同樹種CLT之剪斷性質 75
四、直交集成板之燃燒性質 82
(一)炭化速率 83
(二)升溫曲線 88
(三)膠合性質 104
(四)抗壓強度 107
五、實大尺寸直交集成牆板之燃燒性質 109
(一)密度與炭化速率 109
(二)升溫曲線 109
(三)膠合剪斷強度及煮沸剝離性質 116
(四)抗壓性質 118
第五章 結論 121
第六章 引用文獻 123
-
dc.language.isozh_TW-
dc.subject直交集成板zh_TW
dc.subject國產材zh_TW
dc.subject燃燒性能zh_TW
dc.subject機械等級區分zh_TW
dc.subjectMachinical Stress Ratingen
dc.subjectCombustion Performanceen
dc.subjectDomestic timberen
dc.subjectCross-laminated Timberen
dc.title國產直交集成板之強度與燃燒性能zh_TW
dc.titleStrength and Combustion Performance of Domestic Cross-laminated Timberen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee卓志隆;林翰謙;林振榮;柯淳涵;楊德新zh_TW
dc.contributor.oralexamcommitteeChih-Lung Cho;Han Chien Lin;Cheng-Jung Lin;Chun-Han Ko;Te-Hsin Yangen
dc.subject.keyword直交集成板,國產材,燃燒性能,機械等級區分,zh_TW
dc.subject.keywordCross-laminated Timber,Domestic timber,Combustion Performance,Machinical Stress Rating,en
dc.relation.page134-
dc.identifier.doi10.6342/NTU202400497-
dc.rights.note未授權-
dc.date.accepted2024-02-17-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
7.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved