Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92201
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然zh_TW
dc.contributor.advisorChing-Jan Chenen
dc.contributor.author潘士誠zh_TW
dc.contributor.authorShih-Cheng Panen
dc.date.accessioned2024-03-08T16:16:37Z-
dc.date.available2024-03-09-
dc.date.copyright2024-03-08-
dc.date.issued2024-
dc.date.submitted2024-02-09-
dc.identifier.citation[1]J. He, W. Cheng, Q. Wang, K. Cheng, H. Yu and Y. Chai, "Recent advances in GaN-based power HEMT devices", Adv. Electron. Mater., vol. 7, no. 4, Jan. 2021.
[2]M. Kaufmann, M. Lueders, C. Kaya and B. Wicht, "A monolithic E-mode GaN 15W 400V offline self-supplied hysteretic Buck converter with 95.6% efficiency", IEEE ISSCC Dig. Tech. Papers, pp. 288-290, Feb. 2020
[3]R. S. Pengelly et al., "A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs", IEEE Trans on Microwave Theory and Techniques, vol. 60, pp. 1764-1783, Jun 2012.
[4]J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás and J. Rebollo, "A survey of wide bandgap power semiconductor devices", IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2155-2163, 2014.
[5]E. A. Jones, F. Wang and B. Ozpineci, "Application-based review of GaN HFETs", Proc. IEEE Workshop Wide Bandgap Power Devices Appl., pp. 24-29, Oct. 2014.
[6]R. Sun, Y. Liang, Y. Yeo, Y. Wang and C. Zhao, "Design of power integrated circuits in full AlGaN/GaN MIS-HEMT configuration for power conversion", physica status solidi (a), vol. 214, no. 3, pp. 1600562, 2016.
[7]E.A. Jones, F.F. Wang and D. Costinett, "Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges", IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 3, pp. 707-719, Sep. 2016.
[8]X. Ke, J. Sankman, M. K. Song, P. Forghani and D. B. Ma, "16.8 A 3-to-40V 10-to-30MHz automotive-use GaN driver with active BST balancing and VSW dual-edge dead-time modulation achieving 8.3% efficiency improvement and 3.4ns constant propagation delay," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 302-304.
[9]D. Kinzer and S. Oliver, "Monolithic HV GaN Power ICs: Performance and application", IEEE Power Electronics Magazine, vol. 3, pp. 14-21, 2016.
[10]M. Cui, Q. Bu, Y. Cai, R. Sun, W. Liu, H. Wen, et al., "Monolithic integration design of GaN-based power chip including gate driver for high-temperature DC–DC converters", Japanese Journal of Applied Physics, vol. 58, no. 5, pp. 056505, apr 2019.
[11]H.-Y. Chen et al., "A Fully Integrated GaN-on-Silicon Gate Driver and GaN Switch with Temperature-compensated Fast Turn-on Technique for Improving Reliability", ISSCC, pp. 460-461, Feb. 2021.
[12]E.A. Jones et al., "Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 707-719, Sept. 2016.
[13]H. Wang, J. Wei, R. Xie, C. Liu, G. Tang and K. J. Chen, "Maximizing the Performance of 650-V p-GaN Gate HEMTs: Dynamic RON Characterization and Circuit Design Considerations," in IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5539-5549, July 2017.
[14]D. Yan, X. Ke and D. B. Ma, "Direct 48-/1-V GaN-Based DC-DC Power Converter With Double Step-Down Architecture and Master-Slave AO2T Control", IEEE J. Solid-State Circuits, vol. 55, no. 4, pp. 988-998, April 2020.
[15]Y. Cai, Z. Cheng, Z. Yang, C.W. Tang, K.M. Lau and K.J. Chen, "High-Temperature Operation of AlGaN/GaN HEMTs Direct-Coupled FET Logic (DCFL) Integrated Circuits", IEEE Electron Device Lett., vol. 28, no. 5, pp. 328-331, May 2007.
[16]G. Meneghesso et al., "Threshold voltage instabilities in D-mode GaN HEMTs for power switching applications," 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, 2014, pp. 6C.2.1-6C.2.5, doi: 10.1109/IRPS.2014.6861109.
[17]S. T. Li, P. Y. Wang, C. J. Chen and C. Hsu, "A 10MHz GaN driver with gate ringing suppression and active bootstrap control," 2019 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Taipei, Taiwan, 2019, pp. 1-4.
[18]D. Yan and D. B. Ma, "A Monolithic GaN Power IC With On-Chip Gate Driving Level Shifting and Temperature Sensing Achieving Direct 48-V/1-V DC-DC Conversion", IEEE J. Solid-State Circuits, vol. 57, no. 12, pp. 3865-3876, Dec. 2022.
[19]S. T. Li, P. Ying Wang, C. J. Chen and C. Hsu, "A 10MHz GaN Based Buck Converter with Dynamic Pull-up Resistor Gate Driver," 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), Singapore, Singapore, 2019, pp. 1-4.
[20]X. Li et al., "GaN-on-SOI: Monolithically Integrated All-GaN ICs for Power Conversion", IEEE International Electron Devices Meeting (IEDM), pp. 4.4.1-4.4.4, Dec. 2019.
[21]B. Wang, M. Riva, J.D. Bakos and A. Monti, "Integrated Circuit Implementation for a GaN HFET Driver Circuit", IEEE Trans. Ind. Appl., vol. 46, no. 5, pp. 2056-2067, Sep. 2010.
[22]Y.-Y. Kao et al., "Fully integrated GaN-on-silicon gate driver and GaN switch with temperature-compensated fast turn-on technique for achieving switching frequency of 50 MHz and slew rate of 118.3 V/Ns", IEEE J. Solid-State Circuits, vol. 56, no. 12, pp. 3619-3627, Dec. 2021.
[23]T. Morita, M. Yanagihara, H. Ishida, M. Hikita, K. Kaibara, H. Matsuo, et al., "650V 3.1mΩcm2 GaN-based Monolithic Bidirectional Switch Using Normally-off Gate Injection Transistor", IEDM Technical Digests, pp. 865-868, December 2007.
[24]B. Baliga, "Gallium nitride devices for power electronic applications", Semiconductor Science and Technology, vol. 28, no. 7, pp. 074011, 2013.
[25]H. Wang, A. M. H. Kwan, Q. Jiang and K. J. Chen, "A GaN Pulse Width Modulation Integrated Circuit for GaN Power Converters", IEEE Transactions on Electron Devices, vol. 62, no. 4, pp. 1143-1149, April 2015.
[26]Yong Cai, Yugang Zhou, K. J. Chen and K. M. Lau, "High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment," in IEEE Electron Device Letters, vol. 26, no. 7, pp. 435-437, July 2005, doi: 10.1109/LED.2005.851122.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92201-
dc.description.abstract基於氮化鎵元件之轉換器有機會達成如高切換頻率與高效率等優勢,然若以傳統之離散式元件實現轉換器,則轉換器會因為印刷電路板的寄生電感影響切換特性跟效率。在本論文中提出了一個整合氮化鎵功率開關(PowerMOS)、功率二極體、閘級驅動器、運算放大器、比較器之單晶氮化鎵積體電路,實現閉迴路控制之升壓型轉換器。此外,所提的改進閘級驅動器不僅透過內部設計自舉式電路,能使其輸出電壓範圍接近該子電路電源電壓,減少功率元件導通損耗;同時還在閘級驅動器電路架構中避免使用任何電阻來加快開啟及關閉功率元件之時間。所提之具有改進閘級驅動器的單晶氮化鎵控制晶片(Integrated Circuit, IC)使用了TSMC的0.5-μm GaN製程製作,並且有著最高1MHz的切換頻率,輸入電壓為48V和輸出電壓為72V。根據實驗結果可以得到,在140mA負載下,整體效率可以達到96%。zh_TW
dc.description.abstractGaN-based converters have the potential advantages of high switching frequency and high efficiency. However, for the implementation of traditional discrete components, the parasitic components, especially the parasitic inductance of the printed circuit board (PCB) would greatly affect the switching performance and efficiency. This thesis presents a monolithic enhancement-mode GaN IC consisting of a power MOS, Power Diode, GaN-based comparator, GaN-based OPA, and gate driver for a boost converter. This thesis achieves the close-loop control for the boost converter. The proposed improved gate driver not only uses an internal bootstrap circuit to fully turn on the GaN power device and reduce conduction loss but also improves the output rising (falling) time by avoiding using any of resistors. Finally, the measurement result verifies that the implemented functions are feasible in boost converter with the close-loop control. This proposed monolithic GaN IC was fabricated in the TSMC 0.5-μm GaN process and experimentally verified that achieves an efficiency of about 96% at load 140 mA in a high conversion ratio. For the proposed boost converter, the conversion ratio is up to 48V to 72V.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-08T16:16:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-08T16:16:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 IV
Abstract V
Table of Contents VI
List of Figures IX
List of Tables XIV
Chapter 1 Introduction 1
1.1 Background of Monolithic GaN IC 1
1.2 Thesis Motivation 2
1.2.1 Advantages of the GaN HEMT 2
1.2.2 Concepts of Monolithic GaN IC 4
1.3 Technology Challenges of Monolithic GaN IC 6
1.3.1 Technology Challenges of GaN Process 6
1.3.2 Selection of Control Architecture of Boost Converter 6
1.4 Thesis Outline 7
Chapter 2 Review of GaN and Analog Circuits without P-type Devices 10
2.1 Brief Review of GaN Devices 10
2.2 Brief Review of GaN Process 11
2.2.1 Characteristics of The LV E-HEMT NMOS Device 12
2.2.2 Characteristics of The LV D-HEMT NMOS Device 13
2.2.3 Characteristics of The LV Rectifier Device 15
2.3 Brief Review of Gate Driver 16
2.4 Review of OPA 20
2.4.1 Operate of the GaN-based OPA 21
2.5 Comparator without P-type devices 22
2.6 Review of Boost Converter 24
2.7 Summary of Prior-Art Issues 28
Chapter 3 Concept of Proposed Monolithic GaN IC with Improved Gate Driver 30
3.1 System Architecture of the Proposed Monolithic GaN IC 30
3.2 Concept of Proposed Gate Driver 31
3.2.1 Concept of Direct-Coupled FET Logic (DCFL) Inverter 32
3.2.2 Concept of Proposed Internal Bootstrap Circuit Technique 35
3.3 Comparator Used in Proposed Monolithic GaN IC 36
3.4 OPA Used in Proposed Monolithic GaN IC 37
3.5 Summary of Key Concepts Proposed 39
Chapter 4 Circuit Implementation of the Proposed Monolithic GaN IC 41
4.1 System Architecture and Functional Blocks 41
4.2 The Proposed Boost Converter 42
4.3 Power MOS Design 48
4.4 Sub-Circuits Design 51
4.4.1 Gate Driver Design 51
4.4.2 PWM Generator Design 55
4.4.3 EA Generator 56
4.5 Devices Limitation 58
4.5.1 GaN Device Design 58
4.5.2 Capacitor Components Design 59
4.5.3 Resistor Components Design 60
4.5.4 Layout Design Rule 60
Chapter 5 Simulation and Measurement Results 62
5.1 Chip Manufacture 62
5.1.1 Chip Photo 62
5.1.2 Chip Bonding Diagram 69
5.2 Details Application Circuit and Pin Configuration of the Proposed Converter 70
5.3 Printed Circuit Board Design 72
5.4 Measurement Environment Setup 77
5.5 Simulation and Experimental Results 79
5.5.1 Simulation 79
5.5.2 Experimental Results 80
5.5.3 Comparison of Simulation and Experimental Results 84
Chapter 6 Conclusions and Future Works 89
6.1 Conclusions 89
6.2 Future Works 89
Reference 92
-
dc.language.isoen-
dc.subject直流-直流升壓式轉換器zh_TW
dc.subject氮化鎵zh_TW
dc.subject氮化鎵閘級驅動器zh_TW
dc.subject單晶氮化鎵控制晶片zh_TW
dc.subject自舉式電路zh_TW
dc.subject氮化鎵電路zh_TW
dc.subjectGaNen
dc.subjectGaN-based circuiten
dc.subjectBootstrapen
dc.subjectMonolithic GaN ICen
dc.subjectGaN Driveren
dc.subjectDC-DC Boost Converteren
dc.title具改進式閘級驅動器之增強型單晶氮化鎵升壓轉換器控制晶片zh_TW
dc.titleA Monolithic E-Mode GaN Boost Converter IC with Improved Gate Driveren
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳柏宏;陳耀銘;吳肇欣zh_TW
dc.contributor.oralexamcommitteePo-Hung Chen;Yaow-Ming Chen;Chao-Hsin Wuen
dc.subject.keyword直流-直流升壓式轉換器,氮化鎵,氮化鎵閘級驅動器,單晶氮化鎵控制晶片,自舉式電路,氮化鎵電路,zh_TW
dc.subject.keywordDC-DC Boost Converter,GaN,GaN Driver,Monolithic GaN IC,Bootstrap,GaN-based circuit,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202400605-
dc.rights.note未授權-
dc.date.accepted2024-02-17-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
8.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved