Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92180
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁啟惠zh_TW
dc.contributor.advisorChi-Huey Wongen
dc.contributor.author王寶源zh_TW
dc.contributor.authorPao-Yuan Wangen
dc.date.accessioned2024-03-07T16:27:28Z-
dc.date.available2024-03-08-
dc.date.copyright2024-03-07-
dc.date.issued2016-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Fuster MM & Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nature reviews. Cancer 5(7):526-542.
2. Ajit Varki RDC, Jeffrey D Esko, Hudson H Freeze, Pamela Stanley, Carolyn R Bertozzi, Gerald W Hart, and Marilynn E Etzler (2009) Essentials of Glycobiology 2nd Ed.
3. Lingwood CA (2011) Glycosphingolipid functions. Cold Spring Harbor perspectives in biology 3(7).
4. Jennemann R & Grone HJ (2013) Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Progress in lipid research 52(2):231-248.
5. Allende ML & Proia RL (2014) Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconjugate journal.
6. Liang YJ, Yang BC, Chen JM, Lin YH, Huang CL, Cheng YY, Hsu CY, Khoo KH, Shen CN, & Yu J (2011) Changes in glycosphingolipid composition during differentiation of human embryonic stem cells to ectodermal or endodermal lineages. Stem cells 29(12):1995-2004.
7. Schnaar RL (2010) Brain gangliosides in axon-myelin stability and axon regeneration. FEBS letters 584(9):1741-1747.
8. Pannu R, Singh AK, & Singh I (2005) A novel role of lactosylceramide in the regulation of tumor necrosis factor alpha-mediated proliferation of rat primary astrocytes. Implications for astrogliosis following neurotrauma. The Journal of biological chemistry 280(14):13742-13751.
9. Bremer EG, Schlessinger J, & Hakomori S (1986) Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. The Journal of biological chemistry 261(5):2434-2440.
10. Zhou Q, Hakomori S, Kitamura K, & Igarashi Y (1994) GM3 directly inhibits tyrosine phosphorylation and de-N-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor-receptor interaction. The Journal of biological chemistry 269(3):1959-1965.
11. Kabayama K, Sato T, Kitamura F, Uemura S, Kang BW, Igarashi Y, & Inokuchi J (2005) TNFalpha-induced insulin resistance in adipocytes as a membrane microdomain disorder: involvement of ganglioside GM3. Glycobiology 15(1):21-29.
12. Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, Kinjo M, Igarashi Y, & Inokuchi J (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proceedings of the National Academy of Sciences of the United States of America 104(34):13678-13683.
13. Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, & Fujiki N (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proceedings of the National Academy of Sciences of the United States of America 92(11):5087-5091.
14. Mitsuda T, Furukawa K, Fukumoto S, Miyazaki H, Urano T, & Furukawa K (2002) Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. The Journal of biological chemistry 277(13):11239-11246.
15. Ladisch S, Li R, & Olson E (1994) Ceramide structure predicts tumor ganglioside immunosuppressive activity. Proceedings of the National Academy of Sciences of the United States of America 91(5):1974-1978.
16. Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, & Proia RL (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proceedings of the National Academy of Sciences of the United States of America 96(16):9142-9147.
17. Nishie T, Hikimochi Y, Zama K, Fukusumi Y, Ito M, Yokoyama H, Naruse C, Ito M, & Asano M (2010) Beta4-galactosyltransferase-5 is a lactosylceramide synthase essential for mouse extra-embryonic development. Glycobiology 20(10):1311-1322.
18. Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, Kono M, Tsuji S, Daniotti JL, Werth N, Sandhoff R, Sandhoff K, & Proia RL (2003) Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proceedings of the National Academy of Sciences of the United States of America 100(6):3445-3449.
19. Okada M, Itoh Mi M, Haraguchi M, Okajima T, Inoue M, Oishi H, Matsuda Y, Iwamoto T, Kawano T, Fukumoto S, Miyazaki H, Furukawa K, Aizawa S, & Furukawa K (2002) b-series Ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve. The Journal of biological chemistry 277(3):1633-1636.
20. Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okada M, Fukumoto S, Haraguchi M, Takeda N, Fujimura K, Sakae M, Kishikawa M, Shiku H, Furukawa K, & Aizawa S (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proceedings of the National Academy of Sciences of the United States of America 93(20):10662-10667.
21. Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, Proia RL, Griffin JW, & Schnaar RL (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proceedings of the National Academy of Sciences of the United States of America 96(13):7532-7537.
22. Takamiya K, Yamamoto A, Furukawa K, Zhao J, Fukumoto S, Yamashiro S, Okada M, Haraguchi M, Shin M, Kishikawa M, Shiku H, Aizawa S, & Furukawa K (1998) Complex gangliosides are essential in spermatogenesis of mice: possible roles in the transport of testosterone. Proceedings of the National Academy of Sciences of the United States of America 95(21):12147-12152.
23. Kawai H, Allende ML, Wada R, Kono M, Sango K, Deng C, Miyakawa T, Crawley JN, Werth N, Bierfreund U, Sandhoff K, & Proia RL (2001) Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures. The Journal of biological chemistry 276(10):6885-6888.
24. Yamashita T, Wu YP, Sandhoff R, Werth N, Mizukami H, Ellis JM, Dupree JL, Geyer R, Sandhoff K, & Proia RL (2005) Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proceedings of the National Academy of Sciences of the United States of America 102(8):2725-2730.
25. Lingwood CA, Law H, Richardson S, Petric M, Brunton JL, De Grandis S, & Karmali M (1987) Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. The Journal of biological chemistry 262(18):8834-8839.
26. Heyningen SV (1974) Cholera toxin: interaction of subunits with ganglioside GM1. Science 183(4125):656-657.
27. Connock M, Burls A, Frew E, Fry-Smith A, Juarez-Garcia A, McCabe C, Wailoo A, Abrams K, Cooper N, Sutton A, O'Hagan A, & Moore D (2006) The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher's disease: a systematic review. Health technology assessment 10(24):iii-iv, ix-136.
28. van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, & van Doorn PA (2014) Guillain-Barre syndrome: pathogenesis, diagnosis, treatment and prognosis. Nature reviews. Neurology 10(8):469-482.
29. Yanagisawa K, Odaka A, Suzuki N, & Ihara Y (1995) GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer's disease. Nature medicine 1(10):1062-1066.
30. Schengrund CL (2015) Gangliosides: glycosphingolipids essential for normal neural development and function. Trends in biochemical sciences 40(7):397-406.
31. Krengel U & Bousquet PA (2014) Molecular recognition of gangliosides and their potential for cancer immunotherapies. Frontiers in immunology 5:325.
32. Daniotti JL, Vilcaes AA, Torres Demichelis V, Ruggiero FM, & Rodriguez-Walker M (2013) Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches. Frontiers in oncology 3:306.
33. Ravindranath MH, Tsuchida T, Morton DL, & Irie RF (1991) Ganglioside GM3:GD3 ratio as an index for the management of melanoma. Cancer 67(12):3029-3035.
34. Carubia JM, Yu RK, Macala LJ, Kirkwood JM, & Varga JM (1984) Gangliosides of normal and neoplastic human melanocytes. Biochemical and biophysical research communications 120(2):500-504.
35. Okada M, Furukawa K, Yamashiro S, Yamada Y, Haraguchi M, Horibe K, Kato K, Tsuji Y, & Furukawa K (1996) High expression of ganglioside alpha-2,8-sialyltransferase (GD3 synthase) gene in adult T-cell leukemia cells unrelated to the gene expression of human T-lymphotropic virus type I. Cancer research 56(12):2844-2848.
36. Mujoo K, Cheresh DA, Yang HM, & Reisfeld RA (1987) Disialoganglioside GD2 on human neuroblastoma cells: target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth. Cancer research 47(4):1098-1104.
37. van Cruijsen H, Ruiz MG, van der Valk P, de Gruijl TD, & Giaccone G (2009) Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer. BMC cancer 9:180.
38. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, & Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta neuropathologica 114(2):97-109.
39. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, & Villano JL (2014) Epidemiologic and Molecular Prognostic Review of Glioblastoma. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 23(10):1985-1996.
40. Weathers SP & Gilbert MR (2014) Advances in treating glioblastoma. F1000prime reports 6:46.
41. Wilson TA, Karajannis MA, & Harter DH (2014) Glioblastoma multiforme: State of the art and future therapeutics. Surgical neurology international 5:64.
42. Furukawa J, Tsuda M, Okada K, Kimura T, Piao J, Tanaka S, & Shinohara Y (2015) Comprehensive Glycomics of a Multistep Human Brain Tumor Model Reveals Specific Glycosylation Patterns Related to Malignancy. PloS one 10(7):e0128300.
43. Kroes RA, Dawson G, & Moskal JR (2007) Focused microarray analysis of glyco-gene expression in human glioblastomas. Journal of neurochemistry 103 Suppl 1:14-24.
44. Merzak A, Koochekpour S, & Pilkington GJ (1994) Cell surface gangliosides are involved in the control of human glioma cell invasion in vitro. Neuroscience letters 177(1-2):44-46.
45. Chahlavi A, Rayman P, Richmond AL, Biswas K, Zhang R, Vogelbaum M, Tannenbaum C, Barnett G, & Finke JH (2005) Glioblastomas induce T-lymphocyte death by two distinct pathways involving gangliosides and CD70. Cancer research 65(12):5428-5438.
46. Ohkawa Y, Momota H, Kato A, Hashimoto N, Tsuda Y, Kotani N, Honke K, Suzumura A, Furukawa K, Ohmi Y, Natsume A, Wakabayashi T, & Furukawa K (2015) Ganglioside GD3 enhances invasiveness of gliomas by forming a complex with platelet-derived growth factor receptor alpha and Yes. The Journal of biological chemistry.
47. Farooqui T, Kelley T, Coggeshall KM, Rampersaud AA, & Yates AJ (1999) GM1 inhibits early signaling events mediated by PDGF receptor in cultured human glioma cells. Anticancer research 19(6B):5007-5013.
48. Van Brocklyn JR, Vandenheede JR, Fertel R, Yates AJ, & Rampersaud AA (1997) Ganglioside GM1 activates the mitogen-activated protein kinase Erk2 and p70 S6 kinase in U-1242 MG human glioma cells. Journal of neurochemistry 69(1):116-125.
49. Wu G, Lu ZH, Andre S, Gabius HJ, & Ledeen RW (2015) Functional interplay between ganglioside GM1 and cross-linking galectin-1 induces axon-like neuritogenesis via integrin-based signaling and TRPC5-dependent Ca influx. Journal of neurochemistry.
50. Stiles CD & Rowitch DH (2008) Glioma stem cells: a midterm exam. Neuron 58(6):832-846.
51. Li Z, Lee JW, Mukherjee D, Ji J, Jeswani SP, Black KL, & Yu JS (2012) Immunotherapy targeting glioma stem cells--insights and perspectives. Expert opinion on biological therapy 12(2):165-178.
52. Hatiboglu MA, Wei J, Wu AS, & Heimberger AB (2010) Immune therapeutic targeting of glioma cancer stem cells. Targeted oncology 5(3):217-227.
53. Silvestri I, Testa F, Zappasodi R, Cairo CW, Zhang Y, Lupo B, Galli R, Di Nicola M, Venerando B, & Tringali C (2014) Sialidase NEU4 is involved in glioblastoma stem cell survival. Cell death & disease 5:e1381.
54. Son MJ, Woolard K, Nam DH, Lee J, & Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell stem cell 4(5):440-452.
55. Yeh SC, Wang PY, Lou YW, Khoo KH, Hsiao M, Hsu TL, & Wong CH (2016) Glycolipid GD3 and GD3 synthase are key drivers for glioblastoma stem cells and tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America 113(20):5592-5597.
56. Wuhrer M, de Boer AR, & Deelder AM (2009) Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass spectrometry reviews 28(2):192-206.
57. Takahashi N, Nakagawa H, Fujikawa K, Kawamura Y, & Tomiya N (1995) Three-dimensional elution mapping of pyridylaminated N-linked neutral and sialyl oligosaccharides. Analytical biochemistry 226(1):139-146.
58. Guile GR, Harvey DJ, O'Donnell N, Powell AK, Hunter AP, Zamze S, Fernandes DL, Dwek RA, & Wing DR (1998) Identification of highly fucosylated N-linked oligosaccharides from the human parotid gland. European journal of biochemistry / FEBS 258(2):623-656.
59. Wuhrer M, Deelder AM, & Hokke CH (2005) Protein glycosylation analysis by liquid chromatography-mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 825(2):124-133.
60. Ruhaak LR, Deelder AM, & Wuhrer M (2009) Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Analytical and bioanalytical chemistry 394(1):163-174.
61. Pereira L (2008) Porous graphitic carbon as a stationary phase in HPLC: Theory and applications. J Liq Chromatogr R T 31(11-12):1687-1731.
62. Lipniunas PH, Neville DC, Trimble RB, & Townsend RR (1996) Separation of biosynthetic oligosaccharide branch isomers using high-performance liquid chromatography on a porous two-dimensional graphite stationary phase. Analytical biochemistry 243(2):203-209.
63. Kawasaki N, Ohta M, Hyuga S, Hashimoto O, & Hayakawa T (1999) Analysis of carbohydrate heterogeneity in a glycoprotein using liquid chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry. Analytical biochemistry 269(2):297-303.
64. Kawasaki N, Ohta M, Itoh S, Hyuga M, Hyuga S, & Hayakawa T (2002) Usefulness of sugar mapping by liquid chromatography/mass spectrometry in comparability assessments of glycoprotein products. Biologicals : journal of the International Association of Biological Standardization 30(2):113-123.
65. Hua S, An HJ, Ozcan S, Ro GS, Soares S, DeVere-White R, & Lebrilla CB (2011) Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. The Analyst 136(18):3663-3671.
66. Hua S, Williams CC, Dimapasoc LM, Ro GS, Ozcan S, Miyamoto S, Lebrilla CB, An HJ, & Leiserowitz GS (2013) Isomer-specific chromatographic profiling yields highly sensitive and specific potential N-glycan biomarkers for epithelial ovarian cancer. Journal of chromatography. A 1279:58-67.
67. Karlsson NG, Schulz BL, & Packer NH (2004) Structural determination of neutral O-linked oligosaccharide alditols by negative ion LC-electrospray-MSn. Journal of the American Society for Mass Spectrometry 15(5):659-672.
68. Ninonuevo M, An H, Yin H, Killeen K, Grimm R, Ward R, German B, & Lebrilla C (2005) Nanoliquid chromatography-mass spectrometry of oligosaccharides employing graphitized carbon chromatography on microchip with a high-accuracy mass analyzer. Electrophoresis 26(19):3641-3649.
69. Karlsson NG & Packer NH (2002) Analysis of O-linked reducing oligosaccharides released by an in-line flow system. Analytical biochemistry 305(2):173-185.
70. Schulz BL, Packer NH, & Karlsson NG (2002) Small-scale analysis of O-linked oligosaccharides from glycoproteins and mucins separated by gel electrophoresis. Analytical chemistry 74(23):6088-6097.
71. Wilson NL, Schulz BL, Karlsson NG, & Packer NH (2002) Sequential analysis of N- and O-linked glycosylation of 2D-PAGE separated glycoproteins. Journal of proteome research 1(6):521-529.
72. Thomsson KA, Karlsson NG, & Hansson GC (1999) Liquid chromatography-electrospray mass spectrometry as a tool for the analysis of sulfated oligosaccharides from mucin glycoproteins. Journal of chromatography. A 854(1-2):131-139.
73. Karlsson H, Halim A, & Teneberg S (2010) Differentiation of glycosphingolipid-derived glycan structural isomers by liquid chromatography/mass spectrometry. Glycobiology 20(9):1103-1116.
74. Anugraham M, Everest-Dass AV, Jacob F, & Packer NH (2015) A platform for the structural characterization of glycans enzymatically released from glycosphingolipids extracted from tissue and cells. Rapid communications in mass spectrometry : RCM 29(7):545-561.
75. Miller-Podraza H, Larsson T, Nilsson J, Teneberg S, Matrosovich M, & Johansson L (1998) Epitope dissection of receptor-active gangliosides with affinity for Helicobacter pylori and influenza virus. Acta biochimica Polonica 45(2):439-449.
76. Domon B & Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate journal 5(4):397-409.
77. Takara (2016) Recombinant Endoglycoceramidase II (rEGCase II) datasheet.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92180-
dc.description.abstractzh_TW
dc.description.abstractMass-spectrometry (MS)-based glycomics aims to map all the molecular glycan species under specific physiological or pathological conditions. Glycosphingolipids (GSLs) are found to be involved in many biological processes. Overexpression of GSLs in different cancers has been observed widely, including in glioblastoma multiforme (GBM). The conventional MS method used for GSLs detection is mostly MALDI. However, the poor capacity for separation of isomeric molecules of MALDI is not sufficient for desired complete glycomic mapping. In this thesis, we developed a porous graphitized carbon (PGC)-LC-MS based workflow to systematically analyze all glycans released from GSLs in cells. By using acidic solvent system in positive mode, six GM1 (Hex3HexNAc1NeuAc1) standards were mixed together and then loaded onto PGC-LC-MS for separation. Under optimized gradient condition, the six standards were completely separated and their structures were also confirmed by CID-MS/MS. After platform being established, GSLs glycans of DBTRG GBM cells were applied to this platform for the isomer separation. The GM1 isomers (Hex3HexNAc1NeuAc) of DBTRG cells were separated, identified and quantified for the first time. Moreover, the whole GSLs of DBTRG cells could be separated and analyzed on the PGC-LC-MS system. Minor species, such as globo-series molecules, were also detected and several other isomeric glycans were identified. Next, this method was used to compare the changed expression of GSLs between DBTRG parental cells and stem-like neurospheres. The increased level of sialylated and decreased level of neutral GSLs were detected in neurospheres. Finally, the platform was further applied to profile and compare the intact GSLs of other GBM cells. The short GSLs usually have fewer isomers because of the simple molecular structures. On the other side, long GSLs usually have more isomeric ions because of their complicated structures. There are some unusual isomeric glycans being detected, such as Gb5/iGb5 distribution in each kind of cells examined. In short, we here developed a useful PGC-LC-MS platform for isomeric GSLs separation by LC and identification by MS/MS and it can be applied to more biological samples in the future.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-07T16:27:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-07T16:27:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsChapter 1: Introduction 1
1.1 Glycosylation 1
1.2 Glycosphingolipids (GSLs) and its Biological Importance 4
1.3 Glycosphingolipids (GSLs) and Glioblastoma Multiforme (GBM) 9
1.4 Mass spectrometry (MS)-Based Separation of Isomeric Glycosphingolipids 13
1.5 Specific Aims 17

Chapter 2: Materials and Methods 19
2.1 Chemicals and Reagents 19
2.2 Cell Culture 19
2.3 Extraction of Glycosphingolipids 20
2.4 Permethylation 20
2.5 MALDI-MS and MS/MS 21
2.6 nanoLC-ESI-PGC-MS and MS/MS 21

Chapter 3: Results 23
3.1 Establishment of PGC-LC-MS/MS-based GSLs profiling and isomeric analysis 23
3.1.1 MALDI-MS and MS/MS analysis of GSLs of DBTRG cells 23
3.1.2 Nano-Porous Graphitized Carbon (PGC)-LC-MS and MS/MS analysis of GSLs glycans 28
3.1.3 Discussion 35
3.2 Comparison of GSLs profiles between DBTRG and DBTRG neurospheres 38
3.2.1 MALDI-MS profiles of DBTRG and DBTRG neurospheres 38
3.2.2 PGC-LC-MS and MS/MS of DBTRG and DBTRG neurospheres 39
3.2.3 Discussion 41
3.3 Isomeric analysis of GSLs of other GBM cells 42
3.3.1 PGC-LC-MS and MS/MS of LN229 cells 42
3.3.2 PGC-LC-MS and MS/MS of Hs683 cells 44
3.3.3 PGC-LC-MS and MS/MS of U87 cells 45
3.3.4 Discussion 46

Chapter 4: Discussion and Conclusion 48
4.1 Current status of MS-based glycan isomer separation 48
4.2 Future perspectives for MS-based glycan isomer separation 51
4.3 Biological implications from MS-based glycan isomer separation 53

References 54
-
dc.language.isoen-
dc.subject孔洞石墨碳管柱zh_TW
dc.subject神經膠質母細胞瘤zh_TW
dc.subject醣脂體zh_TW
dc.subjectPorous Graphitized Carbon (PGC)en
dc.subjectGlycosphingolipidsen
dc.subjectGlioblastomaen
dc.title孔洞石墨碳管柱液相層析串連式質譜分析技術之研發與其在分離與結構鑑定神經膠質母細胞瘤之醣脂體醣鏈之應用zh_TW
dc.titleDevelopment of Porous Graphitized Carbon (PGC)-LC-MS/MS for the Separation and Structural Determination of the Glycans from Glycosphingolipids in Glioblastoma cellsen
dc.typeThesis-
dc.date.schoolyear104-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee邱繼輝;林俊宏;林國儀;沈家寧zh_TW
dc.contributor.oralexamcommittee;;;en
dc.subject.keyword孔洞石墨碳管柱,神經膠質母細胞瘤,醣脂體,zh_TW
dc.subject.keywordPorous Graphitized Carbon (PGC),Glycosphingolipids,Glioblastoma,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU201602023-
dc.rights.note未授權-
dc.date.accepted2016-08-09-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-2.pdf
  未授權公開取用
3.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved