請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92154
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李美慧 | zh_TW |
dc.contributor.advisor | Mei- Hui Li | en |
dc.contributor.author | 甘佳昀 | zh_TW |
dc.contributor.author | Chia-Yun Kan | en |
dc.date.accessioned | 2024-03-07T16:20:00Z | - |
dc.date.available | 2024-03-08 | - |
dc.date.copyright | 2024-03-07 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-06 | - |
dc.identifier.citation | Aronson, M. F., Lepczyk, C. A., Evans, K. L., Goddard, M. A., Lerman, S. B., MacIvor, J. S., Nilon, C. H., & Vargo, T. (2017). Biodiversity in the city: key challenges for urban green space management. Frontiers in Ecology and the Environment, 15 (4), 189-196.
Basilio, L. G., Moreno, D. J., & Piratelli, A. J. (2020). Main causes of bird-window collisions: a review. Anais da Academia Brasileira de Ciencias 92 (1), e20180745. Borden, W. C., Lockhart, O. M., Jones, A. W., & Lyons, M. S. (2010). Seasonal, taxonomic, and local habitat components of bird-window collisions on an urban university campus in Cleveland, OH. The Ohio Journal of Science, 110 (3), 44–52. Cadavid-Florez, L., Laborde, J., & McLean, D. J. (2020). Isolated trees and small woody patches greatly contribute to connectivity in highly fragmented tropical landscapes. Landscape and Urban Planning, 196, e103745. Collinge, S. K. (1996). Ecological consequences of habitat fragmentation: implications for landscape architecture and planning. Landscape and Urban Planning, 36 (1), 59-77. Copernicus Sentinel data (2022). Retrieved from Alaska Satellite Facility Distributed Active Archive Centers (ASF DAAC) (24.7.2022), processed by European Space Agency (ESA), Paris, France. Cusa, M., Jackson, D. A., & Mesure, M. (2015). Window collisions by migratory bird species: urban geographical patterns and habitat associations. Urban Ecosystems, 18 (4), 1427-1446. Date, E., Recher, H., Ford, H., & Stewart, D. (1995). The conservation and ecology of rainforest pigeons in northeastern New South Wales. Pacific Conservation Biology, 2 (3), 299-308. De Groot, K. L., Porter, A. N., Norris, A. R., Huang, A. C., & Joy, R. (2021). Year-round monitoring at a Pacific coastal campus reveals similar winter and spring collision mortality and high vulnerability of the Varied Thrush. Ornithological Applications. 123 (3), 1-15. Delaney, K. S., Riley, S. P., & Fisher, R. N. (2010). A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS one, 5 (9), e12767. Delhey, K., Peters, A., & Kempenaers, B. (2007). Cosmetic coloration in birds: occurrence, function, and evolution. The American Naturalist, 169 (S1), S145-S158. Drinnan, I. N. (2005). The search for fragmentation thresholds in a southern Sydney suburb. Biological Conservation, 124 (3), 339-349. Evans Ogden, L. J. (1996). Collision course: the hazards of lighted structures and windows to migrating birds. Toronto, Canada: WorldWildlife Fund Canada and Fatal Light Awareness Program. Evans, R., Catterall, C. P., & Brumm, G. V. (1997). The habitat value of extremely small bushland remnants to birds in Brisbane. Sunbird: Journal of the Queensland Ornithological Society, 27 (2), 38-44. Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34 (1), 487-515. Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M., & Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14 (2), 101-112. Gómez-Martínez, M. A., Klem, D., Rojas-Soto, O., González-García, F., & MacGregor-Fors, I. (2019). Window strikes: bird collisions in a Neotropical green city. Urban Ecosystems, 22 (4), 699-708. Gelb, Y., & Delacretaz, N. (2009). Windows and vegetation: primary factors in Manhattan bird collisions. Northeastern Naturalist, 16 (3), 455-470. Graham, C. H. (2001). Factors influencing movement patterns of keel‐billed toucans in a fragmented tropical landscape in southern Mexico. Conservation Biology, 15 (6), 1789-1798. Hager, S. B., Cosentino, B. J., Aguilar-Gómez, M. A., Anderson, M. L., Bakermans, M., Boves, T. J., Brandes, D., Butler, M. W., Butler, E. M., & Cagle, N. L. (2017). Continent-wide analysis of how urbanization affects bird-window collision mortality in North America. Biological Conservation, 212, 209-215. Hager, S. B., Cosentino, B. J., McKay, K. J., Monson, C., Zuurdeeg, W., & Blevins, B. (2013). Window area and development drive spatial variation in bird-window collisions in an urban landscape. PLoS one, 8 (1), e53371. Ives, C. D., Lentini, P. E., Threlfall, C. G., Ikin, K., Shanahan, D. F., Garrard, G. E., Bekessy, S. A., Fuller, R. A., Mumaw, L., & Rayner, L. (2016). Cities are hotspots for threatened species. Global Ecology and Biogeography, 25 (1), 117-126. Kahle, L. Q., Flannery, M. E., & Dumbacher, J. P. (2016). Bird-window collisions at a west-coast urban park museum: analyses of bird biology and window attributes from Golden Gate Park, San Francisco. PLoS one, 11 (1), e0144600. Kim, E.-M., Choi, C.-Y., & Kang, C.-W. (2013). Causes of injury and mortality of Fairy Pitta Pitta nympha on Jeju Island, Republic of Korea. Forktail, 29, 145-148. Kim, C. M., Kim, J. H., & Yoo, S. H. (2023). Economic benefits of preventing bird collisions in South Korea: findings from a choice experiment survey. Environmental Science and Pollution Research, 30 (2), 2945-2957. Klem , D. (1989). Bird: window collisions. The Wilson Bulletin, 101 (4), 606-620. Klem , D. (1990). Collisions between birds and windows: mortality and prevention (Colisiones de pájaros con ventanas: mortalidad y prevención). Journal of Field Ornithology, 61, 120-128. Klem, D. (1991). Glass and bird kills: an overview and suggested planning and design methods of preventing a fatal hazard. Pages 99–104 in Wildlife Conservation (L. W. Adams and D. L. Leedy, Editors). Metropolitan Environments NIUW Symposium Series 2. National Institute for UrbanWildlife, Columbia, Maryland, USA. Klem, D. (2008). Avian mortality at windows: the second largest human source of bird mortality on Earth. In Proceedings of the Fourth International Partners in Flight Conference: Tundra to Tropics 244–251 (Partners in Flight, 2009). Klem Jr, D. (2009). Preventing bird–window collisions. The Wilson Journal of Ornithology, 121(2), 314-321. Klem, D., Farmer, C. J., Delacretaz, N., Gelb, Y., & Saenger, P. G. (2009). Architectural and Landscape Risk Factors Associated with Bird–glass Collisions in an Urban Environment. The Wilson Journal of Ornithology, 121 (1), 126-134, 129. Klem Jr, D. (2023). Glass: a deadly conservation issue for birds. Bird Observer, 34(2), 1. Koch, U., & Wagner, H. (2002). Morphometry of auricular feathers of barn owls (Tyto alba). European Journal of Morphology, 40 (1), 15-21. Kummer, J., & Bayne, E. (2015). Bird feeders and their effects on bird-window collisions at residential houses. Avian Conservation and Ecology, 10 (2),: 6. Lin, H.T., Sun, C. Y., Hung, C. T. (2008). A study in the relationship between greenery of urban parks and bird diversity in Tainan City, Taiwan. WIT Transactions on Ecology and the Environment, 117, 193-202. Loss, S. R., Lao, S., Eckles, J. W., Anderson, A. W., Blair, R. B., & Turner, R. J. (2019). Factors influencing bird-building collisions in the downtown area of a major North American city. PLoS one, 14 (11), e0224164. Loss, S. R., Will, T., Loss, S. S., & Marra, P. P. (2014). Bird–building collisions in the United States: Estimates of annual mortality and species vulnerability. The Condor, 116 (1), 8-23. Loss, S. R., Will, T., & Marra, P. P. (2015). Direct mortality of birds from anthropogenic causes. Annual Review of Ecology, Evolution, and Systematics, 46, 99-120. Machtans, C., Wedeles, C., & Bayne, E. (2013). A first estimate for Canada of the number of birds killed by colliding with building windows. Avian Conservation and Ecology, 8 (2),1-6. Maseko, M. S., Zungu, M. M., Ehlers Smith, D. A., Ehlers Smith, Y. C., & Downs, C. T. (2020). Effects of habitat-patch size and patch isolation on the diversity of forest birds in the urban-forest mosaic of Durban, South Africa. Urban Ecosystems, 23 (3), 533-542. Menon, G. K., & Menon, J. (2000). Avian epidermal lipids: functional considerations and relationship to feathering. American Zoologist, 40 (4), 540-552. Neuschulz, E., Brown, M., & Farwig, N. (2013). Frequent bird movements across a highly fragmented landscape: the role of species traits and forest matrix. Animal Conservation, 16 (2), 170-179. Newton, I., Wyllie, I., & Dale, L. (1999). Trends in the numbers and mortality patterns of sparrowhawks (Accipiter nisus) and kestrels (Falco tinnunculus) in Britain, as revealed by carcass analyses. Journal of Zoology, 248 (2), 139-147. Nichol, J. E., Wong, M. S., Corlett, R., & Nichol, D. W. (2010). Assessing avian habitat fragmentation in urban areas of Hong Kong (Kowloon) at high spatial resolution using spectral unmixing. Landscape and Urban Planning, 95 (1-2), 54-60. Ocampo-Peñuela, N., Winton, R. S., Wu, C. J., Zambello, E., Wittig, T. W., & Cagle, N. L. (2016). Patterns of bird-window collisions inform mitigation on a university campus. PeerJ, 4, e1652. Okazaki, J., Akiyama, K., & Kato, K. (2006). Avian responses to vegetation structure in tree-covered area in urban parks. Journal of the Japanese Institute of Landscape Architecture 69, 519–522, (in Japanese with English abstract). Pellissier, V., Cohen, M., Boulay, A., & Clergeau, P. (2012). Birds are also sensitive to landscape composition and configuration within the city centre. Landscape and Urban Planning, 104 (2), 181-188. Powers, K. E., Clore, D. M., Davidson, G. M., & Harris, R. C. (2022). A bird''s-eye view: novel use of drone images to quantify differences in altitudinal reflections in bird-window collision studies. The American Midland Naturalist, 187 (1), 51-61. Rajpar, M. N., & Zakaria, M. (2011). Bird species abundance and their correlationship with microclimate and habitat variables at Natural Wetland Reserve, Peninsular Malaysia. International Journal of Zoology, 2011. e758573. Rebolo-Ifrán, N., Di Virgilio, A., & Lambertucci, S. A. (2019). Drivers of bird-window collisions in southern South America: a two-scale assessment applying citizen science. Scientific Reports, 9 (1), 1-10. Riding, C. S., O’connell, T. J., & Loss, S. R. (2020). Building façade-level correlates of bird–window collisions in a small urban area. The Condor, 112, 1-14. Schüz, E. (1927). Beitrag zur Kenntnis der Puderbildung bei den Vögeln. Journal für Ornithologie, 75 (1), 86-224. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. Shieh, B.S., Liang, S.H., Chiu, Y.W., & Lin, S.Y. (2016). Interspecific comparison of traffic noise effects on dove coo transmission in urban environments. Scientific Reports, 6 (1), e32519. Sultana, M., Corlatti, L., & Storch, I. (2021). The interaction of imperviousness and habitat heterogeneity drives bird richness patterns in south Asian cities. Urban Ecosystems, 24 (2), 335-344. Tan, D. J. X., Freymueller, N. A., Teo, K. M., Symes, W. S., Lum, S. K. Y., & Rheindt, F. E. (2023). Disentangling the biotic and abiotic drivers of bird-building collisions in a tropical Asian city using ecological niche modeling. bioRxiv, 2023.06.27. 546782. Terraube, J., Archaux, F., Deconchat, M., Van Halder, I., Jactel, H., & Barbaro, L. (2016). Forest edges have high conservation value for bird communities in mosaic landscapes. Ecology and Evolution, 6 (15), 5178-5189. Tremblay, M. A., & St. Clair, C. C. (2011). Permeability of a heterogeneous urban landscape to the movements of forest songbirds. Journal of Applied Ecology, 48 (3), 679-688. Uribe-Morfín, P., Gómez-Martínez, M. A., Moreles-Abonce, L., Olvera-Arteaga, A., Shimada-Beltrán, H., & MacGregor-Fors, I. (2021). The invisible enemy: Understanding bird-window strikes through citizen science in a focal city. Ecological Research, 36 (3), 430-439. Winton, R. S., Ocampo-Peñuela, N., & Cagle, N. (2018). Geo-referencing bird-window collisions for targeted mitigation. PeerJ, 6, e4215. Xie, S., Lu, F., Cao, L., Zhou, W., & Ouyang, Z. (2016). Multi-scale factors influencing the characteristics of avian communities in urban parks across Beijing during the breeding season. Scientific Reports, 6 (1), e29350. Yanagawa, & Shibuya. (1998). Causes of wild bird mortality in eastern Hokkaido : III. Bird-window collisions. Research Bulletin of Obihiro University. Natural Science, 20 (4), 253-258. Zhou, D., Fung, T., & Chu, L. (2012). Avian community structure of urban parks in developed and new growth areas: a landscape-scale study in Southeast Asia. Landscape and Urban Planning, 108 (2-4), 91-102. Żmihorski, M., Kotowska, D., & Zyśk-Gorczyńska, E. (2022). Using citizen science to identify environmental correlates of bird-window collisions in Poland. Science of The Total Environment, 811, e152358. Zyśk-Gorczyńska, E., Skórka, P., & Żmihorski, M. (2020). Graffiti saves birds: A year-round pattern of bird collisions with glass bus shelters. Landscape and Urban Planning, 193, e103680. 台灣繁殖鳥類大調查。(2023)。調查與記錄方法。台灣繁殖鳥類大調查。https://sites.google.com/view/bbstaiwan/%E8%AA%BF%E6%9F%A5%E6%96%B9%E6%B3%95/%E8%AA%BF%E6%9F%A5%E8%88%87%E8%A8%98%E9%8C%84%E6%96%B9%E6%B3%95?authuser=0 林大利、呂翊維、潘森識。(2020)。臺灣國家鳥類報告。行政院農業委員會特有生物研究保育中心、社團法人中華民國野鳥學會。臺灣。 謝季恆、甘佳昀、何傳愷。(2023)。利用臉書及路死動物觀察網創建臺灣之野鳥撞玻璃資料庫。以口頭形式發表於2023動物行為暨生態研討會,2023年1月,台中。摘要引自https://drive.google.com/drive/folders/1oETTlGflMsFH4EdUNAn-AvpC8JfrR81e?usp=sharing 劉小如、丁宗蘇、方偉宏、林文宏、蔡牧起、顏重威。(2012)。台灣鳥類誌第二版。行政院農業委員會林務局,台北市。 蕭木吉。(2015)。台灣野鳥手繪圖鑑。林務局、台北市野鳥協會。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92154 | - |
dc.description.abstract | 「窗殺」為撞擊玻璃引起的鳥類傷亡,是野鳥主要的非自然死亡原因之一。現今,高架捷運站常採用開放空間與大面積玻璃的設計,但這些設計可能與周遭的地景特徵交互作用,進而產生潛在的窗殺風險。此外,台灣常見鳩鴿科鳥類窗殺案例數多,且易在玻璃上留下痕跡,是適合在清掃效率高的公共場所觀察窗殺風險的鳥種。因此本研究定期於台北市文湖線上的16個高架捷運站進行鳩鴿撞玻璃調查,探討站體特徵、地景組成因子、地景結構因子與周遭鳩鴿科族群數量如何影響鳩鴿科撞玻璃風險,並比較8組高、低窗殺風險玻璃中的窗景,分析窗景組成差異對鳩鴿科撞玻璃風險之影響。研究於2022年4月至隔年5月共記錄到143筆鳩鴿科撞玻璃證據,多數案例分布於月台兩端玻璃牆和空橋等玻璃透明度較高的區域。地景方面,100公尺環域內之建物、不透水層鋪面比例與附近鳩鴿科族群數量為影響鳩鴿科撞玻璃風險之關鍵因子。距玻璃近的建物透過減少玻璃視覺延伸效果與限縮玻璃前方可活動空間,可降低鳩鴿科撞玻璃風險,而玻璃附近較空曠且附近鳩鴿科族群多,可能因玻璃視覺延伸度高加上鳩鴿活動量大,導致撞玻璃風險提升。另外,綠地相關變數對鳩鴿科撞玻璃風險的影響不明顯,與北美窗殺研究結果相反,這可能與常見鳩鴿科普遍適應都市化環境而對植被依賴度較低有關。窗景方面,玻璃中樹冠畫面比例增加會吸引鳩鴿科鳥類,提升該面玻璃的鳩鴿科撞玻璃風險,建物畫面增加則可能減少撞玻璃風險。根據研究結果建議,高架捷運站可針對玻璃面積大、周遭空曠,鳥類數量多且有樹冠畫面的玻璃,以窗貼空白處不超過5×10公分原則優先進行窗殺減緩措施。在新站設計上若無法避免使用玻璃,除了盡量減少玻璃面積外,減少玻璃前方空間,避免玻璃畫面出現植被、樹冠或空曠地景也能降低窗殺風險。 | zh_TW |
dc.description.abstract | "Bird window collision (BWC)" refers to an unnatural bird death caused by striking the glass of artificial structures, which is one of the main causes of unnatural bird mortality in the world. Nowadays, elevated MRT stations are usually designed with open spaces and large glass, but these designs might interact with the landscape and cause potential BWC risks. Additionally, the common Columbidae birds are recorded to have large number of BWC cases in Taiwan, and they are easy to leave with the evidence on the glass after striking, which make them become the birds that are suitable for observing BWC risks in the public places with high cleaning efficiency. This study investigated 16 elevated MRT stations of Wenhu line in Taipei to collect the BWC evidence from Columbidae birds, and to explore how station features, landscape composition/ configuration factors, and local Columbidae bird population affecting the risk of Columbidae BWC. Also, this study analyzed the impact on Columbidae BWCs from different window view compositions by comparing 8 sets of high/low BWC risk window views. A total of 143 Columbidae BWC cases were recorded from April, 2022 to May, 2023, and most cases were distributed at glass walls and sky bridges where the reflection or the transparency of the glass is high. In respect of the landscape, the building area ratio and the impervious area ratio in 100 m buffer zones and the nearby Columbidae population size are the key factors affect the Columbidae BWC risks in MRT stations. The presence of buildings near the MRT glass can decrease BWC risks through reducing the visual effect of extensibility and the bird active space in front of the glass, while the larger Columbidae population and the open landscape showing in the glass of MRT stations may lead to the increasing of the BWC risks because of the high visual effect of extensibility and the active Columbidae populations. In addition, vegetation-related variables show no significant effect on the BWC risks, which is contrary to the results from most studies from North America, this might be due to the good adaptation ability of most Columbidae birds toward the urbanized environment that makes them have less dependence on vegetation. In the respect of the window view, this study shows that the increase in canopy area ratio in the window view will attract Columbidae birds and raise the BWC risks. On the contrary, the increase in the building area ratio might decrease the risks. We suggest that the large station glass which is near the open landscape, large Columbidae populations, and large area of canopy view should be concerned with the BWC prevention measures in priority, with window sticker rule that the blank area shouldn’t exceed 5×10 cm2. For the newly designed stations, in addition to reducing the glass area, restricting the space in front of the glass and avoiding the vegetation and open landscape view showing in the windows can also help mitigate the BWC risks. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-07T16:20:00Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-07T16:20:00Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract iii 目次 v 圖次 vii 表次 ix 第一章 前言 1 1.1研究動機 1 1.2研究目的 2 第二章 文獻回顧 5 2.1窗殺的成因與影響 5 2.2影響窗殺風險的因素 6 2.3窗殺風險與環境特徵的關聯 7 2.3.1窗殺風險與建物特徵的關聯 7 2.3.2窗殺風險與地景特徵的關聯 8 2.4地景對鳥種分布與活動之影響 10 2.4.1地景組成 10 2.4.2地景結構 11 2.5台灣的窗殺紀錄與特徵 13 2.6台灣都市常見鳩鴿科鳥類特徵與習性 15 2.6.1翠翼鳩 15 2.6.2珠頸斑鳩 16 2.6.3金背鳩 17 2.6.4紅鳩 18 2.6.5野鴿 19 第三章 材料與方法 21 3.1研究流程與架構 21 3.2研究樣區 23 3.3研究方法 26 3.3.1捷運站鳩鴿科窗殺調查 26 3.3.2 環境資料收集 30 3.3.3 鳩鴿科族群調查 35 3.3.4 玻璃畫面地景比例 37 3.3.5 資料分析 40 第四章 結果 43 4.1 鳩鴿科鳥擊案例之時空分布 43 4.2 各站鳥擊案例分布與環境 46 4.3 地景因子與鳥擊風險之關聯 47 4.3.1 地景因子與鳥擊案例數之多元線性迴歸模型與擬合度 47 4.3.2 各地景因子與鳥擊案例數之關聯 48 4.4站體特徵與鳥擊案例之關聯 53 4.5窗景組成與鳥擊高風險區之關聯 53 第五章 討論 55 5.1地景因子與鳥擊風險之關聯 55 5.1.1 影響鳥擊風險之重要因子 55 5.1.2 其他變數與窗殺風險之關聯 58 5.2 窗景與鳥擊風險關聯 61 5.3 站體特徵與鳥擊風險之關聯 62 5.4 十站與十六站結果差異比較 63 5.5 鳩鴿科撞玻璃研究潛在偏誤 64 第六章 結論與建議 67 引用文獻 71 附錄 77 附錄A 各站鳥擊案例分布與環境 77 A-1. 動物園站 77 A-2. 萬芳社區站 79 A-3. 辛亥站 81 A-4. 麟光站 83 A-5. 六張犁站 85 A-6. 科技大樓站 88 A-7. 大安站 89 A-8. 忠孝復興站 91 A-9. 南京復興站 93 A-10. 中山國中站 94 A-11. 劍南路站 96 A-12. 西湖站 99 A-13. 港墘站 100 A-14. 文德站 101 A-15. 內湖站 103 A-16. 葫洲站 104 附錄B 各項環境變數與10個站案例數分析 107 | - |
dc.language.iso | zh_TW | - |
dc.title | 何處惹窗殺?台北文湖線捷運站鳩鴿鳥擊之地景特徵與空間分布 | zh_TW |
dc.title | Pigeon Window Collisions in Taipei Wenhu MRT Stations: Landscape Patterns and Distributions | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 李培芬 | zh_TW |
dc.contributor.coadvisor | Pei- Fen Lee | en |
dc.contributor.oralexamcommittee | 柯佳吟 | zh_TW |
dc.contributor.oralexamcommittee | Chia-Ying Ko | en |
dc.subject.keyword | 窗殺,鳩鴿科鳥類,都市生態,地景, | zh_TW |
dc.subject.keyword | bird window collision,Columbidae bird,urban ecology,landscape, | en |
dc.relation.page | 113 | - |
dc.identifier.doi | 10.6342/NTU202400415 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-02-16 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地理環境資源學系 | - |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 32.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。