請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92150完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝伯讓 | zh_TW |
| dc.contributor.advisor | Po-Jang Hsieh | en |
| dc.contributor.author | 吳筠潔 | zh_TW |
| dc.contributor.author | Yun-Jie Wu | en |
| dc.date.accessioned | 2024-03-07T16:18:50Z | - |
| dc.date.available | 2024-03-08 | - |
| dc.date.copyright | 2024-03-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-11 | - |
| dc.identifier.citation | Buck, W. R. (2015). Chapter 8 - Comparative Physiology, Growth, and Development.In J. Bluemel, S. Korte, E. Schenck, & G. F. Weinbauer (Eds.), The nonhuman primate in nonclinical drug development and safety assessment (pp. 131-171). Academic Press. https://doi.org/10.1016/B978-0-12-417144-2.00008-1
Chang, Raymond, Alexis T. Baria, Matthew W. Flounders, and Biyu J. He. (2016). Unconsciously elicited perceptual prior. Neuroscience of Consciousness, 2016 (1). https://doi.org/10.1093/nc/niw008 Dehaene, Stanislas, and Jean-Pierre Changeux. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70 (2), 200–227. https://doi.org/10.1016/j.neuron.2011.03.018 Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. Nature methods, 16(1), 111–116. https://doi.org/10.1038/s41592-018-0235-4 Flounders, Matthew W., Carlos González-García, Richard Hardstone, and Biyu J. He. (2019) Neural dynamics of visual ambiguity resolution by perceptual prior. eLife 8: e41861. https://doi.org/10.7554/eLife.41861 González-García, Carlos, Matthew W. Flounders, Raymond Chang, Alexis T. Baria, and Biyu J. He. (2018) Content-specific activity in frontoparietal and default-mode networks during prior-guided visual perception. eLife 7:e36068. https://doi.org/10.7554/eLife.36068 González-García, Carlos, and Biyu J. He. (2021) A gradient of sharpening effects by perceptual prior across the human cortical hierarchy. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 41(1): 167–78. https://doi.org/10.1523/JNEUROSCI.2023-20.2020 Gorlin, Scott, Ming Meng, Jitendra Sharma, Hiroki Sugihara, Mriganka Sur, and Pawan Sinha. (2012) Imaging prior information in the brain. Proceedings of the National Academy of Sciences of the United States of America 109 (20): 7935–40. https://doi.org/10.1073/pnas.1111224109 Hsieh, P-J, E. Vul, and N. Kanwisher. (2010) Recognition alters the spatial pattern of fMRI activation in early retinotopic cortex. Journal of Neurophysiology 103(3): 1501–7. https://doi.org/10.1152/jn.00812.2009 Huang, Yu-Feng, and Po-Jang Hsieh. (2013) The mere exposure effect is modulated by selective attention but not visual awareness. Vision Research 91: 56–61. https://doi.org/10.1016/j.visres.2013.07.017 Hung, Shao-Min, Chih-Hsuan Nieh, and Po-Jang Hsieh. (2016) Unconscious processing of facial attractiveness: invisible attractive faces orient visual attention. Scientific Reports 6 (1): 37117. https://doi.org/10.1038/srep37117 Kornmeier, Jürgen, and Michael Bach. (2012) Ambiguous figures - what happens in the brain when perception changes but not the stimulus. Frontiers in Human Neuroscience 6: 51. https://doi.org/10.3389/fnhum.2012.00051 Loon, Anouk M. van, Johannes J. Fahrenfort, Bauke van der Velde, Philipp B. Lirk, Nienke C. C. Vulink, Markus W. Hollmann, H. Steven Scholte, and Victor A. F. Lamme. (2016) NMDA receptor antagonist ketamine distorts object recognition by reducing feedback to early visual cortex. Cerebral Cortex 26 (5): 1986–96. https://doi.org/10.1093/cercor/bhv018 Ludmer, Rachel, Yadin Dudai, and Nava Rubin. (2011). Uncovering camouflage: amygdala activation predicts long-term memory of induced perceptual insight. Neuron 69 (5): 1002–14. https://doi.org/10.1016/j.neuron.2011.02.013 Squire, Larry R., Jennifer C. Frascino, Charlotte S. Rivera, Nadine C. Heyworth, and Biyu J. He. (2021) One-trial perceptual learning in the absence of conscious remembering and independent of the medial temporal lobe. Proceedings of the National Academy of Sciences of the United States of America 118(19). https://doi.org/10.1073/pnas.2104072118. Steinberg Lowe, Mara, Gwyneth A. Lewis, and David Poeppel. (2016) Effects of part- and whole-object primes on early MEG responses to mooney faces and houses. Frontiers in Psychology 7: 147. https://doi.org/10.3389/fpsyg.2016.00147 Swingley, Daniel. (2010) Fast mapping and slow mapping in children’s word learning. Language Learning and Development: The Official Journal of the Society for Language Development 6 (3): 179–83. https://doi.org/10.1080/15475441.2010.484412 Teufel, Christoph, Steven C. Dakin, and Paul C. Fletcher. (2018) Prior Object-Knowledge sharpens properties of early visual feature-detectors. Scientific Reports 8 (1): 10853. https://doi.org/10.1038/s41598-018-28845-5 Yarkoni, Tal, Russell A. Poldrack, Thomas E. Nichols, David C. Van Essen, and Tor D. Wager. (2011) Large-scale automated synthesis of human functional neuroimaging data. Nature Methods 8 (8): 665–70. https://doi.org/10.1038/nmeth.1635 Zhan, Minye, Rainer Goebel, and Beatrice de Gelder. (2018) Ventral and dorsal pathways relate differently to visual awareness of body postures under continuous flash suppression. eNeuro 5 (1). https://doi.org/10.1523/ENEURO.0285-17.2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92150 | - |
| dc.description.abstract | 清晰化或是一次性學習在演化上扮演一個重要的角色,幫助人類可以透過少量過去經驗快速學習辨識模糊潛在的危險,提高存活的機率。在本研究希望探討過去經驗或先備知識 (prior)對於人類辨識模糊視覺圖像的影響。過去研究利用慕尼影像研究派典 (Mooney Images Paradigm)在有意識觀看模糊刺激時發現清晰化效果的行為和神經上的證據支持,包含描述的行為清晰化效果(behavioral disambiguation effect)以及神經清晰化效果 (neural disambiguation effect)。其中,行為清晰化效果為描述圖片經清晰化後,受試者主觀辨識率和辨認正確率上顯著提升。而神經清晰化效果為描述經清晰化後第二次觀看慕尼影像時的神經反應相較於一開始清晰化前觀看模糊刺激時的神經反應,變得和觀看灰階圖的神經反應更為相似。過去研究發現有不論是有意識或是無意識觀看的灰階圖,做為先備經驗 (prior) 確實對後續在有意識觀看模糊刺激時產生了行為和神經表徵改變。建立於此基礎上,本研究希望進一步了解此做為先備經驗的灰階圖,在受試者無法意識到刺激存在的無意識觀看的情境下,先備經驗是否可以被自動地應用到模糊影像辨識中。 為回答此研究問題,本研究設計透過慕尼影像研究派典控制各組圖片的清晰化前、清晰化和清晰化後觀看階段;並透過不連續閃光抑制技術(discontinuous flash suppression, dCFS)以遮蔽圖片進入到意識中,控制有意識和無意識的刺激呈現情境。在實驗過程中,透過功能性磁振造影(fMRI)測量受試者的腦部神經表徵計算是否發現神經清晰化效果 (neural disambiguation effect),回答在無意識觀看模糊影像的情境中先前在灰階圖中所學習到的圖片經驗,是否可以被自動的應用在無意識觀看模糊影像的情境中?實驗結果顯示在無意識觀看慕尼影像時,在現象/行為上,受試者應無法辨認慕尼影像,而實際上受試者受試者的神經反應在所觀測腦區中皆出現神經清晰化效果,也就是說出現了現象辨識(phenomenal disambiguation)和神經辨識 (neural disambiguation)不一致的結果。支持大腦在無意識觀看模糊刺激時,會自動將經驗應用於辨識模糊刺激;就算受試者並沒有感覺到,也無法回報看到刺激,但是神經反應上確實出現了自動化應用先備經驗的神經辨識支持。 而此神經辨識和現象辨識不一致的現象也在刺激以有意識呈現但受試者現象上回報不能辨識的無覺察辨識情境中被發現。且在有意識觀看、無覺察觀看和無意識觀看的情境下,在 V1、V2、FG、IT和 MT 等觀測腦區中都可以觀察到神經清晰化的效果或是明顯的趨勢,說明了在有意識、無覺察和無意識觀看中,先前學習的經驗都可能對模糊刺激產生神經表徵上的影響。本研究的結果提供了有關大腦如何利用過去經驗來處理模糊視覺刺激的新見解,除了發現了在無意識觀看模糊影像時先前在灰階圖中所學習到的圖片經驗可以被自動應用在無意識觀看模糊影像的情境中;還發現了在無覺察和無意識辨識中,神經辨識 (neural disambiguation)和現象辨識 (phenomenal disambiguation) 皆存在不一致的現象。希望此研究發現與討論,可以做為未來進一步討論意識與無意識資訊處理所涉及的機制異同提供證據與基礎。 | zh_TW |
| dc.description.abstract | Disambiguation, or one-time learning, enabling humans to rapidly recognize potential threats based on limited past experiences, thus enhancing survival chances. Our study aims to delves into the impact of prior experience on human recognition of ambiguous visual images. Previous research has unveiled behavioral and neural evidence supporting the disambiguation effect during conscious viewing of ambiguous stimuli. The behavioral disambiguation effect manifests as a significant increase in subjective recognition rates and accuracy of verbal identification of post-disambiguated images, while the neural disambiguation effect describes changes in post-disambiguation neural representations, aligning more with grayscale images compare to pre-disambiguation. While previous studies demonstrated that consciously or unconsciously viewing grayscale/prior images consistently leads to behavioral and neural changes when consciously perceiving ambiguous stimuli; Our study aims to answer whether prior experience with grayscale images can be automatically applied to post-disambiguated images during unconscious viewing. To address this, we designed an experiment using the Mooney Images Paradigm, controlling recognition stages (pre-disambiguation, disambiguation, and post-disambiguation) for each image. The discontinuous flash suppression (dCFS) technique masked images, creating conscious and unconscious stimulus presentation conditions. Functional magnetic resonance imaging (fMRI) measured neural representations to determine if a neural disambiguation effect could be observed in regions of interest (ROIs), V1, V2, FG, IT, and MT. Results indicated that during unconscious viewing of Mooney images, participants subjectively reported an inability to consciously recognize the images. However, neural responses across ROIs exhibited a disambiguation effect, highlighting an inconsistency between phenomenal/behavioral and neural recognition effects. This supports the notion that the brain automatically applies prior experience to recognize ambiguous stimuli, even during unconscious viewing, challenging the idea that such automatic application is exclusive to conscious perception. Furthermore, the inconsistency of neural and phenomenal recognition was observed in scenarios where stimuli were unrecognized in conscious presentation, known as unaware viewing. Concluding across conscious, unaware, and unconscious viewing, neural disambiguation effects or similar trends were observed in brain regions like V1, V2, FG, IT, and MT, suggesting that prior learning influences neural representations of ambiguous stimuli in various viewing contexts. In summary, our study provides fresh insights into how past experiences influence the neural representation of ambiguous visual stimuli. It supports the evidence that prior learning from grayscale images can be automatically applied during unconscious viewing of ambiguous images and reveals inconsistencies between neural and phenomenal recognition in unaware and unconscious recognition scenarios. These findings contribute evidence and a foundation for future investigations into the mechanisms involved in conscious and unconscious information processing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-07T16:18:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-07T16:18:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
中文摘要 III 英文摘要 V 第一章 緒論 1 第二章 實驗與方法 4 第一節 受試者 4 第二節 刺激材料 4 第三節 實驗設計 5 第三章 分析結果 19 第一節 分析一 19 第二節 分析二 25 第四章 結論與討論 30 第一節 綜合結論 30 第二節 研究的限制與機會 31 參考文獻 35 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 現象辨識 | zh_TW |
| dc.subject | 神經辨識 | zh_TW |
| dc.subject | 慕尼影像研究派典 | zh_TW |
| dc.subject | 不連續閃光抑制技術 | zh_TW |
| dc.subject | 先備經驗 | zh_TW |
| dc.subject | 神經清晰化 | zh_TW |
| dc.subject | Mooney Image Paradigm | en |
| dc.subject | dCFS | en |
| dc.subject | unaware | en |
| dc.subject | phenomenal disambiguation (recognition) | en |
| dc.subject | Neural disambiguation effect (recognition) | en |
| dc.subject | unconscious | en |
| dc.title | 無意識物體辨識: 無意識與無覺察情境中無現象辨識下的神經辨識 | zh_TW |
| dc.title | Neural Disambiguation Without Phenomenal Disambiguation When Viewing Unrecognized/unconscious Stimuli | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪紹閔;曾祥非 | zh_TW |
| dc.contributor.oralexamcommittee | Shao-Min Hung;Philip Tseng | en |
| dc.subject.keyword | 神經辨識,現象辨識,神經清晰化,先備經驗,不連續閃光抑制技術,慕尼影像研究派典, | zh_TW |
| dc.subject.keyword | Mooney Image Paradigm,dCFS,Neural disambiguation effect (recognition),phenomenal disambiguation (recognition),unconscious,unaware, | en |
| dc.relation.page | 38 | - |
| dc.identifier.doi | 10.6342/NTU202400647 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-17 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 心理學系 | - |
| 顯示於系所單位: | 心理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 5.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
