Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92146
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬鴻文zh_TW
dc.contributor.advisorHwong-Wen Maen
dc.contributor.author樓家凱zh_TW
dc.contributor.authorChia-Kai Louen
dc.date.accessioned2024-03-07T16:17:38Z-
dc.date.available2024-03-08-
dc.date.copyright2024-03-07-
dc.date.issued2024-
dc.date.submitted2024-02-18-
dc.identifier.citationAbdallah, F., Basurra, S., & Gaber, M. M. (2017). A Hybrid Agent-Based and Probabilistic Model for Fine-Grained Behavioural Energy Waste Simulation. 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI).
Akhatova, A., Kranzl, L., Schipfer, F., & Heendeniya, C. B. (2022). Agent-Based Modelling of Urban District Energy System Decarbonisation&mdashqpslcm@ikdA Systematic Literature Review. Energies, 15(2), 554. https://www.mdpi.com/1996-1073/15/2/554
Albatayneh, A., Juaidi, A., Abdallah, R., Peña-Fernández, A., & Manzano-Agugliaro, F. (2022). Effect of the subsidised electrical energy tariff on the residential energy consumption in Jordan. Energy Reports, 8, 893-903. https://doi.org/https://doi.org/10.1016/j.egyr.2021.12.019
Ali, S. S. S., Razman, M. R., Awang, A., Asyraf, M. R. M., Ishak, M. R., Ilyas, R. A., & Lawrence, R. J. (2021). Critical Determinants of Household Electricity Consumption in a Rapidly Growing City. Sustainability, 13(8), 4441. https://www.mdpi.com/2071-1050/13/8/4441
Amasyali, K., & El-Gohary, N. M. (2021). Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort. Applied Energy, 302, 117276. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117276
Anderson, K., & Lee, S. (2016). An empirically grounded model for simulating normative energy use feedback interventions. Applied Energy, 173, 272-282. https://doi.org/https://doi.org/10.1016/j.apenergy.2016.04.063
Anderson, K., Lee, S., & Menassa, C. (2014). Impact of social network type and structure on modeling normative energy use behavior interventions. Journal of Computing in Civil Engineering, 28(1), 30-39.
Azar, E., & Menassa, C. C. (2014). Framework to evaluate energy-saving potential from occupancy interventions in typical commercial buildings in the United States. Journal of Computing in Civil Engineering, 28(1), 63-78.
Azar, E., Nikolopoulou, C., & Papadopoulos, S. (2016). Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling. Applied Energy, 183, 926-937. https://doi.org/https://doi.org/10.1016/j.apenergy.2016.09.022
Ban, T. Q., Duong, P. L., Son, N. H., & Dinh, T. V. (2020). Covid-19 Disease Simulation using GAMA platform. 2020 International Conference on Computational Intelligence (ICCI).
Batalla-Bejerano, J., Trujillo-Baute, E., & Villa-Arrieta, M. (2020). Smart meters and consumer behaviour: Insights from the empirical literature. Energy Policy, 144, 111610. https://doi.org/https://doi.org/10.1016/j.enpol.2020.111610
Bedir, M., & Kara, E. C. (2017). Behavioral patterns and profiles of electricity consumption in dutch dwellings. Energy and Buildings, 150, 339-352. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.06.015
Berglund, E. Z. (2015). Using Agent-Based Modeling for Water Resources Planning and Management. Journal of Water Resources Planning and Management, 141(11), 04015025. https://doi.org/doi:10.1061/(ASCE)WR.1943-5452.0000544
Bertoldi, P. (2020). Chapter 4.3 - Overview of the European Union policies to promote more sustainable behaviours in energy end-users. In M. Lopes, C. H. Antunes, & K. B. Janda (Eds.), Energy and Behaviour (pp. 451-477). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-818567-4.00018-1
Blaschke, M. J. (2022). Dynamic pricing of electricity: Enabling demand response in domestic households. Energy Policy, 164, 112878. https://doi.org/https://doi.org/10.1016/j.enpol.2022.112878
Buchanan, K., Russo, R., & Anderson, B. (2015). The question of energy reduction: The problem(s) with feedback. Energy Policy, 77, 89-96. https://doi.org/https://doi.org/10.1016/j.enpol.2014.12.008
Cabello Eras, J. J., Mendoza Fandiño, J. M., Sagastume Gutiérrez, A., Rueda Bayona, J. G., & Sofan German, S. J. (2022). The inequality of electricity consumption in Colombia. Projections and implications. Energy, 249, 123711. https://doi.org/https://doi.org/10.1016/j.energy.2022.123711
Canale, L., Peulicke Slott, B., Finsdóttir, S., Kildemoes, L. R., & Andersen, R. K. (2021). Do in-home displays affect end-user consumptions? A mixed method analysis of electricity, heating and water use in Danish apartments. Energy and Buildings, 246, 111094. https://doi.org/https://doi.org/10.1016/j.enbuild.2021.111094
Cao, X., Dai, X., & Liu, J. (2016). Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy and Buildings, 128, 198-213. https://doi.org/https://doi.org/10.1016/j.enbuild.2016.06.089
Capasso, A., Grattieri, W., Lamedica, R., & Prudenzi, A. (1994). A bottom-up approach to residential load modeling. IEEE Transactions on Power Systems, 9(2), 957-964.
Chappin, Emile J. L., Schleich, J., Guetlein, M.-C., Faure, C., & Bouwmans, I. (2022). Linking of a multi-country discrete choice experiment and an agent-based model to simulate the diffusion of smart thermostats. Technological Forecasting and Social Change, 180, 121682. https://doi.org/https://doi.org/10.1016/j.techfore.2022.121682
Chen, J., Jain, R. K., & Taylor, J. E. (2013). Block Configuration Modeling: A novel simulation model to emulate building occupant peer networks and their impact on building energy consumption. Applied Energy, 105, 358-368. https://doi.org/https://doi.org/10.1016/j.apenergy.2012.12.036
Chen, S., Zhang, G., Xia, X., Chen, Y., Setunge, S., & Shi, L. (2021). The impacts of occupant behavior on building energy consumption: A review. Sustainable Energy Technologies and Assessments, 45, 101212.
Chen, Y.-J., Matsuoka, R. H., & Liang, T.-M. (2018). Urban form, building characteristics, and residential electricity consumption: A case study in Tainan City. Environment and Planning B: Urban Analytics and City Science, 45(5), 933-952.
Chen, Y.-T. (2017). The Factors Affecting Electricity Consumption and the Consumption Characteristics in the Residential Sector—A Case Example of Taiwan. Sustainability, 9(8), 1484. https://www.mdpi.com/2071-1050/9/8/1484
Choi, T. S., Ko, K. R., Park, S. C., Jang, Y. S., Yoon, Y. T., & Im, S. K. (2009). Analysis of energy savings using smart metering system and IHD (in-home display). 2009 Transmission & Distribution Conference & Exposition: Asia and Pacific.
Chou, J.-S., Kim, C., Ung, T.-K., Yutami, I. G. A. N., Lin, G.-T., & Son, H. (2015). Cross-country review of smart grid adoption in residential buildings. Renewable and Sustainable Energy Reviews, 48, 192-213. https://doi.org/https://doi.org/10.1016/j.rser.2015.03.055
Damiani, E., & Sissa, G. (2013). An agent based model of environmental awareness and limited resource consumption. Proceedings of the Fifth International Conference on Management of Emergent Digital EcoSystems,
Darby, S. (2006). The effectiveness of feedback on energy consumption. A Review for DEFRA of the Literature on Metering, Billing and direct Displays, 486(2006), 26.
de Oliveira, G. D., Porto, P. P. G., Alves, C. d. M. A., & Ralha, C. G. (2021). An Agent-Based Model for Simulating Irrigated Agriculture in the Samambaia Basin in Goiás. Revista de Informática Teórica e Aplicada, 28(2), 107-123. https://doi.org/10.22456/2175-2745.107041
Delmas, M. A., Fischlein, M., & Asensio, O. I. (2013). Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012. Energy Policy, 61, 729-739.
Dodgson, J. S., Millward, R., & Ward, R. (1990). The decline in residential electricity consumption in England and Wales. Applied Economics, 22(1), 59-68.
Eguaras-Martínez, M., Vidaurre-Arbizu, M., & Martín-Gómez, C. (2014). Simulation and evaluation of Building Information Modeling in a real pilot site. Applied Energy, 114, 475-484. https://doi.org/https://doi.org/10.1016/j.apenergy.2013.09.047
Energy, D. o. (2022). About Building Energy Modeling. https://www.energy.gov/eere/buildings/about-building-energy-modeling
Fattahi, A., Sijm, J., & Faaij, A. (2020). A systemic approach to analyze integrated energy system modeling tools: A review of national models. Renewable and Sustainable Energy Reviews, 133, 110195. https://doi.org/https://doi.org/10.1016/j.rser.2020.110195
Fischer, C. (2008). Feedback on household electricity consumption: a tool for saving energy? Energy Efficiency, 1(1), 79-104. https://doi.org/10.1007/s12053-008-9009-7
Fischer, D., Härtl, A., & Wille-Haussmann, B. (2015). Model for electric load profiles with high time resolution for German households. Energy and Buildings, 92, 170-179. https://doi.org/https://doi.org/10.1016/j.enbuild.2015.01.058
Fogg, B. (2009). A behavior model for persuasive design Proceedings of the 4th International Conference on Persuasive Technology, Claremont, California, USA. https://doi.org/10.1145/1541948.1541999
Fogg, B. J. (2002). Persuasive technology: using computers to change what we think and do. Ubiquity, 2002(December), Article 5. https://doi.org/10.1145/764008.763957
Fredericks, D., Fan, Z., Woolley, S., de Quincey, E., & Streeton, M. (2020). A Decade On, How Has the Visibility of Energy Changed? Energy Feedback Perceptions from UK Focus Groups. Energies, 13(10), 2566. https://www.mdpi.com/1996-1073/13/10/2566
Froehlich, J. (2009). Promoting energy efficient behaviors in the home through feedback: The role of human-computer interaction. Proc. HCIC Workshop,
Geelen, D., Mugge, R., Silvester, S., & Bulters, A. (2019). The use of apps to promote energy saving: A study of smart meter–related feedback in the Netherlands. Energy Efficiency, 12(6), 1635-1660.
Gholami, R., Emrouznejad, A., Alnsour, Y., Kartal, H. B., & Veselova, J. (2020). The Impact of Smart Meter Installation on Attitude Change Towards Energy Consumption Behavior Among Northern Ireland Households. Journal of Global Information Management (JGIM), 28(4), 21-37. https://doi.org/10.4018/JGIM.2020100102
González-Torres, M., Pérez-Lombard, L., Coronel, J. F., Maestre, I. R., & Yan, D. (2022). A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports, 8, 626-637. https://doi.org/https://doi.org/10.1016/j.egyr.2021.11.280
Grønhøj, A., & Thøgersen, J. (2011). Feedback on household electricity consumption: learning and social influence processes. International Journal of Consumer Studies, 35(2), 138-145.
Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760-2768. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2010.08.019
Guerra Santin, O. (2013). Occupant behaviour in energy efficient dwellings: evidence of a rebound effect. Journal of Housing and the Built Environment, 28(2), 311-327. https://doi.org/10.1007/s10901-012-9297-2
Guerra Santin, O., Itard, L., & Visscher, H. (2009). The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock. Energy and Buildings, 41(11), 1223-1232. https://doi.org/https://doi.org/10.1016/j.enbuild.2009.07.002
Gunay, H. B., O'Brien, W., & Beausoleil-Morrison, I. (2013). A critical review of observation studies, modeling, and simulation of adaptive occupant behaviors in offices. Building and Environment, 70, 31-47. https://doi.org/https://doi.org/10.1016/j.buildenv.2013.07.020
Hajj-Hassan, M., & Khoury, H. (2018). Behavioral and parametric effects on energy consumption through BIM, BEM, and ABM. Creative Construction Conference 2018,
Heiple, S., & Sailor, D. J. (2008). Using building energy simulation and geospatial modeling techniques to determine high resolution building sector energy consumption profiles. Energy and Buildings, 40(8), 1426-1436. https://doi.org/https://doi.org/10.1016/j.enbuild.2008.01.005
Herrmann, M. R., Brumby, D. P., & Oreszczyn, T. (2018). Watts your usage? A field study of householders’ literacy for residential electricity data. Energy Efficiency, 11(7), 1703-1719. https://doi.org/10.1007/s12053-017-9555-y
Hoes, P., Hensen, J. L. M., Loomans, M. G. L. C., de Vries, B., & Bourgeois, D. (2009). User behavior in whole building simulation. Energy and Buildings, 41(3), 295-302. https://doi.org/https://doi.org/10.1016/j.enbuild.2008.09.008
Hong, T., & Lin, H.-W. (2013). Occupant behavior: impact on energy use of private offices.
Hsu, M.-Y., Chen, Y.-H., Chen, S.-S., Tang, W., Sun, H.-M., & Cheng, B.-C. (2012). An IHD Authentication Protocol in Smart Grid. In S.-S. Yeo, Y. Pan, Y. S. Lee, & H. B. Chang, Computer Science and its Applications Dordrecht.
Huang, W.-H. (2015). The determinants of household electricity consumption in Taiwan: Evidence from quantile regression. Energy, 87, 120-133. https://doi.org/https://doi.org/10.1016/j.energy.2015.04.101
Huang, W.-H. (2022). Nonlinear relationship between household composition and electricity consumption: optimal threshold models. Optimization and Engineering, 23(4), 2261-2292. https://doi.org/10.1007/s11081-022-09732-5
Huang, Y.-H. (2020). Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data. Energy, 213, 119067. https://doi.org/https://doi.org/10.1016/j.energy.2020.119067
Huebner, G. M., Hamilton, I., Chalabi, Z., Shipworth, D., & Oreszczyn, T. (2015). Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes. Applied Energy, 159, 589-600. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.09.028
Hung, M.-F., & Chie, B.-T. (2017). The long-run performance of increasing-block pricing in Taiwan's residential electricity sector. Energy Policy, 109, 782-793. https://doi.org/https://doi.org/10.1016/j.enpol.2017.07.052
Hung, M.-F., & Huang, T.-H. (2015). Dynamic demand for residential electricity in Taiwan under seasonality and increasing-block pricing. Energy Economics, 48, 168-177. https://doi.org/https://doi.org/10.1016/j.eneco.2015.01.010
Hwang, R.-L., Lin, T.-P., Chen, C.-P., & Kuo, N.-J. (2009). Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan. International Journal of Biometeorology, 53(2), 189-200. https://doi.org/10.1007/s00484-008-0203-2
Hwang, R.-L., Lin, T.-P., & Kuo, N.-J. (2006). Field experiments on thermal comfort in campus classrooms in Taiwan. Energy and Buildings, 38(1), 53-62. https://doi.org/https://doi.org/10.1016/j.enbuild.2005.05.001
IEA. (2009). World Energy Outlook 2009. https://www.iea.org/reports/world-energy-outlook-2009
IEA. (2021). Greenhouse Gas Emissions from Energy
IEA, S. (2017). International Energy Agency, 2016. Key World Energy Statistics, ed.
IPCC. (2023). Climate Change 2023. https://www.ipcc.ch/report/ar6/syr/
Jain, R. K., Gulbinas, R., Taylor, J. E., & Culligan, P. J. (2013). Can social influence drive energy savings? Detecting the impact of social influence on the energy consumption behavior of networked users exposed to normative eco-feedback. Energy and Buildings, 66, 119-127. https://doi.org/https://doi.org/10.1016/j.enbuild.2013.06.029
Jensen, T., Holtz, G., & Chappin, É. J. L. (2015). Agent-based assessment framework for behavior-changing feedback devices: Spreading of devices and heating behavior. Technological Forecasting and Social Change, 98, 105-119. https://doi.org/https://doi.org/10.1016/j.techfore.2015.06.006
Jia, M., Srinivasan, R. S., Ries, R., Weyer, N., & Bharathy, G. (2019). A systematic development and validation approach to a novel agent-based modeling of occupant behaviors in commercial buildings. Energy and Buildings, 199, 352-367. https://doi.org/https://doi.org/10.1016/j.enbuild.2019.07.009
Jones, R. V., Fuertes, A., & Lomas, K. J. (2015). The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings. Renewable and Sustainable Energy Reviews, 43, 901-917. https://doi.org/https://doi.org/10.1016/j.rser.2014.11.084
Karatasou, S., Laskari, M., & Santamouris, M. (2014). Models of behavior change and residential energy use: a review of research directions and findings for behavior-based energy efficiency. Advances in Building Energy Research, 8(2), 137-147.
Karlin, B., Ford, R., & Squiers, C. (2014). Energy feedback technology: a review and taxonomy of products and platforms. Energy Efficiency, 7(3), 377-399. https://doi.org/10.1007/s12053-013-9227-5
Kashif, A., Ploix, S., Dugdale, J., & Le, X. H. B. (2013). Simulating the dynamics of occupant behaviour for power management in residential buildings. Energy and Buildings, 56, 85-93. https://doi.org/https://doi.org/10.1016/j.enbuild.2012.09.042
Kavousian, A., Rajagopal, R., & Fischer, M. (2013). Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior. Energy, 55, 184-194. https://doi.org/https://doi.org/10.1016/j.energy.2013.03.086
Kaza, N. (2010). Understanding the spectrum of residential energy consumption: A quantile regression approach. Energy Policy, 38(11), 6574-6585. https://doi.org/https://doi.org/10.1016/j.enpol.2010.06.028
Kaziyeva, D., Loidl, M., & Wallentin, G. (2021). Simulating Spatio-Temporal Patterns of Bicycle Flows with an Agent-Based Model. ISPRS International Journal of Geo-Information, 10(2), 88. https://www.mdpi.com/2220-9964/10/2/88
Kelly, R. A., Jakeman, A. J., Barreteau, O., Borsuk, M. E., ElSawah, S., Hamilton, S. H., Henriksen, H. J., Kuikka, S., Maier, H. R., Rizzoli, A. E., van Delden, H., & Voinov, A. A. (2013). Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling & Software, 47, 159-181. https://doi.org/https://doi.org/10.1016/j.envsoft.2013.05.005
Kowalska-Pyzalska, A. (2016). An analysis of factors enhancing adoption of smart metering platforms: An agent-based modeling approach. 2016 13th International Conference on the European Energy Market (EEM).
Kowalska-Pyzalska, A., & Byrka, K. (2019). Determinants of the willingness to energy monitoring by residential consumers: A case study in the city of Wroclaw in Poland. Energies, 12(5), 907.
Kowalska-Pyzalska, A., Maciejowska, K., Suszczyński, K., Sznajd-Weron, K., & Weron, R. (2014). Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs. Energy Policy, 72, 164-174. https://doi.org/https://doi.org/10.1016/j.enpol.2014.04.021
Lee, S.-J., & Song, S.-Y. (2022). Time-series analysis of the effects of building and household features on residential end-use energy. Applied Energy, 312, 118722. https://doi.org/https://doi.org/10.1016/j.apenergy.2022.118722
Li, W., Zhou, Y., Cetin, K., Eom, J., Wang, Y., Chen, G., & Zhang, X. (2017). Modeling urban building energy use: A review of modeling approaches and procedures. Energy, 141, 2445-2457. https://doi.org/https://doi.org/10.1016/j.energy.2017.11.071
Li, Z., Lin, B., Zheng, S., Liu, Y., Wang, Z., & Dai, J. (2020). A review of operational energy consumption calculation method for urban buildings. Building Simulation, 13(4), 739-751. https://doi.org/10.1007/s12273-020-0619-0
Lianwei, Z., & Wen, X. (2021). Urban Household Energy Consumption Forecasting Based on Energy Price Impact Mechanism [Original Research]. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.802697
Lin, F. j., Chen, Y., Lu, S. y., & Hsu, Y. (2016). Policy and development of smart grid in Taiwan. 2016 International Smart Grid Workshop and Certificate Program (ISGWCP).
Liou, H. M. (2017). The Development of Electricity Grid, Smart Grid and Renewable Energy in Taiwan. Smart Grid and Renewable Energy, 8(06), 15, Article 77141. https://doi.org/10.4236/sgre.2017.86011
Liu, D.-C. (2022). Residential and industrial electricity consumption in Taiwan: Weather or macroeconomic condition (or both). Energy Strategy Reviews, 39, 100795. https://doi.org/https://doi.org/10.1016/j.esr.2021.100795
Luo, X., Lam, K. P., Chen, Y., & Hong, T. (2017). Performance evaluation of an agent-based occupancy simulation model. Building and Environment, 115, 42-53. https://doi.org/https://doi.org/10.1016/j.buildenv.2017.01.015
Ma, G., Lin, J., & Li, N. (2018). Longitudinal assessment of the behavior-changing effect of app-based eco-feedback in residential buildings. Energy and Buildings, 159, 486-494. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.11.019
Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. Journal of Simulation, 4(3), 151-162. https://doi.org/10.1057/jos.2010.3
Madlener, R., & Sunak, Y. (2011). Impacts of urbanization on urban structures and energy demand: What can we learn for urban energy planning and urbanization management? Sustainable Cities and Society, 1(1), 45-53. https://doi.org/https://doi.org/10.1016/j.scs.2010.08.006
Mahmood, I., Quair-tul-ain, Nasir, H. A., Javed, F., & Aguado, J. A. (2020). A hierarchical multi-resolution agent-based modeling and simulation framework for household electricity demand profile. Simulation, 96(8), 655-678. https://doi.org/10.1177/0037549720923401
Mahmood, R., Saleemi, S., & Amin, S. (2016). Impact of climate change on electricity demand: A case study of Pakistan. Pakistan Development Review, 55(1), 29-47. https://doi.org/10.30541/v55i1pp.29-47
Martiskainen, M., & Coburn, J. (2011). The role of information and communication technologies (ICTs) in household energy consumption—prospects for the UK. Energy Efficiency, 4(2), 209-221. https://doi.org/10.1007/s12053-010-9094-2
McKenna, E., Krawczynski, M., & Thomson, M. (2015). Four-state domestic building occupancy model for energy demand simulations. Energy and Buildings, 96, 30-39. https://doi.org/https://doi.org/10.1016/j.enbuild.2015.03.013
McKerracher, C., & Torriti, J. (2013). Energy consumption feedback in perspective: integrating Australian data to meta-analyses on in-home displays. Energy Efficiency, 6(2), 387-405. https://doi.org/10.1007/s12053-012-9169-3
Micolier, A., Taillandier, F., Taillandier, P., & Bos, F. (2019). Li-BIM, an agent-based approach to simulate occupant-building interaction from the Building-Information Modelling. Engineering Applications of Artificial Intelligence, 82, 44-59. https://doi.org/https://doi.org/10.1016/j.engappai.2019.03.008
Mogles, N., Padget, J., Gabe-Thomas, E., Walker, I., & Lee, J. (2018). A computational model for designing energy behaviour change interventions. User Modeling and User-Adapted Interaction, 28(1), 1-34. https://doi.org/10.1007/s11257-017-9199-9
Mohammadiziazi, R., Copeland, S., & Bilec, M. M. (2021). Urban building energy model: Database development, validation, and application for commercial building stock. Energy and Buildings, 248, 111175. https://doi.org/https://doi.org/10.1016/j.enbuild.2021.111175
Nachreiner, M., Mack, B., Matthies, E., & Tampe-Mai, K. (2015). An analysis of smart metering information systems: A psychological model of self-regulated behavioural change. Energy Research & Social Science, 9, 85-97. https://doi.org/https://doi.org/10.1016/j.erss.2015.08.016
Nesbakken, R. (1999). Price sensitivity of residential energy consumption in Norway. Energy Economics, 21(6), 493-515. https://doi.org/https://doi.org/10.1016/S0140-9883(99)00022-5
Niamir, L., Filatova, T., Voinov, A., & Bressers, H. (2018). Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes. Energy Policy, 118, 325-345. https://doi.org/https://doi.org/10.1016/j.enpol.2018.03.045
Nilsson, A., Wester, M., Lazarevic, D., & Brandt, N. (2018). Smart homes, home energy management systems and real-time feedback: Lessons for influencing household energy consumption from a Swedish field study. Energy and Buildings, 179, 15-25. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.08.026
Noeurn, V. (2021). Factors affecting electricity consumption of residential consumers in Cambodia. IOP Conference Series: Earth and Environmental Science, 746(1), 012034. https://doi.org/10.1088/1755-1315/746/1/012034
Nsangou, J. C., Kenfack, J., Nzotcha, U., Ngohe Ekam, P. S., Voufo, J., & Tamo, T. T. (2022). Explaining household electricity consumption using quantile regression, decision tree and artificial neural network. Energy, 250, 123856. https://doi.org/https://doi.org/10.1016/j.energy.2022.123856
Ouyang, J., & Hokao, K. (2009). Energy-saving potential by improving occupants’ behavior in urban residential sector in Hangzhou City, China. Energy and Buildings, 41(7), 711-720. https://doi.org/https://doi.org/10.1016/j.enbuild.2009.02.003
Paatero, J. V., & Lund, P. D. (2006). A model for generating household electricity load profiles. International journal of energy research, 30(5), 273-290.
Pablo-Romero, M. d. P., & Sánchez-Braza, A. (2017). Residential energy environmental Kuznets curve in the EU-28. Energy, 125, 44-54. https://doi.org/https://doi.org/10.1016/j.energy.2017.02.091
Page, C. L., Bazile, D., Becu, N., Bommel, P., Bousquet, F., Etienne, M., Mathevet, R., Souchere, V., Trébuil, G., & Weber, J. (2013). Agent-based modelling and simulation applied to environmental management. Simulating social complexity: A handbook, 499-540.
Pan, S., Wang, X., Wei, S., Xu, C., Zhang, X., Xie, J., Tindall, J., & de Wilde, P. (2017). Energy Waste in Buildings Due to Occupant Behaviour. Energy Procedia, 105, 2233-2238. https://doi.org/https://doi.org/10.1016/j.egypro.2017.03.636
Papadopoulos, S., & Azar, E. (2016). Integrating building performance simulation in agent-based modeling using regression surrogate models: A novel human-in-the-loop energy modeling approach. Energy and Buildings, 128, 214-223. https://doi.org/https://doi.org/10.1016/j.enbuild.2016.06.079
Parker, D., Mills, E., Rainer, L., Bourassa, N., & Homan, G. (2012). Accuracy of the home energy saver energy calculation methodology. Proceedings of the 2012 ACEEE summer study on energy efficiency in buildings.
Petersen, J. E., Shunturov, V., Janda, K., Platt, G., & Weinberger, K. (2007). Dormitory residents reduce electricity consumption when exposed to real‐time visual feedback and incentives. International Journal of Sustainability in Higher Education, 8(1), 16-33. https://doi.org/10.1108/14676370710717562
Pullinger, M., Lovell, H., & Webb, J. (2014). Influencing household energy practices: a critical review of UK smart metering standards and commercial feedback devices. Technology Analysis & Strategic Management, 26(10), 1144-1162.
Rafsanjani, H. N., Ahn, C. R., & Alahmad, M. (2015). A Review of Approaches for Sensing, Understanding, and Improving Occupancy-Related Energy-Use Behaviors in Commercial Buildings. Energies, 8(10), 10996-11029. https://www.mdpi.com/1996-1073/8/10/10996
Rahut, D. B., Das, S., De Groote, H., & Behera, B. (2014). Determinants of household energy use in Bhutan. Energy, 69, 661-672. https://doi.org/https://doi.org/10.1016/j.energy.2014.03.062
Rai, V., & Henry, A. D. (2016). Agent-based modelling of consumer energy choices. Nature Climate Change, 6(6), 556-562. https://doi.org/10.1038/nclimate2967
Raihanian Mashhadi, A., & Behdad, S. (2018). Environmental impact assessment of the heterogeneity in consumers’ usage behavior: An agent‐based modeling approach. Journal of Industrial Ecology, 22(4), 706-719.
Rand, W., & Rust, R. T. (2011). Agent-based modeling in marketing: Guidelines for rigor. International Journal of Research in Marketing, 28(3), 181-193. https://doi.org/https://doi.org/10.1016/j.ijresmar.2011.04.002
Richardson, I., Thomson, M., Infield, D., & Clifford, C. (2010). Domestic electricity use: A high-resolution energy demand model. Energy and Buildings, 42(10), 1878-1887. https://doi.org/https://doi.org/10.1016/j.enbuild.2010.05.023
Rijal, H. B., Tuohy, P., Humphreys, M. A., Nicol, J. F., Samuel, A., & Clarke, J. (2007). Using results from field surveys to predict the effect of open windows on thermal comfort and energy use in buildings. Energy and Buildings, 39(7), 823-836. https://doi.org/https://doi.org/10.1016/j.enbuild.2007.02.003
Ritchie, H., & Roser, M. (2018). Urbanization. Our world in data.
Rixen, M., & Weigand, J. (2014). Agent-based simulation of policy induced diffusion of smart meters. Technological Forecasting and Social Change, 85, 153-167. https://doi.org/https://doi.org/10.1016/j.techfore.2013.08.011
Sari, D. P., & Chiou, Y.-S. (2019). Do Energy Conservation Strategies Limit the Freedom of Architecture Design? A Case Study of Minsheng Community, Taipei, Taiwan. Sustainability, 11(7), 2003. https://www.mdpi.com/2071-1050/11/7/2003
Schultz, P. W., Estrada, M., Schmitt, J., Sokoloski, R., & Silva-Send, N. (2015). Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms. Energy, 90, 351-358. https://doi.org/https://doi.org/10.1016/j.energy.2015.06.130
Schultz, P. W., Nolan, J. M., Cialdini, R. B., Goldstein, N. J., & Griskevicius, V. (2007). The constructive, destructive, and reconstructive power of social norms. Psychological science, 18(5), 429-434.
Shi, L., & Chew, M. Y. L. (2012). A review on sustainable design of renewable energy systems. Renewable and Sustainable Energy Reviews, 16(1), 192-207. https://doi.org/https://doi.org/10.1016/j.rser.2011.07.147
Shi, L., Zhang, G., Yang, W., Huang, D., Cheng, X., & Setunge, S. (2018). Determining the influencing factors on the performance of solar chimney in buildings. Renewable and Sustainable Energy Reviews, 88, 223-238. https://doi.org/https://doi.org/10.1016/j.rser.2018.02.033
Shiraki, H., Nakamura, S., Ashina, S., & Honjo, K. (2016). Estimating the hourly electricity profile of Japanese households – Coupling of engineering and statistical methods. Energy, 114, 478-491. https://doi.org/https://doi.org/10.1016/j.energy.2016.08.019
Streltsov, A., Malof, J. M., Huang, B., & Bradbury, K. (2020). Estimating residential building energy consumption using overhead imagery. Applied Energy, 280, 116018. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.116018
Su, C. L., Ching, H. M., Pu, Y. C., & Kuo, C. L. (2016). Transformer Load Estimation Using Smart Meter Data in Taipower. 2016 3rd International Conference on Green Technology and Sustainable Development (GTSD).
Su, Y.-W. (2019). Residential electricity demand in Taiwan: Consumption behavior and rebound effect. Energy Policy, 124, 36-45. https://doi.org/https://doi.org/10.1016/j.enpol.2018.09.009
Sunardi, C., Hikmat, Y. P., Margana, A. S., Sumeru, K., & Sukri, M. F. B. (2020). Effect of room temperature set points on energy consumption in a residential air conditioning. AIP Conference Proceedings.
Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8), 1819-1835. https://doi.org/https://doi.org/10.1016/j.rser.2008.09.033
Taillandier, F., Di Maiolo, P., Taillandier, P., Jacquenod, C., Rauscher-Lauranceau, L., & Mehdizadeh, R. (2021). An agent-based model to simulate inhabitants’ behavior during a flood event. International Journal of Disaster Risk Reduction, 64, 102503. https://doi.org/https://doi.org/10.1016/j.ijdrr.2021.102503
Taillandier, P., Gaudou, B., Grignard, A., Huynh, Q.-N., Marilleau, N., Caillou, P., Philippon, D., & Drogoul, A. (2019). Building, composing and experimenting complex spatial models with the GAMA platform. GeoInformatica, 23(2), 299-322. https://doi.org/10.1007/s10707-018-00339-6
Tang, L., Chen, C., Tang, S., Wu, Z., & Trofimova, P. (2017). Building Information Modeling and Building Performance Optimization. In M. A. Abraham (Ed.), Encyclopedia of Sustainable Technologies (pp. 311-320). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.10200-3
Theodoridou, I., Papadopoulos, A. M., & Hegger, M. (2011). Statistical analysis of the Greek residential building stock. Energy and Buildings, 43(9), 2422-2428. https://doi.org/https://doi.org/10.1016/j.enbuild.2011.05.034
Thierry, H., Vialatte, A., Choisis, J.-P., Gaudou, B., Parry, H., & Monteil, C. (2017). Simulating spatially-explicit crop dynamics of agricultural landscapes: The ATLAS simulator. Ecological Informatics, 40, 62-80. https://doi.org/https://doi.org/10.1016/j.ecoinf.2017.05.006
Tian, S., Lu, Y., Ge, X., & Zheng, Y. (2021). An agent-based modeling approach combined with deep learning method in simulating household energy consumption. Journal of Building Engineering, 43, 103210. https://doi.org/https://doi.org/10.1016/j.jobe.2021.103210
Tsay, Y.-S., Chen, R., & Fan, C.-C. (2022). Study on thermal comfort and energy conservation potential of office buildings in subtropical Taiwan. Building and Environment, 208, 108625. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108625
Tsuji, K., Sano, F., Ueno, T., & Saeki, O. (2004). Bottom-up simulation model for estimating end-use energy demand profiles in residential houses. Proc. ACEEE summer study on energy efficiency in buildings,
Uddin, M. N., Wang, Q., Wei, H. H., Chi, H. L., & Ni, M. (2021). Building information modeling (BIM), System dynamics (SD), and Agent-based modeling (ABM): Towards an integrated approach. Ain Shams Engineering Journal, 12(4), 4261-4274. https://doi.org/https://doi.org/10.1016/j.asej.2021.04.015
Wang, Q., Lin, J., Zhou, K., Fan, J., & Kwan, M.-P. (2020). Does urbanization lead to less residential energy consumption? A comparative study of 136 countries. Energy, 202, 117765. https://doi.org/https://doi.org/10.1016/j.energy.2020.117765
Wei, Y., Zhang, X., Shi, Y., Xia, L., Pan, S., Wu, J., Han, M., & Zhao, X. (2018). A review of data-driven approaches for prediction and classification of building energy consumption. Renewable and Sustainable Energy Reviews, 82, 1027-1047. https://doi.org/https://doi.org/10.1016/j.rser.2017.09.108
Weron, T., Kowalska-Pyzalska, A., & Weron, R. (2018). The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach. Physica A: Statistical Mechanics and its Applications, 505, 591-600. https://doi.org/https://doi.org/10.1016/j.physa.2018.03.086
Westskog, H., Winther, T., & Sæle, H. (2015). The Effects of In-Home Displays—Revisiting the Context. Sustainability, 7(5), 5431-5451. https://www.mdpi.com/2071-1050/7/5/5431
Widén, J., & Wäckelgård, E. (2010). A high-resolution stochastic model of domestic activity patterns and electricity demand. Applied Energy, 87(6), 1880-1892. https://doi.org/https://doi.org/10.1016/j.apenergy.2009.11.006
Wiedenhofer, D., Lenzen, M., & Steinberger, J. K. (2013). Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications. Energy Policy, 63, 696-707. https://doi.org/https://doi.org/10.1016/j.enpol.2013.07.035
Wikipedia. 建築性能模擬。 檢自: https://zh.wikipedia.org/wiki/%E5%BB%BA%E7%AF%89%E6%80%A7%E8%83%BD%E6%A8%A1%E6%93%AC
Wolske, K. S., Gillingham, K. T., & Schultz, P. (2020). Peer influence on household energy behaviours. Nature Energy, 5(3), 202-212.
Xu, P., Shen, J., Zhang, X., Zhao, X., & Qian, Y. (2015). Case Study of Smart Meter and In-home Display for Residential Behavior Change in Shanghai, China. Energy Procedia, 75, 2694-2699. https://doi.org/https://doi.org/10.1016/j.egypro.2015.07.679
Yan, D., Hong, T., Dong, B., Mahdavi, A., D’Oca, S., Gaetani, I., & Feng, X. (2017). IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings. Energy and Buildings, 156, 258-270. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.09.084
Yi, C. P., Chen, H. H., & Chen, Y. C. (2018). A Smart Meter Design Implemented with IOT Technology. 2018 International Symposium on Computer, Consumer and Control (IS3C).
Yohanis, Y. G., Mondol, J. D., Wright, A., & Norton, B. (2008). Real-life energy use in the UK: How occupancy and dwelling characteristics affect domestic electricity use. Energy and Buildings, 40(6), 1053-1059. https://doi.org/https://doi.org/10.1016/j.enbuild.2007.09.001
Yoshino, H., Hong, T., & Nord, N. (2017). IEA EBC annex 53: Total energy use in buildings—Analysis and evaluation methods. Energy and Buildings, 152, 124-136. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.07.038
Yu, Z., Fung, B. C. M., Haghighat, F., Yoshino, H., & Morofsky, E. (2011). A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy and Buildings, 43(6), 1409-1417. https://doi.org/https://doi.org/10.1016/j.enbuild.2011.02.002
Yuan, B., Ren, S., & Chen, X. (2015). The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis. Applied Energy, 140, 94-106. https://doi.org/https://doi.org/10.1016/j.apenergy.2014.11.047
Zangheri, P., Serrenho, T., & Bertoldi, P. (2019). Energy Savings from Feedback Systems: A Meta-Studies’ Review. Energies, 12(19), 3788. https://www.mdpi.com/1996-1073/12/19/3788
Zhang, T., & Nuttall, W. J. (2011). Evaluating government's policies on promoting smart metering diffusion in retail electricity markets via agent‐based simulation. Journal of Product Innovation Management, 28(2), 169-186.
Zhang, T., & Nuttall, W. J. (2012). An agent-based simulation of smart metering technology adoption. International Journal of Agent Technologies and Systems (IJATS), 4(1), 17-38.
Zhang, T., Siebers, P.-O., & Aickelin, U. (2016). Simulating user learning in authoritative technology adoption: An agent based model for council-led smart meter deployment planning in the UK. Technological Forecasting and Social Change, 106, 74-84. https://doi.org/https://doi.org/10.1016/j.techfore.2016.02.009
Zhu, P., Gilbride, M., Yan, D., Sun, H., & Meek, C. (2017). Lighting energy consumption in ultra-low energy buildings: Using a simulation and measurement methodology to model occupant behavior and lighting controls. Building Simulation, 10(6), 799-810. https://doi.org/10.1007/s12273-017-0408-6
內政部戶政司 (2021)。 全國人口資料庫統計地圖。 檢自: https://gis.ris.gov.tw/index.html
台灣電力公司 (2023a)。 台灣電力 APP。 檢自: https://www.taipower.com.tw/tc/page.aspx?mid=1427&cid=4174&cchk=35ef15f2-98c4-4628-ac16-9341fb97d40c#b01
台灣電力公司 (2023b)。 表燈時間電價試算評估。 檢自: https://taipowerdsm.taipower.com.tw/residential-and-commercial
行政院主計總處 (2022)。 110年家庭收支調查。 檢自: https://doi.org/10.6141/TW-SRDA-AA170046-1
李采凌 (2016)。 台北市營造建築物及住宅概況分析。 檢自: https://dbas.gov.taipei/News_Link.aspx?n=8AD0AB2041C90A3F&sms=06E1A3F39FAE97D8&_CSN=25A8DD044D996898
卓凡渝 (2022)。 臺北市家庭結構發展探討。 檢自: https://dbas.gov.taipei/News_Link.aspx?n=8AD0AB2041C90A3F&sms=06E1A3F39FAE97D8&_CSN=98675A908DC49E21#
卓世明、黃家平、陳志龍、黎冠廷 (2016)。 一般冷氣之雲端架構與節能設計。 醒吾學報(54),13-25。檢自: https://tpl.ncl.edu.tw/NclService/JournalContentDetail?SysId=A16031982
周瑞生、林國泰、林良澤 (2015)。 從大台北都會地區使用者觀點探討居家空間之智慧電表採用傾向與推行策略。 營建管理季刊(102),51-75。
林政廷、蔡宗成、蔡宗霖、戴子傑、廖又萱 (2021)。 空調應用及節電效率之區域性電力研究。 檢自: https://www.grb.gov.tw/search/planDetail?id=13553977
林容璟、蔡宗霖、蔡宗成、洪德芳、林志勳 (2019)。 資訊策略與家庭用戶的節電行為: 基於智慧電錶的資訊回饋,以雙北公宅用戶為例。 Journal of Taiwan Energy(6), 453-471, Article 4. https://km.twenergy.org.tw/Publication/thesis_more?id=235
林憲德、涂金榮 (2000)。 建築耗能調查分類與住宅類耗能調查之研究。 檢自: https://www.abri.gov.tw/News_Content_Table.aspx?n=807&s=37458
建築學報 (2013)。 我國住宅部門用電量以及電力分配之研究 [The Study of Residential Sector Energy Consumption and Application in Taiwan]. 建築學報(86),1-10。
梁世武 (2019)。 106年家用電器普及狀況調查。 檢自: https://www.grb.gov.tw/search/planDetail?id=12545494
許雅音 (2016)。 電力部門需求面管理。 檢自: https://km.twenergy.org.tw/Document/reference_more?id=138
黃韻勳 (2018)。 我國住宅部門電力消費關鍵影響因素分析。 Journal of Taiwan Energy(5), 351-365, Article 4.
經濟部能源局 (2020)。 智慧電網總體規劃方案核定本。 檢自: https://www.moeaboe.gov.tw/ECW/populace/content/Content.aspx?menu_id=9922
經濟部能源局 (2021)。 能源統計手冊。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92146-
dc.description.abstract自上世紀以來全球工業與經濟飛速發展,造成人口激增之餘也使都市化成為不可逆的趨勢,更帶動了都市內建築物能耗與相關溫室氣體排放量的逐年增長,根據統計,建築物已然是現今能源強度最高的部門之一,約佔每年總消費的30-40%,當中又以家用住宅的能源需求為大宗。為達成社會的永續發展以及維護能源供應安全,不少國家已針對家戶層級的能源消費控管策略進行研議。許多研究也指出,居住者行為是影響建築物能源效率的關鍵因素,且相對於改善硬體設施所需之大量金錢與時間成本,優化住戶的日常消費習慣乃是更經濟又有效之作法,估計能帶來十分可觀的節能效益 (約4-30%不等)。
我國住宅能源使用有超過八成來自電力,其屬於一種無形資源,在被使用的當下難以察覺,往往導致人們過度用電卻渾然不知。為了解決此問題,專家們於是提出 "回饋" 的概念,期望透過日漸普及的資通訊技術,如常見的智慧型電表等自動化計量工具,結合家用顯示器、行動裝置、電腦等設備作為媒介,向用戶展示即時或連續性的消費資訊,提升其對自身用電情形的認知,進而改變行為從而達到節電的目標。然而,目前的研究主要聚焦在觀察小規模場域試驗 (於特定範圍內的住家中安裝回饋設備) 前後的用電量變動與針對受試者的訪談,或是以模擬方法評估相關設備於不同政策情境下的擴散及採用情形 (技術普及率),鮮少有關於回饋如何影響消費者行為的直接描述,因此容易忽略個人意願與行為間之差距;且試驗的時長、規模、取樣方法、參與者之社經背景等干擾因素皆可能造成研究結果的差異,故至今仍缺少能夠量化回饋技術節能潛力之有效手段。
基於個體模型 (Agent-Based Model, ABM) 是一種由下而上的動態模擬方法,其核心概念在於從微觀角度觀察個體決策行為對整個大環境的影響,擅長捕捉及分析複雜系統內的角色互動情形。因此,本研究利用GAMA平台建立Agent-Based Model,針對台北市大安區住戶的室內空調使用行為進行建模。模型將環境溫度作為居住者開啟冷氣之關鍵因素,並搭配該地區的實際人口統計資料,涵蓋家庭教育程度、成員人數,年齡結構和住宅占用模式等參數,進行為期一年的動態模擬,再結合台電公布之電價資訊,計算出住宅空調用電量和相應的家庭電費支出。緊接著,模型導入了多項回饋策略,包括時間電價和社會影響力等,形成共10種不同的情境組合,旨在以個體行為受資訊回饋的干預為基礎,清晰展示出反饋內容、節能動機與用電習慣之間的相互作用,並試圖量化相關技術帶來的節電與經濟效益。研究發現,採用二段式時間電價方案下計算出的空調電費,相較於累進式電價可節省達43.1%,對住戶而言更具有吸引力;此外,與基線情境相比,回饋措施一年內最多可削減高達17.1%的總耗電量、22.5%的尖峰負載以及51.3%的住宅空調電費。這表明在財務誘因與社會壓力的驅使下,若用戶願意調整消費習慣,不僅能有效節約電力浪費,亦可顯著減輕尖峰時段內的用電壓力,同時避免家庭負擔高昂金錢損失,最終達到能源供需兩端雙贏之局面。
本研究利用模擬方法,驗證了資訊回饋在推動住宅節能方面有效性,並深入分析了各種策略組合下的節能成果。而有鑑於到智慧型電表等先進計量基礎設施 (Advanced Metering Infrastructure, AMI) 在我國仍處於初期發展階段,目前僅有零星住家已完成安裝,或是於特定地區設立智慧電網技術示範場域,因此本研究的成果有望成為將來大規模推廣此類回饋裝置時的重要參考,除了能協助評估其在節能和經濟效益方面之潛力,也為日後的實施策略提供了引導方針。
zh_TW
dc.description.abstractSince the last century, the rapid growth of global industry and economy has caused a surge in population and made urbanization an irreversible trend, as well as the steady increase in building energy usage and building-related greenhouse gas emissions. According to statistics, buildings have been one of the sectors with the highest energy intensity nowadays, contributing about 30-40% of total world energy consumption annually, among which the demand for residential buildings accounts for the most significant part. As stated above, many countries have been working on strategies for controlling household energy consumption to achieve sustainable development and ensure energy security. Numerous studies have indicated that occupant behavior is the critical factor affecting the energy performance of buildings. Furthermore, compared with the substantial capital and time cost required for renovating physical facilities, improving the daily consumption habits of occupants may be a more economical and effective method estimated to bring considerable energy-saving benefits (about 4-30%).
In Taiwan, more than 80% of residential energy use is in the form of electricity, a kind of invisible resource difficult for people to perceive when using it and hence often lead to overconsumption. To address this problem, experts put forward the concept of "feedback", expecting to utilize increasingly prevalent information and communication technologies (ICTs), such as commonly seen automated measuring tools like smart meters, in combination with in-home displays (IHD), mobile devices, and computers as media to provide users with real-time or continuous consumption information. This approach is considered able to enhance users’ awareness of their own electricity usage and thereby change behavior routines for the purpose of conserving energy. However, the existing literature primarily focuses on observing the discrepancies in electricity consumption before and after conducting small-scale field experiments, such as the installation of feedback devices in dwellings within a specific range. Research in this area also includes carrying out qualitative interviews with the participants, as well as evaluating the diffusion and adoption levels of such equipment, for example, the technological penetration of smart metering, under various policy scenarios using simulation approaches. In contrast, there are still few direct descriptions of how feedback affects consumer behaviors, and the intention-behavior gap of individuals is often ignored in relevant studies. Additionally, a variety of confounding factors can also cause variation in results, including the duration and scale of trials, sampling methodologies, socio-demographic characteristics of target groups, etc. Therefore, still no effective means that have been proposed to quantify the energy-saving potential of feedback technologies.
Agent-Based Model (ABM) represents a dynamic bottom-up simulation approach, where the core concept involves inspecting the impact of individual decision-making behaviors on the whole environment from a micro perspective. This method excels in capturing and examining the interactions between roles within complex systems. Consequently, this study employed the GAMA platform to develop an Agent-Based Model concentrating on occupant usage patterns of residential air conditioners in Da''an District, Taipei City. Ambient temperature was applied as the trigger for residents to operate the appliances, incorporating actual demographic data of this region, including household educational level, family size, age distribution, and occupancy patterns of the dwelling. Through one-year dynamic simulation coupled with electricity pricing information published by Taiwan Power Company, we obtained the residential air conditioning load profile as well as the corresponding electricity costs. Then, several feedback strategies, such as time-of-use rates (TOU) and social influence (normative comparison、peer comparison) were introduced, creating ten distinct scenario combinations. These were designed to base individual behavior changes on information feedback interventions, clearly illustrating the interplay between feedback content, energy-saving motives and consumption habits, attempting to qualify the potential energy efficiency benefits of relevant technologies. The research found that adopting 2-tiered TOU pricing scheme for air-conditioning costs could result in saving up to 43.1% compared to progressive pricing scheme, making it more attractive to households. Moreover, in comparison with the baseline scenario, feedback measures were able to reduce total electricity consumption by up to 17.1%, peak load by 22.5%, and energy costs for residential AC by 51.3% within a year. This indicates that under the influence of financial incentive and social pressure, if users are willing to adjust their consumption patterns, not only can they effectively conserve energy, but also significantly alleviate the demand during peak hours and generate substantial cost savings for households, ultimately achieving a win-win situation for both energy supply and demand sides.
This study utilized simulation methods to validate the effectiveness of information feedback in promoting residential energy conservation and conducted an in-depth analysis of energy-saving outcomes under multiple strategy combination. Given that Advanced Metering Infrastructure (AMI), including smart meters, is still in the early stages of development in our country, with only a few households currently equipped and specific areas designated for smart grid technology demonstration, the results of this study are therefore anticipated to serve as a crucial reference for future large-scale deployment of such feedback devices. Besides aiding in assessing their potential for energy-efficient and economic benefits, the findings also provide guidance for planning the implementation strategies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-07T16:17:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-07T16:17:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目次 ix
圖次 xi
表次 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究架構 3
第二章 文獻回顧 5
2.1 住宅部門能源使用情形 5
2.1.1 住宅部門能源消費概述 5
2.1.2 影響住宅能耗之重要因子 7
2.1.3 住戶行為對用電量的影響 10
2.2 資訊回饋技術 15
2.2.1 回饋與節能之關聯 15
2.2.2 回饋技術之發展現況 20
2.3 資訊回饋對住戶行為之影響 27
2.3.1 回饋之能耗行為干預機制 27
2.3.2 住宅電力需求推估 30
2.3.3 基於個體模型 32
2.4 資訊回饋之效益量化 36
第三章 研究方法 37
3.1 系統範疇界定與資料盤點 37
3.1.1 我國住宅空調用電 37
3.1.2 研究邊界設定 39
3.1.3 外部資料匯入 41
3.2 Agent-Based Model建立 54
3.2.1 模擬環境設置 54
3.2.2 住宅空調用電量計算模型 61
3.3 回饋策略與相關情境分析 67
3.3.1 基本情境 (基線) 67
3.3.2 時間電價資訊 67
3.3.3 社會影響力 69
3.4 Agent-Based Model之運作架構 72
3.5 模擬之必要假設 73
第四章 結果與討論 74
4.1 模型輸出結果分析 74
4.1.1 模擬初始化與視覺呈現 74
4.1.2 輸出資料初步檢驗 77
4.1.3 不同方案下的電費試算與評估 80
4.2 回饋策略效益之量化分析 83
4.2.1 基本情境結果分析 85
4.2.2 時間電價的影響 86
4.2.3 社會規範效應 86
第五章 結論與建議 88
5.1 結論 88
5.2 建議 90
參考文獻 93
-
dc.language.isozh_TW-
dc.title利用基於個體模型評估資訊回饋對家庭節能行為的影響 – 以住宅空調使用為例zh_TW
dc.titleAssessing the Influence of Information Feedback on Energy-Efficient Behaviors of Households with Agent-Based Model – A Case Study in the Usage of Residential Air Conditionersen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李公哲;陳怡君zh_TW
dc.contributor.oralexamcommitteeKung-Cheh Li;I-Chun Chenen
dc.subject.keyword住宅節能,居住者行為,空調使用,回饋策略,智慧型電表,基於個體模型,zh_TW
dc.subject.keywordResidential Energy Saving,Occupant Behavior,Usage of Air Conditioners,Feedback Strategy,Smart Meter,Agent-Based Model,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202400613-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-18-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2026-02-28-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
11.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved