Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92126Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 楊姍樺 | zh_TW |
| dc.contributor.advisor | Shan-Hua Yang | en |
| dc.contributor.author | 葉書碩 | zh_TW |
| dc.contributor.author | Shu-Shuo Yeh | en |
| dc.date.accessioned | 2024-03-05T16:24:32Z | - |
| dc.date.available | 2024-03-06 | - |
| dc.date.copyright | 2024-03-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-17 | - |
| dc.identifier.citation | Aldea, D., Leon, A., Bertrand, S., & Escriva, H. (2015). Expression of Fox genes in the cephalochordate Branchiostoma lanceolatum. Front. Ecol. Evol., 3. https://doi.org/10.3389/fevo.2015.00080
Ayers, T. N., Nicotra, M. L., & Lee, M. T. (2023). Parallels and contrasts between the cnidarian and bilaterian maternal-to-zygotic transition are revealed in Hydractinia embryos. PLoS Genet, 19(7), e1010845. https://doi.org/10.1371/journal.pgen.1010845 Bairoch, A., & Apweiler, R. (1996). The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res, 24(1), 21-25. https://doi.org/10.1093/nar/24.1.21 Barton-Owen, T. B., Ferrier, D. E. K., & Somorjai, I. M. L. (2018). Pax3/7 duplicated and diverged independently in amphioxus, the basal chordate lineage. Sci Rep, 8(1), 9414. https://doi.org/10.1038/s41598-018-27700-x Beaster-Jones, L., Kaltenbach, S. L., Koop, D., Yuan, S., Chastain, R., & Holland, L. Z. (2008). Expression of somite segmentation genes in amphioxus: a clock without a wavefront? Dev Genes Evol, 218(11), 599-611. https://doi.org/10.1007/s00427-008-0257-5 Bertrand, S., Camasses, A., Somorjai, I., Belgacem, M. R., Chabrol, O., Escande, M. L., Pontarotti, P., & Escriva, H. (2011). Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc Natl Acad Sci U S A, 108(22), 9160-9165. https://doi.org/10.1073/pnas.1014235108 Bertrand, S., Fuentealba, J., Aze, A., Hudson, C., Yasuo, H., Torrejon, M., Escriva, H., & Marcellini, S. (2013). A dynamic history of gene duplications and losses characterizes the evolution of the SPARC family in eumetazoans. Proc Biol Sci, 280(1757), 20122963. https://doi.org/10.1098/rspb.2012.2963 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170 Candiani, S., Castagnola, P., Oliveri, D., & Pestarino, M. (2002). Cloning and developmental expression of AmphiBrn1/2/4, a POU III gene in amphioxus. Mech Dev, 116(1-2), 231-234. https://doi.org/10.1016/s0925-4773(02)00146-6 Candiani, S., Holland, N. D., Oliveri, D., Parodi, M., & Pestarino, M. (2008). Expression of the amphioxus Pit-1 gene (AmphiPOU1F1/Pit-1) exclusively in the developing preoral organ, a putative homolog of the vertebrate adenohypophysis. Brain Res Bull, 75(2-4), 324-330. https://doi.org/10.1016/j.brainresbull.2007.10.023 Candiani, S., Kreslova, J., Benes, V., Oliveri, D., Castagnola, P., Pestarino, M., & Kozmik, Z. (2003). Cloning and developmental expression of amphioxus Dachschund. Gene Exp. Patterns, 3(1), 65-69. https://doi.org/10.1016/s1567-133x(02)00070-4 Candiani, S., Oliveri, D., Parodi, M., Bertini, E., & Pestarino, M. (2006). Expression of AmphiPOU-IV in the developing neural tube and epidermal sensory neural precursors in amphioxus supports a conserved role of class IV POU genes in the sensory cells development. Dev Genes Evol, 216(10), 623-633. https://doi.org/10.1007/s00427-006-0083-6 Carnac, G., Kodjabachian, L., Gurdon, J. B., & Lemaire, P. (1996). The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm. Development, 122(10), 3055-3065. https://doi.org/10.1242/dev.122.10.3055 Carvalho, J. E., Lahaye, F., Yong, L. W., Croce, J. C., Escrivá, H., Yu, J.-K., & Schubert, M. (2021). An Updated Staging System for Cephalochordate Development: One Table Suits Them All. Front Cell Dev Biol, 9. https://doi.org/10.3389/fcell.2021.668006 Cattell, M. V., Garnett, A. T., Klymkowsky, M. W., & Medeiros, D. M. (2012). A maternally established SoxB1/SoxF axis is a conserved feature of chordate germ layer patterning. Evol Dev, 14(1), 104-115. https://doi.org/10.1111/j.1525-142X.2011.00525.x Chang, C., Holtzman, D. A., Chau, S., Chickering, T., Woolf, E. A., Holmgren, L. M., Bodorova, J., Gearing, D. P., Holmes, W. E., & Brivanlou, A. H. (2001). Twisted gastrulation can function as a BMP antagonist. Nature, 410(6827), 483-487. https://doi.org/10.1038/35068583 Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884-i890. https://doi.org/10.1093/bioinformatics/bty560 Dailey, S. C., Kozmikova, I., & Somorjai, I. M. L. (2017). Amphioxus Sp5 is a member of a conserved Specificity Protein complement and is modulated by Wnt/β-catenin signalling. Int J Dev Biol, 61(10-11-12), 723-732. https://doi.org/10.1387/ijdb.170205is Darras, S., Gerhart, J., Terasaki, M., Kirschner, M., & Lowe, C. J. (2011). β-catenin specifies the endomesoderm and defines the posterior organizer of the hemichordate Saccoglossus kowalevskii. Development, 138(5), 959-970. https://doi.org/10.1242/dev.059493 Dobin, A., & Gingeras, T. R. (2015). Mapping RNA-seq Reads with STAR. Curr Protoc Bioinformatics, 51, 11 14 11-11 14 19. https://doi.org/10.1002/0471250953.bi1114s51 Erter, C. E., Wilm, T. P., Basler, N., Wright, C. V. E., & Solnica-Krezel, L. (2001). Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development, 128(18), 3571-3583. https://doi.org/10.1242/dev.128.18.3571 Fagotti, A., Di Rosa, I., Simoncelli, F., Chaponnier, C., Gabbiani, G., & Pascolini, R. (1998). Actin isoforms in amphioxus Branchiostoma lanceolatum. Cell Tissue Res, 292(1), 173-176. https://doi.org/10.1007/s004410051047 Ferrier, D. E., Minguillón, C., Cebrián, C., & Garcia-Fernàndez, J. (2001). Amphioxus Evx genes: implications for the evolution of the Midbrain-Hindbrain Boundary and the chordate tailbud. Dev Biol, 237(2), 270-281. https://doi.org/10.1006/dbio.2001.0375 Garcia-Fernández, J., & Holland, P. W. (1994). Archetypal organization of the amphioxus Hox gene cluster. Nature, 370(6490), 563-566. https://doi.org/10.1038/370563a0 Glardon, S., Holland, L. Z., Gehring, W. J., & Holland, N. D. (1998). Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development, 125(14), 2701-2710. https://doi.org/d Gostling, N. J., & Shimeld, S. M. (2003). Protochordate Zic genes define primitive somite compartments and highlight molecular changes underlying neural crest evolution. Evol Dev, 5(2), 136-144. https://doi.org/10.1046/j.1525-142x.2003.03020.x Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., Robles, M., Talón, M., Dopazo, J., & Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36(10), 3420-3435. https://doi.org/10.1093/nar/gkn176 Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., & Kemler, R. (1995). Lack of β-catenin affects mouse development at gastrulation. Development, 121(11), 3529-3537. https://doi.org/10.1242/dev.121.11.3529 Hall, B. K. (1998). Evolutionary Developmental Biology. In (2nd ed., pp. 78-84, 129-138, 155-160). Springer Netherlands. Heasman, J., Crawford, A., Goldstone, K., Garner-Hamrick, P., Gumbiner, B., McCrea, P., Kintner, C., Noro, C. Y., & Wylie, C. (1994). Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell, 79(5), 791-803. https://doi.org/10.1016/0092-8674(94)90069-8 Holland, L. Z., & Holland, N. D. (2007). A revised fate map for amphioxus and the evolution of axial patterning in chordates. Integrative and Comparative Biology, 47(3), 360-372. https://doi.org/10.1093/icb/icm064 Holland, L. Z., Kene, M., Williams, N. A., & Holland, N. D. (1997). Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development, 124(9), 1723-1732. https://doi.org/10.1242/dev.124.9.1723 Holland, L. Z., & Onai, T. (2012). Early development of cephalochordates (amphioxus). Wiley Interdiscip Rev Dev Biol, 1(2), 167-183. https://doi.org/10.1002/wdev.11 Holland, L. Z., Panfilio, K. A., Chastain, R., Schubert, M., & Holland, N. D. (2005). Nuclear β-catenin promotes non-neural ectoderm and posterior cell fates in amphioxus embryos. Dev Dyn, 233(4), 1430-1443. https://doi.org/10.1002/dvdy.20473 Holland, L. Z., Schubert, M., Holland, N. D., & Neuman, T. (2000). Evolutionary Conservation of the Presumptive Neural Plate Markers AmphiSox1/2/3 and AmphiNeurogenin in the Invertebrate Chordate Amphioxus. Dev. Biol., 226(1), 18-33. https://doi.org/10.1006/dbio.2000.9810 Holland, L. Z., Venkatesh, T. V., Gorlin, A., Bodmer, R., & Holland, N. D. (1998). Characterization and developmental expression of AmphiNk2-2, an NK2 class homeobox gene from Amphioxus. (Phylum Chordataqpslcm@ikd Subphylum Cephalochordata). Dev Genes Evol, 208(2), 100-105. https://doi.org/10.1007/s004270050159 Holland, N. D., Holland, L. Z., & Kozmik, Z. (1995). An amphioxus Pax gene, AmphiPax-1, expressed in embryonic endoderm, but not in mesoderm: implications for the evolution of class I paired box genes. Mol Mar Biol Biotechnol, 4(3), 206-214. Holland, N. D., Panganiban, G., Henyey, E. L., & Holland, L. Z. (1996). Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest. Development, 122(9), 2911-2920. https://doi.org/10.1242/dev.122.9.2911 Holland, N. D., Venkatesh, T. V., Holland, L. Z., Jacobs, D. K., & Bodmer, R. (2003). AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev Biol, 255(1), 128-137. https://doi.org/10.1016/s0012-1606(02)00050-7 Holland, P. W., Garcia-Fernàndez, J., Williams, N. A., & Sidow, A. (1994). Gene duplications and the origins of vertebrate development. Dev Suppl, 125-133. Holland, P. W., Holland, L. Z., Williams, N. A., & Holland, N. D. (1992). An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development, 116(3), 653-661. https://doi.org/10.1242/dev.116.3.653 Holland, P. W., Koschorz, B., Holland, L. Z., & Herrmann, B. G. (1995). Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. Development, 121(12), 4283-4291. https://doi.org/10.1242/dev.121.12.4283 Hudson, C., Kawai, N., Negishi, T., & Yasuo, H. (2013). β-Catenin-driven binary fate specification segregates germ layers in ascidian embryos. Curr Biol, 23(6), 491-495. https://doi.org/10.1016/j.cub.2013.02.005 Huelsken, J., Vogel, R., Brinkmann, V., Erdmann, B., Birchmeier, C., & Birchmeier, W. (2000). Requirement for β-catenin in anterior-posterior axis formation in mice. J Cell Biol, 148(3), 567-578. https://doi.org/10.1083/jcb.148.3.567 Irimia, M., Maeso, I., & Garcia-Fernàndez, J. (2008). Convergent evolution of clustering of Iroquois homeobox genes across metazoans. Mol Biol Evol, 25(8), 1521-1525. https://doi.org/10.1093/molbev/msn109 Jackman, W. R., Langeland, J. A., & Kimmel, C. B. (2000). islet reveals segmentation in the Amphioxus hindbrain homolog. Dev Biol, 220(1), 16-26. https://doi.org/10.1006/dbio.2000.9630 John, L. B., Yoong, S., & Ward, A. C. (2009). Evolution of the Ikaros gene family: implications for the origins of adaptive immunity. J Immunol, 182(8), 4792-4799. https://doi.org/10.4049/jimmunol.0802372 Kemler, R., Hierholzer, A., Kanzler, B., Kuppig, S., Hansen, K., Taketo, M. M., de Vries, W. N., Knowles, B. B., & Solter, D. (2004). Stabilization of β-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development, 131(23), 5817-5824. https://doi.org/10.1242/dev.01458 Kiecker, C., & Niehrs, C. (2001). A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development, 128(21), 4189-4201. https://doi.org/10.1242/dev.128.21.4189 Kim, C. H., Oda, T., Itoh, M., Jiang, D., Artinger, K. B., Chandrasekharappa, S. C., Driever, W., & Chitnis, A. B. (2000). Repressor activity of headless/Tcf3 is essential for vertebrate head formation. Nature, 407(6806), 913-916. https://doi.org/10.1038/35038097 Königshoff, M., & Eickelberg, O. (2010). WNT signaling in lung disease: a failure or a regeneration signal? Am J Respir Cell Mol Biol, 42(1), 21-31. https://doi.org/10.1165/rcmb.2008-0485TR Koopmans, F., van Nierop, P., Andres-Alonso, M., Byrnes, A., Cijsouw, T., Coba, M. P., Cornelisse, L. N., Farrell, R. J., Goldschmidt, H. L., Howrigan, D. P., Hussain, N. K., Imig, C., de Jong, A. P. H., Jung, H., Kohansalnodehi, M., Kramarz, B., Lipstein, N., Lovering, R. C., MacGillavry, H., . . . Verhage, M. (2019). SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 103(2), 217-234.e214. https://doi.org/10.1016/j.neuron.2019.05.002 Kozmik, Z., Holland, L. Z., Schubert, M., Lacalli, T. C., Kreslova, J., Vlcek, C., & Holland, N. D. (2001). Characterization of Amphioxus AmphiVent, an evolutionarily conserved marker for chordate ventral mesoderm. Genesis, 29(4), 172-179. https://doi.org/10.1002/gene.1021 Kozmik, Z., Holland, N. D., Kalousova, A., Paces, J., Schubert, M., & Holland, L. Z. (1999). Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development, 126(6), 1295-1304. https://doi.org/10.1242/dev.126.6.1295 Kozmik, Z., Holland, N. D., Kreslova, J., Oliveri, D., Schubert, M., Jonasova, K., Holland, L. Z., Pestarino, M., Benes, V., & Candiani, S. (2007). Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev Biol, 306(1), 143-159. https://doi.org/10.1016/j.ydbio.2007.03.009 Kozmikova, I., Candiani, S., Fabian, P., Gurska, D., & Kozmik, Z. (2013). Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates. Dev Biol, 382(2), 538-554. https://doi.org/10.1016/j.ydbio.2013.07.021 Kozmikova, I., & Kozmik, Z. (2020). Wnt/β-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer. Elife, 9. https://doi.org/10.7554/eLife.56817 Kozmikova, I., Smolikova, J., Vlcek, C., & Kozmik, Z. (2011). Conservation and Diversification of an Ancestral Chordate Gene Regulatory Network for Dorsoventral Patterning. PLoS One, 6(2), e14650. https://doi.org/10.1371/journal.pone.0014650 Kunick, C., Lauenroth, K., Leost, M., Meijer, L., & Lemcke, T. (2004). 1-Azakenpaullone is a selective inhibitor of glycogen synthase kinase-3 beta. Bioorg Med Chem Lett, 14(2), 413-416. https://doi.org/10.1016/j.bmcl.2003.10.062 Kusakabe, R., Satoh, N., Holland, L. Z., & Kusakabe, T. (1999). Genomic organization and evolution of actin genes in the amphioxus Branchiostoma belcheri and Branchiostoma floridae. Gene, 227(1), 1-10. https://doi.org/10.1016/S0378-1119(98)00608-8 Langeland, J. A., Tomsa, J. M., Jackman, W. R., Jr., & Kimmel, C. B. (1998). An amphioxus snail gene: expression in paraxial mesoderm and neural plate suggests a conserved role in patterning the chordate embryo. Dev Genes Evol, 208(10), 569-577. https://doi.org/10.1007/s004270050216 Le Petillon, Y., Oulion, S., Escande, M. L., Escriva, H., & Bertrand, S. (2013). Identification and expression analysis of BMP signaling inhibitors genes of the DAN family in amphioxus. Gene Exp. Patterns, 13(8), 377-383. https://doi.org/10.1016/j.gep.2013.07.005 Li, G., Liu, X., Xing, C., Zhang, H., Shimeld, S. M., & Wang, Y. (2017). Cerberus-Nodal-Lefty-Pitx signaling cascade controls left-right asymmetry in amphioxus. Proc Natl Acad Sci U S A, 114(14), 3684-3689. https://doi.org/10.1073/pnas.1620519114 Li, K. L., Lu, T. M., & Yu, J. K. (2014). Genome-wide survey and expression analysis of the bHLH-PAS genes in the amphioxus Branchiostoma floridae reveal both conserved and diverged expression patterns between cephalochordates and vertebrates. Evodevo, 5, 20. https://doi.org/10.1186/2041-9139-5-20 Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923-930. https://doi.org/10.1093/bioinformatics/btt656 Lin, H. C., Holland, L. Z., & Holland, N. D. (2006). Expression of the AmphiTcf gene in amphioxus: insights into the evolution of the TCF/LEF gene family during vertebrate evolution. Dev Dyn, 235(12), 3396-3403. https://doi.org/10.1002/dvdy.20971 Lin, Y., Chen, D., Fan, Q., & Zhang, H. (2009). Characterization of SoxB2 and SoxC genes in amphioxus (Branchiostoma belcheri): implications for their evolutionary conservation. Sci China C Life Sci, 52(9), 813-822. https://doi.org/10.1007/s11427-009-0111-7 Liu, P., Wakamiya, M., Shea, M. J., Albrecht, U., Behringer, R. R., & Bradley, A. (1999). Requirement for Wnt3 in vertebrate axis formation. Nat Genet, 22(4), 361-365. https://doi.org/10.1038/11932 Logan, C. Y., Miller, J. R., Ferkowicz, M. J., & McClay, D. R. (1999). Nuclear β-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development, 126(2), 345-357. https://doi.org/10.1242/dev.126.2.345 Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 20, 781-810. https://doi.org/10.1146/annurev.cellbio.20.010403.113126 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8 Lu, T. M., Luo, Y. J., & Yu, J. K. (2012). BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: insights into the evolution of the peripheral sensory system. Development, 139(11), 2020-2030. https://doi.org/10.1242/dev.073833 Luke, G. N., Castro, L. F., McLay, K., Bird, C., Coulson, A., & Holland, P. W. (2003). Dispersal of NK homeobox gene clusters in amphioxus and humans. Proc Natl Acad Sci U S A, 100(9), 5292-5295. https://doi.org/10.1073/pnas.0836141100 Luke, G. N., & Holland, P. W. (1999). Amphioxus type I keratin cDNA and the evolution of intermediate filament genes. J Exp Zool, 285(1), 50-56. https://doi.org/http://doi.org/10.1002/(sici)1097-010x(19990415)285:1<50::aid-jez6>3.0.coqpslcm@ikd2-c Marikawa, Y. (2006). Wnt/β-catenin signaling and body plan formation in mouse embryos. Semin. Cell Dev. Biol., 17(2), 175-184. https://doi.org/10.1016/j.semcdb.2006.04.003 Marlétaz, F., Firbas, P. N., Maeso, I., Tena, J. J., Bogdanovic, O., Perry, M., Wyatt, C. D. R., de la Calle-Mustienes, E., Bertrand, S., Burguera, D., Acemel, R. D., van Heeringen, S. J., Naranjo, S., Herrera-Ubeda, C., Skvortsova, K., Jimenez-Gancedo, S., Aldea, D., Marquez, Y., Buono, L., . . . Irimia, M. (2018). Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature, 564(7734), 64-70. https://doi.org/10.1038/s41586-018-0734-6 Martin, B. L., & Kimelman, D. (2012). Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation. Dev Cell, 22(1), 223-232. https://doi.org/10.1016/j.devcel.2011.11.001 Martindale, M. Q. (2005). The evolution of metazoan axial properties. Nat Rev Genet, 6(12), 917-927. https://doi.org/10.1038/nrg1725 Mazet, F., Masood, S., Luke, G. N., Holland, N. D., & Shimeld, S. M. (2004). Expression of AmphiCoe, an amphioxus COE/EBF gene, in the developing central nervous system and epidermal sensory neurons. Genesis, 38(2), 58-65. https://doi.org/10.1002/gene.20006 Mazet, F., & Shimeld, S. M. (2003). Characterisation of an amphioxus Fringe gene and the evolution of the vertebrate segmentation clock. Dev Genes Evol, 213(10), 505-509. https://doi.org/10.1007/s00427-003-0351-7 McGinnis, S., & Madden, T. L. (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32(suppl_2), W20-W25. https://doi.org/10.1093/nar/gkh435 McGonnell, I. M., Graham, A., Richardson, J., Fish, J. L., Depew, M. J., Dee, C. T., Holland, P. W., & Takahashi, T. (2011). Evolution of the Alx homeobox gene family: parallel retention and independent loss of the vertebrate Alx3 gene. Evol Dev, 13(4), 343-351. https://doi.org/10.1111/j.1525-142X.2011.00489.x Meulemans, D., & Bronner-Fraser, M. (2002). Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns. Development, 129(21), 4953-4962. https://doi.org/10.1242/dev.129.21.4953 Meulemans, D., & Bronner-Fraser, M. (2007). The amphioxus SoxB family: implications for the evolution of vertebrate placodes. Int J Biol Sci, 3(6), 356-364. https://doi.org/10.7150/ijbs.3.356 Meulemans, D., & Bronner-Fraser, M. (2007). Insights from Amphioxus into the Evolution of Vertebrate Cartilage. PLoS One, 2(8), e787. https://doi.org/10.1371/journal.pone.0000787 Minguillón, C., Ferrier, D. E., Cebrián, C., & Garcia-Fernàndez, J. (2002). Gene duplications in the prototypical cephalochordate amphioxus. Gene, 287(1-2), 121-128. https://doi.org/10.1016/s0378-1119(01)00828-9 Minguillon, C., Gibson-Brown, J. J., & Logan, M. P. (2009). Tbx4/5 gene duplication and the origin of vertebrate paired appendages. Proc Natl Acad Sci U S A, 106(51), 21726-21730. https://doi.org/10.1073/pnas.0910153106 Minguillón, C., Jiménez-Delgado, S., Panopoulou, G., & Garcia-Fernàndez, J. (2003). The amphioxus Hairy family: differential fate after duplication. Development, 130(24), 5903-5914. https://doi.org/10.1242/dev.00811 Moon, R. T., Kohn, A. D., Ferrari, G. V. D., & Kaykas, A. (2004). WNT and β-catenin signalling: diseases and therapies. Nature Reviews Genetics, 5(9), 691-701. https://doi.org/10.1038/nrg1427 Mukhopadhyay, M., Shtrom, S., Rodriguez-Esteban, C., Chen, L., Tsukui, T., Gomer, L., Dorward, D. W., Glinka, A., Grinberg, A., Huang, S. P., Niehrs, C., Belmonte, J. C. I., & Westphal, H. (2001). Dickkopf1 Is Required for Embryonic Head Induction and Limb Morphogenesis in the Mouse. Dev. Cell, 1(3), 423-434. https://doi.org/10.1016/S1534-5807(01)00041-7 Neidert, A. H., Panopoulou, G., & Langeland, J. A. (2000). Amphioxus goosecoid and the evolution of the head organizer and prechordal plate. Evol Dev, 2(6), 303-310. https://doi.org/10.1046/j.1525-142x.2000.00073.x Onai, T. (2019). Canonical Wnt/β-catenin and Notch signaling regulate animal/vegetal axial patterning in the cephalochordate amphioxus. Evol Dev, 21(1), 31-43. https://doi.org/10.1111/ede.12273 Onai, T., Lin, H.-C., Schubert, M., Koop, D., Osborne, P. W., Alvarez, S., Alvarez, R., Holland, N. D., & Holland, L. Z. (2009). Retinoic acid and Wnt/β-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus. Dev. Biol., 332(2), 223-233. https://doi.org/10.1016/j.ydbio.2009.05.571 Onai, T., Takai, A., Setiamarga, D. H., & Holland, L. Z. (2012). Essential role of Dkk3 for head formation by inhibiting Wnt/β-catenin and Nodal/Vg1 signaling pathways in the basal chordate amphioxus. Evol Dev, 14(4), 338-350. https://doi.org/10.1111/j.1525-142X.2012.00552.x Onai, T., Yu, J.-K., Blitz, I. L., Cho, K. W. Y., & Holland, L. Z. (2010). Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev. Biol., 344(1), 377-389. https://doi.org/10.1016/j.ydbio.2010.05.016 Onimaru, K., Shoguchi, E., Kuratani, S., & Tanaka, M. (2011). Development and evolution of the lateral plate mesoderm: comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Dev Biol, 359(1), 124-136. https://doi.org/10.1016/j.ydbio.2011.08.003 Ota, C., Baarsma, H. A., Wagner, D. E., Hilgendorff, A., & Konigshoff, M. (2016). Linking bronchopulmonary dysplasia to adult chronic lung diseases: role of WNT signaling. Mol Cell Pediatr, 3(1), 34. https://doi.org/10.1186/s40348-016-0062-6 Panopoulou, G. D., Clark, M. D., Holland, L. Z., Lehrach, H., & Holland, N. D. (1998). AmphiBMP2/4, an amphioxus bone morphogenetic protein closely related to Drosophila decapentaplegic and vertebrate BMP2 and BMP4: insights into evolution of dorsoventral axis specification. Dev Dyn, 213(1), 130-139. https://doi.org/10.1002/(sici)1097-0177(199809)213:1 Pascual-Anaya, J., Adachi, N., Alvarez, S., Kuratani, S., D''Aniello, S., & Garcia-Fernàndez, J. (2012). Broken colinearity of the amphioxus Hox cluster. Evodevo, 3(1), 28. https://doi.org/10.1186/2041-9139-3-28 Pascual-Anaya, J., Albuixech-Crespo, B., Somorjai, I. M., Carmona, R., Oisi, Y., Alvarez, S., Kuratani, S., Muñoz-Chápuli, R., & Garcia-Fernàndez, J. (2013). The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Dev Biol, 375(2), 182-192. https://doi.org/10.1016/j.ydbio.2012.11.015 Petersen, C. P., & Reddien, P. W. (2009). Wnt signaling and the polarity of the primary body axis. Cell, 139(6), 1056-1068. https://doi.org/10.1016/j.cell.2009.11.035 Putnam, N. H., Butts, T., Ferrier, D. E. K., Furlong, R. F., Hellsten, U., Kawashima, T., Robinson-Rechavi, M., Shoguchi, E., Terry, A., Yu, J.-K., Benito-Gutiérrez, E. l., Dubchak, I., Garcia-Fernàndez, J., Gibson-Brown, J. J., Grigoriev, I. V., Horton, A. C., de Jong, P. J., Jurka, J., Kapitonov, V. V., . . . Rokhsar, D. S. (2008). The amphioxus genome and the evolution of the chordate karyotype. Nature, 453(7198), 1064-1071. https://doi.org/10.1038/nature06967 Range, R. (2014). Specification and positioning of the anterior neuroectoderm in deuterostome embryos. Genesis, 52(3), 222-234. https://doi.org/10.1002/dvg.22759 Rhinn, M., Lun, K., Luz, M., Werner, M., & Brand, M. (2005). Positioning of the midbrain-hindbrain boundary organizer through global posteriorization of the neuroectoderm mediated by Wnt8 signaling. Development, 132(6), 1261-1272. https://doi.org/10.1242/dev.01685 Ruvinsky, I., Silver, L. M., & Gibson-Brown, J. J. (2000). Phylogenetic analysis of T-Box genes demonstrates the importance of amphioxus for understanding evolution of the vertebrate genome. Genetics, 156(3), 1249-1257. https://doi.org/10.1093/genetics/156.3.1249 Satoh, G., Wang, Y., Zhang, P., & Satoh, N. (2001). Early development of amphioxus nervous system with special reference to segmental cell organization and putative sensory cell precursors: a study based on the expression of pan-neuronal marker gene Hu/elav. J Exp Zool, 291(4), 354-364. https://doi.org/10.1002/jez.1134 Schubert, M., Holland, L. Z., & Holland, N. D. (2000a). Characterization of an amphioxus wnt gene, AmphiWnt11, with possible roles in myogenesis and tail outgrowth. Genesis, 27(1), 1-5. https://doi.org/10.1002/1526-968X(200005)27:1<1::AID-GENE10>3.0.COqpslcm@ikd2-3 Schubert, M., Holland, L. Z., & Holland, N. D. (2000b). Characterization of two amphioxus Wnt genes (AmphiWnt4 and AmphiWnt7b) with early expression in the developing central nervous system. Dev Dyn, 217(2), 205-215. https://doi.org/10.1002/(sici)1097-0177(200002)217:2<205::Aid-dvdy7>3.0.Coqpslcm@ikd2-f Schubert, M., Holland, L. Z., Holland, N. D., & Jacobs, D. K. (2000). A phylogenetic tree of the Wnt genes based on all available full-length sequences, including five from the cephalochordate amphioxus. Mol Biol Evol, 17(12), 1896-1903. https://doi.org/10.1093/oxfordjournals.molbev.a026291 Schubert, M., Holland, L. Z., Panopoulou, G. D., Lehrach, H., & Holland, N. D. (2000). Characterization of amphioxus AmphiWnt8: insights into the evolution of patterning of the embryonic dorsoventral axis. Evol Dev, 2(2), 85-92. https://doi.org/10.1046/j.1525-142x.2000.00047.x Schubert, M., Holland, L. Z., Stokes, M. D., & Holland, N. D. (2001). Three amphioxus Wnt genes (AmphiWnt3, AmphiWnt5, and AmphiWnt6) associated with the tail bud: the evolution of somitogenesis in chordates. Dev Biol, 240(1), 262-273. https://doi.org/10.1006/dbio.2001.0460 Schubert, M., Meulemans, D., Bronner-Fraser, M., Holland, L. Z., & Holland, N. D. (2003). Differential mesodermal expression of two amphioxus MyoD family members (AmphiMRF1 and AmphiMRF2). Gene Exp. Patterns, 3(2), 199-202. https://doi.org/10.1016/s1567-133x(02)00099-6 Seal, R. L., Braschi, B., Gray, K., Jones, T. E. M., Tweedie, S., Haim-Vilmovsky, L., & Bruford, E. A. (2023). Genenames.org: the HGNC resources in 2023. Nucleic Acids Res, 51(D1), D1003-d1009. https://doi.org/10.1093/nar/gkac888 Shimeld, S. (2000). An amphioxus netrin gene is expressed in midline structures during embryonic and larval development. Dev Genes Evol, 210(7), 337-344. https://doi.org/10.1007/s004270000073 Shimeld, S. M. (1997). Characterisation of amphioxus HNF-3 genes: conserved expression in the notochord and floor plate. Dev Biol, 183(1), 74-85. https://doi.org/10.1006/dbio.1996.8481 Shimizu, T., Bae, Y.-K., Muraoka, O., & Hibi, M. (2005). Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev. Biol., 279(1), 125-141. https://doi.org/10.1016/j.ydbio.2004.12.007 Sokol, S. Y. (1993). Mesoderm formation in Xenopus ectodermal explants overexpressing Xwnt8: evidence for a cooperating signal reaching the animal pole by gastrulation. Development, 118(4), 1335-1342. https://doi.org/10.1242/dev.118.4.1335 Stricker, S., Poustka, A. J., Wiecha, U., Stiege, A., Hecht, J., Panopoulou, G., Vilcinskas, A., Mundlos, S., & Seitz, V. (2003). A single amphioxus and sea urchin runt-gene suggests that runt-gene duplications occurred in early chordate evolution. Dev Comp Immunol, 27(8), 673-684. https://doi.org/10.1016/s0145-305x(03)00037-5 Strutt, D. (2003). Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development, 130(19), 4501-4513. https://doi.org/10.1242/dev.00695 Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS, 102(43), 15545-15550. https://doi.org/10.1073/pnas.0506580102 Sun, H., Peng, C.-f. J., Wang, L., Feng, H., & Wikramanayake, A. H. (2021). An early global role for Axin is required for correct patterning of the anterior-posterior axis in the sea urchin embryo. Development, 148(7). https://doi.org/10.1242/dev.191197 Tendeng, C., & Houart, C. (2006). Cloning and embryonic expression of five distinct sfrp genes in the zebrafish Danio rerio. Gene Exp. Patterns, 6(8), 761-771. https://doi.org/10.1016/j.modgep.2006.01.006 Toresson, H., Martinez-Barbera, J. P., Bardsley, A., Caubit, X., & Krauss, S. (1998). Conservation of BF-1 expression in amphioxus and zebrafish suggests evolutionary ancestry of anterior cell types that contribute to the vertebrate telencephalon. Dev Genes Evol, 208(8), 431-439. https://doi.org/10.1007/s004270050200 Veeman, M. T., Axelrod, J. D., & Moon, R. T. (2003). A Second Canon: Functions and Mechanisms of β-Catenin-Independent Wnt Signaling. Dev. Cell, 5(3), 367-377. https://doi.org/10.1016/S1534-5807(03)00266-1 Venkatesh, T. V., Holland, N. D., Holland, L. Z., Su, M. T., & Bodmer, R. (1999). Sequence and developmental expression of amphioxus AmphiNk2-1: insights into the evolutionary origin of the vertebrate thyroid gland and forebrain. Dev Genes Evol, 209(4), 254-259. https://doi.org/10.1007/s004270050250 Wada, H., Garcia-Fernàndez, J., & Holland, P. W. (1999). Colinear and segmental expression of amphioxus Hox genes. Dev Biol, 213(1), 131-141. https://doi.org/10.1006/dbio.1999.9369 Wang, J., Li, G., Qian, G. H., Hua, J. H., & Wang, Y. Q. (2016). Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway. Dongwuxue Yanjiu, 37(3), 136-143. https://doi.org/10.13918/j.issn.2095-8137.2016.3.136 Weitzel, H. E., Illies, M. R., Byrum, C. A., Xu, R., Wikramanayake, A. H., & Ettensohn, C. A. (2004). Differential stability of β-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development, 131(12), 2947-2956. https://doi.org/10.1242/dev.01152 Wikramanayake, A. H., Huang, L., & Klein, W. H. (1998). β-catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo. PNAS, 95(16), 9343-9348. https://doi.org/doi:10.1073/pnas.95.16.9343 Williams, N. A., & Holland, P. W. (1998). Gene and domain duplication in the chordate Otx gene family: insights from amphioxus Otx. Mol Biol Evol, 15(5), 600-607. https://doi.org/10.1093/oxfordjournals.molbev.a025961 Williams, N. A., & Holland, P. W. (2000). An amphioxus Emx homeobox gene reveals duplication during vertebrate evolution. Mol Biol Evol, 17(10), 1520-1528. https://doi.org/10.1093/oxfordjournals.molbev.a026251 Xing, C., Pan, R., Hu, G., Liu, X., Wang, Y., & Li, G. (2021). Pitx controls amphioxus asymmetric morphogenesis by promoting left-side development and repressing right-side formation. BMC Biology, 19(1), 166. https://doi.org/10.1186/s12915-021-01095-0 Yasui, K., Zhang, S. C., Uemura, M., Aizawa, S., & Ueki, T. (1998). Expression of a twist-related gene, Bbtwist, during the development of a lancelet species and its relation to cephalochordate anterior structures. Dev Biol, 195(1), 49-59. https://doi.org/10.1006/dbio.1997.8834 Yong, L. W., Lu, T. M., Tung, C. H., Chiou, R. J., Li, K. L., & Yu, J. K. (2021). Somite Compartments in Amphioxus and Its Implications on the Evolution of the Vertebrate Skeletal Tissues. Front Cell Dev Biol, 9, 607057. https://doi.org/10.3389/fcell.2021.607057 Yu, J. K., & Holland, L. Z. (2009). Cephalochordates (amphioxus or lancelets): a model for understanding the evolution of chordate characters. Cold Spring Harb Protoc, 2009(9), pdb.emo130. https://doi.org/10.1101/pdb.emo130 Yu, J. K., Holland, L. Z., & Holland, N. D. (2002a). An amphioxus nodal gene (AmphiNodal) with early symmetrical expression in the organizer and mesoderm and later asymmetrical expression associated with left-right axis formation. Evol Dev, 4(6), 418-425. https://doi.org/10.1046/j.1525-142x.2002.02030.x Yu, J. K., Holland, N. D., & Holland, L. Z. (2002b). An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution. Dev Dyn, 225(3), 289-297. https://doi.org/10.1002/dvdy.10173 Yu, J. K., Mazet, F., Chen, Y. T., Huang, S. W., Jung, K. C., & Shimeld, S. M. (2008). The Fox genes of Branchiostoma floridae. Dev Genes Evol, 218(11-12), 629-638. https://doi.org/10.1007/s00427-008-0229-9 Yu, J. K., Satou, Y., Holland, N. D., Shin, I. T., Kohara, Y., Satoh, N., Bronner-Fraser, M., & Holland, L. Z. (2007). Axial patterning in cephalochordates and the evolution of the organizer. Nature, 445(7128), 613-617. https://doi.org/10.1038/nature05472 Yu, X., Li, J., Liu, H., Li, X., Chen, S., Zhang, H., & Xu, A. (2011). Identification and expression of amphioxus AmphiSmad1/5/8 and AmphiSmad4. Sci. China Life Sci., 54(3), 220-226. https://doi.org/10.1007/s11427-011-4136-3 Yuan, L., Wang, Y., & Li, G. (2020). Differential expression pattern of two Brachyury genes in amphioxus embryos. Gene Exp. Patterns, 38, 119152. https://doi.org/10.1016/j.gep.2020.119152 Zhang, Y. J., & Mao, B. Y. (2009). Developmental Expression of an Amphioxus (Branchiostoma belcheri) Gene Encoding a GATA Transcription Factor. Zoological Research, 30(2), 137. https://doi.org/10.3724/sp.J.1141.2009.02137 Zhang, Y. J., & Mao, B. Y. (2010). Embryonic expression and evolutionary analysis of the amphioxus Dickkopf and Kremen family genes. J Genet Genomics, 37(9), 637-645. https://doi.org/10.1016/S1673-8527(09)60082-5 Zhou, M., Yan, J., Ma, Z., Zhou, Y., Abbood, N. N., Liu, J., Su, L., Jia, H., & Guo, A. Y. (2012). Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events. PLoS One, 7(7), e40649. https://doi.org/10.1371/journal.pone.0040649 Zinski, J., Tajer, B., & Mullins, M. C. (2018). TGF-β Family Signaling in Early Vertebrate Development. Cold Spring Harb Perspect Biol, 10(6). https://doi.org/10.1101/cshperspect.a033274 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92126 | - |
| dc.description.abstract | 訊息傳遞路徑在基因調控中扮演關鍵的角色,進而影響胚胎各胚層的分化與發育。在後生動物中,Wnt/β-catenin訊息傳遞路徑決定體軸的調控以及胚層的分化。先前研究指出,若在受精後的文昌魚胚胎中過度啟動Wnt/β-catenin訊息傳遞路徑會使中胚層和內胚層擴張,並使外胚層消失。然而在此過程中整體基因的表現以及變化仍然未知。透過核糖核酸定序,我們分析了文昌魚胚胎發育過程中過度啟動Wnt/β-catenin訊息傳遞路徑對下游基因的影響。我們使用1-azakenpaullone(GSK-3β的小分子抑制劑)在胚胎一細胞時期到神經胚期(neurula stage)過度啟動整顆胚胎的Wnt/β-catenin訊息傳遞路徑。我們發現,中胚層與內胚層的標誌基因(marker gene)受到正調控,而外胚層的標誌基因則受到負調控。在基因集富集分析(Gene Ontology enrichment analysis) 中發現受到過度啟動Wnt/β-catenin訊息傳遞路徑影響的基因與Wnt、BMP、Nodal、FGF和Notch等訊息傳遞路徑相關;而受到負調控的基因則與外胚層的纖毛和神經元等組織相關,暗示外胚層的組織分化受到了抑制。我們觀察到,在胚胎發育過程中,內胚層和中胚層的標誌基因擴張,而外胚層的標誌基因則消失。然而,在部分胚胎中,中胚層與內胚層的基因並未表現,暗示在過度啟動Wnt/β-catenin訊息傳遞路徑後,中胚層與內胚層的形成可能受到其他訊息傳遞路徑的調控。本研究證實在早期胚胎發育期間過度啟動Wnt/β-catenin訊息傳遞路徑會影響許多調控體軸與胚層的訊息傳遞路徑,並使中胚層與內胚層擴張和外胚層消失。 | zh_TW |
| dc.description.abstract | Signaling pathways comprise an essential part of developmental gene regulatory networks. The activities of signaling pathways lead to changes of the gene regulatory states, and consequently determine different cell fates in particular areas within a developing embryo. In a wide range of metazoan animals, the canonical Wnt/β-catenin pathway has been implicated in playing important functions for defining the initial axes and specifying different germ layers of the embryo. Previous studies showed that Wnt/β-catenin signaling is active in the nuclei of vegetal hemisphere in early amphioxus embryos. Overactivation of Wnt/β-catenin signaling greatly expands mesoderm and endoderm at the expense of ectoderm. However, changes of global gene expression profile after overactivation of Wnt/β-catenin signaling pathway during amphioxus embryogenesis remain unclear. Here we use RNA-seq approach to globally examine developmental genes downstream of Wnt/β-catenin signaling pathway during amphioxus embryogenesis. We used 1-azakenpaullone, which is a small molecule inhibitor of GSK-3β, to globally activate Wnt/β-catenin signaling pathway in amphioxus embryos at one-cell stage to early neurula stage. Our results showed that germ layer marker genes in mesoderm and endoderm were up-regulated, while ectoderm marker genes were down-regulated. Genes involved in Wnt, BMP, Nodal, FGF and Notch signaling pathways were influenced; while genes related to ectoderm derived structures such as cilia and neurons were down-regulated, signifying ectoderm loss. Overactivation of Wnt/β-catenin signaling led to mesoderm and endoderm expansion, accompanied by the loss of ectoderm. However, in some inhibitor-treated embryos, mesoderm and endoderm genes were not expressed, suggesting that the formation of these germ layers might be regulated by other signaling pathways following the overactivation of the Wnt/β-catenin pathway. Overactivation of Wnt/β-catenin signaling pathway during early embryo development influenced genes in Wnt, BMP, Nodal, FGF and Notch signaling pathways, and led to mesoderm and endoderm expansion at the expense of ectoderm. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:24:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-05T16:24:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 II
摘要 III Abstract IV Table of Contents VI List of Figures VIII List of Tables XI Introduction 1 Cephalochordates are early branching groups of chordates 1 Signaling pathways regulate embryo development and influence germ layers determination 2 Diverse roles of Wnt/β-Catenin signaling in embryonic development across metazoan 3 Amphioxus as the basal chordate to answer evolution of developmental mechanism 6 Materials and methods 9 Animals, embryos, and drug treatments 9 RNA extraction and next generation sequencing (NGS) 9 Sequence trimming 10 Sequence alignment and expression quantification 10 Sample variation examination and differentially expressed gene selection 11 Over Representation Analysis 11 Gene Set Enrichment Analysis (GSEA) 11 Whole-mount in situ hybridization 13 Annotation reference construction and gene name assignment 15 Results 19 Transcriptome alignment and expression quantification 19 Azakenpaullone treatment influenced mRNA expression in the amphioxus embryo 19 Differential gene expression analysis 20 Gene set enrichment analysis 22 Examine gene expression patterns of germ layer marker genes by whole-mount in situ hybridization 23 Discussion 28 Global activation of Wnt/β-catenin signaling expands mesoderm and endoderm at the expense of ectoderm 28 Genes involved in BMP, Nodal, Notch, Wnt and FGF signaling pathway were differentially expressed 31 References 89 | - |
| dc.language.iso | en | - |
| dc.subject | Wnt/β-catenin訊息傳遞路徑 | zh_TW |
| dc.subject | 文昌魚 | zh_TW |
| dc.subject | 胚胎發育 | zh_TW |
| dc.subject | 胚層調控 | zh_TW |
| dc.subject | 發育生物學 | zh_TW |
| dc.subject | 原位雜合技術 | zh_TW |
| dc.subject | 核糖核酸定序 | zh_TW |
| dc.subject | Amphioxus | en |
| dc.subject | RNA sequencing | en |
| dc.subject | Whole-mount in situ hybridization | en |
| dc.subject | Wnt/β-catenin signaling pathway | en |
| dc.subject | Developmental biology | en |
| dc.subject | Germ layer determination | en |
| dc.subject | Embryogenesis | en |
| dc.title | Wnt/β-catenin訊息傳遞路徑對文昌魚胚胎發育之影響 | zh_TW |
| dc.title | The role of Wnt/β-catenin signaling pathway in amphioxus embryonic development | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 游智凱;呂在明 | zh_TW |
| dc.contributor.coadvisor | Jr-Kai Yu;Tsai-Ming Lu | en |
| dc.contributor.oralexamcommittee | 郭典翰;蘇怡璇 | zh_TW |
| dc.contributor.oralexamcommittee | Dian-Han Kuo;Yi-Hsien Su | en |
| dc.subject.keyword | Wnt/β-catenin訊息傳遞路徑,文昌魚,胚胎發育,胚層調控,發育生物學,原位雜合技術,核糖核酸定序, | zh_TW |
| dc.subject.keyword | Wnt/β-catenin signaling pathway,Amphioxus,Embryogenesis,Germ layer determination,Developmental biology,Whole-mount in situ hybridization,RNA sequencing, | en |
| dc.relation.page | 103 | - |
| dc.identifier.doi | 10.6342/NTU202400659 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-18 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| Appears in Collections: | 漁業科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-1.pdf | 7.9 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
