請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92125
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林俊全 | zh_TW |
dc.contributor.advisor | Jiun-Chuan Lin | en |
dc.contributor.author | 巫鎧宇 | zh_TW |
dc.contributor.author | Kai-Yu Wu | en |
dc.date.accessioned | 2024-03-05T16:24:16Z | - |
dc.date.available | 2024-03-06 | - |
dc.date.copyright | 2024-03-05 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-16 | - |
dc.identifier.citation | 內政部營建署 (2016)。「海岸資源調查及資料庫建立」案。
內政部營建署 (2020)。建立歷年海岸地區衛星影像資料庫及海岸線變化分析。 王鑫 (2004)。臺灣的特殊地景:北臺灣。臺灣地理百科 40,遠足出版社,臺北。 石再添、張瑞津、林雪美、張政亮、連偵欽 (1992)。台灣北部海岸沙丘之地形學研究。國立臺灣師範大學地理研究報告,第18期,第193-240頁 行政院 (1987)。台灣沿海地區自然環境保護計畫 (II) -北海岸、北門、尖山、九棚、好美寮,行政院76.1.23台七十六內字第一六一六號函。 江昭蓉 (2018)。擺動的吉貝沙嘴-應用無人機監測沙岸地形變遷。國立彰化師範大學地理學系碩士論文。 宋芷萱 (2014)。颱風侵襲下東沙島海岸地形變遷數值研究。弘光科技大學環境工程系碩士論文。 李其臻 (2018)。颱風特性對海岸地形影響之研究-以鹽寮海濱公園海岸為例。國立臺灣海洋大學河海工程學系碩士論文。 冷偉、範代讀 (2014)。聯用篩析法與雷射法進行粒度接序分析的界點選擇。沉積學報,第32期,第478-484頁。 林宗儀 (2012)。基本地質調查:臺灣海岸變遷監測分析總報告,經濟部中央地質調查所報告。 林宗儀、劉景毅 (2018)。網仔寮汕沙丘變遷及防護策略。第40屆海洋工程研討會論文集,第118頁-123頁。 南山人壽慈善基金會 (2013)。南山人壽守護台灣海岸線行動-2012~2013固沙護灘軌跡。 洪奕星、遲建業、曾信勝、黃添祈 (1998)。臺灣北部海岸變遷研究I,經濟部中央地質調查所研究報告。 洪俊維 (1999)。波浪碎波衰減之探討。逢甲大學土木及水利工程研究所碩士論文。 張恩維 (2017)。應用無人載具於現地波浪溯升的初步研究。國立成功大學土木工程學系碩士論文。 張國楨 (2020)。無人載具多時序高解析空間資訊擷取技術整合、精度評估及應用。行政院農業委員會水土保持局109 年度創新研究計畫。 許泰文、林宗儀、江文山、錢樺、藍元志 (2017)。臺灣氣候變遷科學報告,第十章,海岸與離島,第543-616頁。 連偵欽 (1992)。臺灣北部海岸福隆和富貴角地區沙丘之研究。國立臺灣師範大學地理研究所。 黃思涵 (2015)。從波高與水位聯合發生機率評估颱風對海岸衝擊的強度。國立臺灣海洋大學河海工程學系碩士論文。 經濟部水利署 (2002)。台灣海岸防護對策研究。 蔣士朋 (2017)。UAV影像應用於沙灘地形測繪之研究。國立臺灣海洋大學碩士論文。 戴義欽 (2013)。詭譎多變的近岸水流,科學發展,第488期,第22-27頁。 謝幸宜 (2011)。以自率光束法提升四旋翼 UAV 航拍影像之定位精度。國立政治大學地政學系碩士論文。 藍元志、許泰文、李怡婷、辛智勇、周玉娟、黃文舜 (2007) 。海岸緩衝區與近岸生態棲息地之關係。第二十九屆海洋工程研討會論文集,第721-726 頁。 Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., & Lato, M. J. (2014). Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39(1), 80–97. Aguilar, E., Peterson, T., Obando, P., Frutos, R., Retana, J., Solera, M., Soley, J., González-García, I., Araujo, R., Santos, A., Valle, V., & Brunet, M. (2005). Changes in precipitation and temperature extremes in Central America and northern South America, 1961-2003. Journal of Geophysical Research, 110. Alho, P., Kukko, A., Hyyppä, H., Kaartinen, H., Hyyppä, J., & Jaakkola, A. (2009). Application of boat-based laser scanning for river survey. Earth Surface Processes and Landforms, 34, 1831–1838. Ali, S., Darsan, J., & Wilson, M. (2017). Cusp morphodynamics in a micro-tidal exposed beach. Journal of Coastal Conservation, 21(6), 777–788. Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3), 138–146. Baptista, P., Bastos, M., Bernardes, C., Cunha, T., & Dias, J. (2008). Monitoring Sandy Shores Morphologies by DGPS—A Practical Tool to Generate Digital Elevation Models. Journal of Coastal Research, 24, 1516–1528. Barber, D., & Mills, J. (2012). VEHICLE BASED WAVEFORM LASER SCANNING IN A COASTAL ENVIRONMENT. Blanchard, S. D., Rogan, J., & Woodcock, D. W. (2010a). Geomorphic Change Analysis Using ASTER and SRTM Digital Elevation Models in Central Massachusetts, USA. GIScience & Remote Sensing, 47(1), 1–24. Blanchard, S. D., Rogan, J., & Woodcock, D. W. (2010b). Geomorphic Change Analysis Using ASTER and SRTM Digital Elevation Models in Central Massachusetts, USA. GIScience & Remote Sensing, 47(1), 1–24. Boak, E., & Turner, I. (2005). Shoreline Definition and Detection: A Review. Journal of Coastal Research Journal of Coastal Research, 21, 688–703. Boehler, W. (2005). Investigating Laser Scanner Accuracy. Brasington, J., Vericat, D., & Rychkov, I. (2012). Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resources Research, 48, 11519. Brunier, G., Fleury, J., Anthony, E., Pothin, V., Vella, C., Dussouillez, P., Gardel, A., & Michaud, E. (2016). Structure-from-Motion photogrammetry for high-resolution coastal and fluvial geomorphic surveys. Géomorphologie Relief Processus Environnement, 22. Buckley, S. J., Howell, J. A., Enge, H. D., & Kurz, T. H. (2008). Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165(3), 625–638. Buscombe, D., & Masselink, G. (2006). Concepts in gravel beach dynamics. Earth-Science Reviews, 79, 33–52. Carter, C. H., & E. Guy, D. (1988). Coastal erosion: Processes, timing and magnitudes at the bluff toe. Marine Geology, 84(1), 1–17. Chen, C.-H., & Wu, Y.-J. (1971). Volcanic geology of the Tatun Geothermal Area, northern Taiwan. Proceedings of the Geological Society of China, 14, 5–20. Chien, L.-K., Tseng, W.-C., Chang, C.-H., & Hsu, C.-H. (2012). A study of ocean zoning and sustainable management by GIS in Taiwan. Ocean & Coastal Management, 69, 35–49. Coco, G., Burnet, T. K., Werner, B. T., & Elgar, S. (2004). The role of tides in beach cusp development. Journal of Geophysical Research: Oceans, 109(C4). Cook, K. L. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195–208. Cooper, J. A. G. (1994). Sedimentary processes in the river-dominated Mvoti estuary, South Africa. Geomorphology, 9(4), 271–300. Cowell, P. J., Roy, P. S., & Jones, R. A. (1992). Shoreface translation model: computer simulation of coastal-sand-body response to sea level rise. Mathematics and Computers in Simulation, 33, 603–608. Dare, S. A. S., Barnes, S.-J., Beaudoin, G., Méric, J., Boutroy, E., & Potvin-Doucet, C. (2014). Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49(7), 785–796. Davidson-Arnott, R. (2010). Introduction to coastal processes and geomorphology [Book]. Cambridge University Press. Dissanayake, P., Brown, J., Wisse, P., & Karunarathna, H. (2015). Effects of storm clustering on beach/dune evolution. Marine Geology, 370, 63–75. Emery, K. O. (1961). A Simple Method of Measuring Beach Profiles. Limnology and Oceanography, 6(1), 90–93. Finkl, C. W. (2016). Beach Processes. In M. and P. S. and T. Jö. Harff Jan and Meschede (Ed.), Encyclopedia of Marine Geosciences (pp. 47–54). Springer Netherlands. Folk, R. L., & Ward, W. C. (1957). Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1), 3–26. Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., & Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38(4), 421–430. Franceschi, M., Teza, G., Preto, N., Pesci, A., Galgaro, A., & Girardi, S. (2009). Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6), 522–528. Grellier, S., Kemp, J., Janeau, J.-L., Florsch, N., Ward, D., Barot, S., Podwojewski, P., Lorentz, S., & Valentin, C. (2012). The indirect impact of encroaching trees on gully extension: A 64year study in a sub-humid grassland of South Africa. CATENA, 98, 110–119. Harley, M. D., Turner, I. L., Short, A. D., & Ranasinghe, R. (2011). Assessment and integration of conventional, RTK-GPS and image-derived beach survey methods for daily to decadal coastal monitoring. Coastal Engineering, 58(2), 194–205. Hart, Evan & Mills, Hugh & Li, Peter. (2017). Measuring erosion rates on exposed limestone residuum using erosion pins: a 10-year record. Physical Geography, 38(6), 541–555. Hohenthal, J., Alho, P., Hyyppä, J., & Hyyppä, H. (2011). Laser scanning applications in fluvial studies. Progress in Physical Geography, 35, 782–809. Hugenholtz, C. H., Whitehead, K., Brown, O. W., Barchyn, T. E., Moorman, B. J., LeClair, A., Riddell, K., & Hamilton, T. (2013). Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model. Geomorphology, 194, 16–24. Ivamy, M., & Kench, P. (2006). Hydrodynamics and morphological adjustment of a mixed sand and gravel beach, Torere, Bay of Plenty, New Zealand. Marine Geology - MAR GEOLOGY, 228, 137–152. Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R., & Pedrazzini, A. (2012). Use of LIDAR in landslide investigations: a review. Natural Hazards, 61(1), 5–28. Jalonen, J., Järvelä, J., Virtanen, J.-P., Vaaja, M., Kurkela, M., & Hyyppä, H. (2015). Determining Characteristic Vegetation Areas by Terrestrial Laser Scanning for Floodplain Flow Modeling. Water, 7(2), 420–437. James, L. A., Hodgson, M. E., Ghoshal, S., & Latiolais, M. M. (2012). Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis. Geomorphology, 137(1), 181–198. James, M. R., & Robson, S. (2014). Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surface Processes and Landforms, 39(10), 1413–1420. Kaliraj, S., Chandrasekar, N., & Ramachandran, K. K. (2017a). Mapping of coastal landforms and volumetric change analysis in the south west coast of Kanyakumari, South India using remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 265–282. Kaliraj, S., Chandrasekar, N., & Ramachandran, K. K. (2017b). Mapping of coastal landforms and volumetric change analysis in the south west coast of Kanyakumari, South India using remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 265–282. Kamphuis, J. W. (1991). Alongshore Sediment Transport Rate. Journal of Waterway, Port, Coastal, and Ocean Engineering, 117(6), 624–640. Koci, J., Jarihani, B., Leon, J., Sidle, R., Wilkinson, S., & Bartley, R. (2017). Assessment of UAV and Ground-Based Structure from Motion with Multi-View Stereo Photogrammetry in a Gullied Savanna Catchment. ISPRS International Journal of Geo-Information, 6, 328. Komar, P. D. (1998). Beach Processes and Sedimentation (2nd ed.). Prentice-Hall. Kukko, A., Kaartinen, H., Hyyppä, J., & Chen, Y. (2012). Multiplatform Mobile Laser Scanning: Usability and Performance. Sensors, 12(9), 11712–11733. Lejot, J., Delacourt, C., Piégay, H., Fournier, T., Trémélo, M.-L., & Allemand, P. (2007). Very high spatial resolution imagery for channel bathymetry and topography from an unmanned mapping controlled platform. Earth Surface Processes and Landforms, 32(11), 1705–1725. Lichti, D. D. (2007). Error modelling, calibration and analysis of an AM–CW terrestrial laser scanner system. ISPRS Journal of Photogrammetry and Remote Sensing, 61(5), 307–324. Lu, C.-H., & Chyi, S. (2020). Using UAV-SfM to monitor the dynamic evolution of a beach on Penghu Islands. Terrestrial Atmospheric and Oceanic Sciences, 31, 283–293. Maillet, G. M., Vella, C., Berné, S., Friend, P. L., Amos, C. L., Fleury, T. J., & Normand, A. (2006). Morphological changes and sedimentary processes induced by the December 2003 flood event at the present mouth of the Grand Rhône River (southern France). Marine Geology, 234(1), 159–177. Manners, R., Schmidt, J., & Wheaton, J. M. (2013). Multiscalar model for the determination of spatially explicit riparian vegetation roughness. Journal of Geophysical Research: Earth Surface, 118(1), 65–83. Marini, J. W. and M. C. W. (1973). Correction of Laser Range Tracking Data for Atmospheric Refraction at Elevations above 10 Degrees. NASA Tech. Memo. McCoy, R. M. (2005). Field methods in remote sensing. Guilford Press. Micheletti, J. H., Chandler, S. N., Micheletti, N., Chandler, J. H., & Lane, S. N. (2015). Structure from motion (SFM) photogrammetry Structure from motion (SFM) photogrammetry Structure from Motion (SfM) Photogrammetry. In British Society for Geomorphology Geomorphological Techniques (Vol. 2, Issue 2). Milan, D., Heritage, G., Large, A. R. G., & Entwistle, N. (2010). Mapping hydraulic biotopes using terrestrial laser scan data of water surface properties. Earth Surface Processes and Landforms, 35, 918–931. Mitasova, H., Overton, M., & Harmon, R. S. (2005). Geospatial analysis of a coastal sand dune field evolution: Jockey’s Ridge, North Carolina. Geomorphology, 72(1), 204–221. Mitwally, E. M. A., & Yu, B.-S. (2022). Geochemistry of magnetite in beach sands, stream sediments, and in situ magnetites in surrounding rocks at north Taiwan island. Acta Geochimica, 41(3), 434–452. Nield, J. M., Wiggs, G. F. S., & Squirrell, R. S. (2011). Aeolian sand strip mobility and protodune development on a drying beach: examining surface moisture and surface roughness patterns measured by terrestrial laser scanning. Earth Surface Processes and Landforms, 36(4), 513–522. Niethammer, U., James, M. R., Rothmund, S., Travelletti, J., & Joswig, M. (2012). UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 128, 2–11. Nolan, T. J., Kirk, R. M., & Shulmeister, J. (1999). Beach cusp morphology on sand and mixed sand and gravel beaches, South Island, New Zealand. Marine Geology, 157(3), 185–198. Nouwakpo, S. K., James, M. R., Weltz, M. A., Huang, C.-H., Chagas, I., & Lima, L. (2014). Evaluation of structure from motion for soil microtopography measurement. The Photogrammetric Record, 29(147), 297–316. Pethick, J. S. (1984). An Introduction to Coastal Geomorphology. Pitman, S. J., Hart, D. E., & Katurji, M. H. (2019). Application of UAV techniques to expand beach research possibilities: A case study of coarse clastic beach cusps. Continental Shelf Research, 184, 44–53. Pye, K., & Tsoar, H. (2009). Aeolian Sand and Sand Dunes. Rocha, C. P., Araújo, T. C. M., & Mendonça, F. J. B. (2009). Methodology for Location of Shorelines using 3D-GPS Positioning: A Case Study at Sauaçui Beach, Northeast Brazil. Journal of Coastal Research, 2009(254), 1052 – 1058. Rosnell, T., & Honkavaara, E. (2012). Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera. Sensors (Basel, Switzerland), 12, 453–480. Ruggiero, P., Kaminsky, G., Gelfenbaum, G., & Voigt, B. (2005). Seasonal to Interannual Morphodynamics along a High-Energy Dissipative Littoral Cell. Journal of Coastal Research, 21. Senechal, N., Laibi, R., Almar, R., Castelle, B., Biausque, M., Lefebvre, jean-pierre, Anthony, E., Dorel, M., Chuchla, R., Hounkonnou, M., & du Penhoat, Y. (2014). Observed destruction of a beach cusp system in presence of a double-coupled cusp system: The example of Grand Popo, Benin. Journal of Coastal Research, 70, 669–674. Smith, M. J., Chandler, J., & Rose, J. (2009). High spatial resolution data acquisition for the geosciences: kite aerial photography. Earth Surface Processes and Landforms, 34(1), 155–161. Smith, M., Vericat, D., & Gibbins, C. (2012). Through-water terrestrial laser scanning of gravel beds at the patch scale. Earth Surface Processes and Landforms, 37(4), 411–421. Sun, Y. (2019). Evaluating the quality of ground surfaces generated from Terrestrial Laser Scanning (TLS) data. Syvitski, J. (1991). Principles, Methods and Application of Particle Size Analysis. Tempfli, K., Huurneman, G. C., Bakker, W., Janssen, L. L. F., Feringa, W. F., Gieske, A., Grabmaier, K. A., Hecker, C., Horn, J., Kerle, N., Meer, F. D., Parodi, G., Pohl, C., Reeves, C. V, Ruitenbeek, F. J. A., Schetselaar, E., Weir, M., Westinga, E., & Woldai, T. (2009). Principles of remote sensing : an introductory textbook. (pp. 56–85). Turner, I., Harley, M., Short, A., Simmons, J., Bracs, M., Phillips, M., & Splinter, K. (2016). Data from: A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia. Dryad Digital Repository. van Gaalen, J. F., Kruse, S. E., Coco, G., Collins, L., & Doering, T. (2011). Observations of beach cusp evolution at Melbourne Beach, Florida, USA. Geomorphology, 129(1), 131–140. Vericat, D., Smith, M. W., & Brasington, J. (2014). Patterns of topographic change in sub-humid badlands determined by high resolution multi-temporal topographic surveys. CATENA, 120, 164–176. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. Whitehead, K., Moorman, B., & Hugenholtz, C. (2013). Low-cost, on-demand aerial photogrammetry for glaciological measurement. The Cryosphere Discussions, 7. Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E. (2014). Elements of Photogrammetry with Applications in GIS (Fourth edition.). McGraw-Hill Education. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92125 | - |
dc.description.abstract | 海灘是海陸相交的一種海岸線型態,其多變且脆弱,最近的研究發現,風暴和強降雨導致嚴重的海灘侵蝕和沿海地區的變化,進而威脅著我們的生存環境。在臺灣,北海岸同時受到來自北方的中緯度天氣系統 (例如鋒面、冷氣團) 和來自南方的熱帶天氣系統 (例如颱風、熱帶低氣壓) 的影響,而海灘也因天氣的不同變化產生了變化。
為了得知海灘的侵淤變化情形,本研究將嘗試使用無人機 (Unmanned Aerial Vehicle, UAV) 於位於臺灣最北端的老梅海灘獲取高解析度的航拍影像,並且構建出海灘的數值地表模型 (Digital Surface Model, DSM) 以老梅海灘的變化過程,並納入氣象資料做討論,特別是在研究期間內的東北季風吹拂季節,以及三次颱風的侵襲事件中,海灘的變動情形。 本研究於2022/2/11至2023/09/08總共進行了31次的有效航拍作業,並取得航拍影像與數值地表模型,並且在東北季風季節前、後分別於海灘兩側剖線作沉積物的採樣,並進行粒徑分析。 研究結果發現於老梅海灘於31,980平方公尺的測量範圍內,初期呈現持續堆積的現象,在2022年4月7日至8月13日的四個多月期間,堆積量更是達到38341立方公尺,直到颱風軒嵐諾影響下造成海灘短時間內的侵蝕,隨後海灘體積不再有大幅度的變化,僅於颱風卡努的侵襲下導致短時間內的侵蝕。 颱風的影響部分,2022年9月的颱風軒嵐諾造成前灘部分大量的侵蝕,整體侵蝕量達8,522立方公尺;而2023年7月的颱風杜蘇芮對於海灘產生的侵蝕量979立方公尺,堆積量568立方公尺,相較於隨後的卡努颱風侵蝕了4743立方公尺及堆積了975立方公尺,杜蘇芮颱風對海灘產生的改變非常小。 在東北季風影響期間內,沉積物採樣的粒徑分析發現,2023年5月25日採樣的平均粒徑較2022年9月6日大,海灘西側由平均0.384mm提升至0.407mm,而海灘東側由平均0.332mm提升至0.355mm,然而,由於缺乏較為短時距的粒徑分析資料,各採樣點的粒徑產生改變的機制或過程尚不明確,在長時距、季節性觀察到粒徑的變化仍沒有足夠的證據得以解釋或推論粒徑的變化成果。但由採樣點的高程變動發現,在東北季風期間較大的浪高,波浪可沖蝕至距定沙籬42公尺以內的範圍,而非東北季風期間,波浪不易抵達此處。 | zh_TW |
dc.description.abstract | Beach is a type of coastline which is the intersection of sea and land, it is highly variable and fragile. Recent research has found that storms and heavy rainfall contribute to severe beach erosion and changes in the coastal area, which threaten our living environment. In Taiwan, the North Coast is affected by both mid-latitude weather systems from the north (e.g., fronts, cold air masses) and tropical weather systems from the south (e.g., typhoons, tropical depressions), and the weather events influenced the geomorphologies a lot.
In order to investigate the elevation changes of the beach, this study will try to use UAV (unmanned aerial vehicle) Photogrammetry method to obtain high-resolution aerial images of Laomei Beach, located in the northernmost point of Taiwan. Then construct DSMs of the beach to track the change of beach volume under the influence of different weather processes, especially the changes during the northeast monsoon season and the three typhoon events during the study period. A total of 31 valid aerial photographs were taken from 2022/02/11 to 2023/09/08, and aerial images and DSMs were obtained. Before and after the northeast monsoon season, conducted the sample of the beach sediments on both sides of the beach, and analyzed the changes of the particle size. The results found that Laomei Beach had continuous accumulation in an area of 31,980 square meters in the early stage. During more than four months from April 7 to August 13, 2022, the accumulation amount reached 38,341 cubic meters, until the impact of Typhoon Hinnamnor caused the beach to erode in a short period. Then the beach volume no longer changed significantly, and the only erosion of the beach in a short period of time was caused by Typhoon Kanu. As for the impact of typhoons, Typhoon Hinnamnor in September 2022 caused a large amount of erosion on the foreshore, the net erosion amounted to 8,522 cubic meters; and Typhoon Doksuri in July 2023 caused 979 cubic meters net erosion and 568 cubic meters net accumulation on the beach. Compared with the subsequent Typhoon Khanun, which eroded 4743 cubic meters and accumulated 975 cubic meters, the changes are very little. During the period affected by the northeast monsoon, particle size analysis of sediment sampling found that the average particle size sampled on May 2023 was larger than that on September 2022, and the average particle size on the west side of the beach increased from 0.384mm to 0.407mm, while the average particle size on the beach The east side increased from an average of 0.332mm to 0.355mm. However, due to the lack of relatively short-term particle size analysis data, the mechanism or process of particle size changes at each sampling point is not yet clear. There is still insufficient evidence to explain the observed long-term intervals and seasonal particle size changes. or extrapolate inference the results of changes in particle size. However, it was found from the elevation changes of the sampling points that during the northeast monsoon period, when the waves are higher, the waves can erode to within 42 meters of the sand fence, and during the non-northeast monsoon season, it is difficult for the waves to reach there. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:24:16Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-05T16:24:16Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 I
Abstract III 目次 V 圖次 VII 表次 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 5 第二章 文獻回顧 7 2.1 海岸地形於自然環境扮演的角色 7 2.2 海灘的動力系統 9 2.3 海岸系統在颱風與東北季風事件下的影響 13 2.4 海岸地形調查方法 15 2.5 臺灣的海灘變遷研究 25 第三章 研究區概述 28 3.1 研究範圍 28 3.2 研究區域概況 30 第四章 研究方法與流程 36 4.1 研究方法 36 4.2 研究流程 37 第五章 研究成果 50 5.1 無人機航拍作業成果 50 5.2 沉積物採樣成果 58 第六章 討論 62 6.1 老梅海灘侵淤時序分析 62 6.2 老梅海灘在颱風事件下的變動現象 66 6.3 老梅海灘在東北季風下的變動現象 76 第七章 結論 78 參考文獻 80 附錄 92 各期航拍影像與DSM成果 92 前後期數值地表模型差異(DoD, Differences of DSMs) 127 | - |
dc.language.iso | zh_TW | - |
dc.title | 臺灣北海岸老梅海灘短時距形貌變化之研究 | zh_TW |
dc.title | Short-term morphological change at Laomei Beach, north coast of Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林宗儀;莊昀叡 | zh_TW |
dc.contributor.oralexamcommittee | Tsung-Yi Lin;Ray Y. Chung | en |
dc.subject.keyword | 海灘,地形變遷,颱風,無人機,航空攝影測量, | zh_TW |
dc.subject.keyword | Beach,Geomorphic Change,Typhoon,UAV,Aerial Photogrammetry, | en |
dc.relation.page | 141 | - |
dc.identifier.doi | 10.6342/NTU202400592 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-02-18 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地理環境資源學系 | - |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 26.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。