請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92117完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 連豊力 | zh_TW |
| dc.contributor.advisor | Feng-Li Lian | en |
| dc.contributor.author | 朱雁丞 | zh_TW |
| dc.contributor.author | Yen-Cheng Chu | en |
| dc.date.accessioned | 2024-03-05T16:22:05Z | - |
| dc.date.available | 2024-07-04 | - |
| dc.date.copyright | 2024-03-05 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-02-11 | - |
| dc.identifier.citation | [1: Dolan 2022] S. Dolan, The challenges of last mile delivery logistics and the tech so- lutions cutting costs in the final mile, Jan. 12, 2022. [Online]. Available: https:// www.businessinsider.com/last-mile-delivery-shipping-explained? IR=T (visited on 01/28/2023).
[2: Mangiaracina et al. 2019] R. Mangiaracina et al., “Innovative solutions to increase last-mile delivery effi- ciency in b2c e-commerce: A literature review,” International Journal of Physical Distribution & Logistics Management, vol. 49, no. 9, pp. 901–920, Jan. 1, 2019, Publisher: Emerald Publishing Limited, ISSN: 0960-0035. DOI: 10.1108/IJPDLM- 02-2019-0048. [3: 翁世航 2022] 翁 世 航, 豪 大 雨 沖 斷 台 7 線, 宜 蘭 明 池 山 莊 300 多 人 已 受 困 3 天, 救 災 人 員 徒 步 20 公 里 送 藥 品 與 物 資 上 山, Oct. 19, 2022. [On- line]. Available: https://www.thenewslens.com/article/159044 (visited on 01/31/2023). [4: Issa 2023] T. M. Issa, Top 5 most devastating earthquakes: From sichuan to haiti, latest in turkey and syria, Feb. 7, 2023. [Online]. Available: https://english. alarabiya . net / features / 2023 / 02 / 06 / Top - 5 - most - devastating - earthquakes- From- Sichuan- to- Haiti- latest- in- Turkey- and- Syria (visited on 03/02/2023). [5: Wu et al. 2022] G. Wu et al., “Collaborative Truck-Drone Routing for Contactless Parcel Delivery During the Epidemic,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 25 077–25 091, Dec. 2022, ISSN: 1558-0016. DOI: 10 . 1109 / TITS.2022.3181282. [6: 何立雯 2021] 何 立 雯, 雙 11 包 裹 塞 爆 倉 庫! 物 流 哥 累 到 快 吐 血 網 一 看 超 心 虛, Nov. 13, 2021. [Online]. Available: https : / / www . chinatimes . com / realtimenews/20211113001726-260405?chdtv (visited on 01/28/2023). [7: Dolan 2022] S. Dolan, Crowdsourced delivery explained: Making same day ship- ping cheaper through local couriers, Apr. 15, 2022. [Online]. Available: https: / / www . insiderintelligence . com / insights / crowdsourced - delivery - shipping-explained/ (visited on 01/31/2023). [8: 楊竣傑 2021] 楊 竣 傑, 搶 單 亂 竄 致 事 故 頻 傳 已 成 交 通 高 風 險 因 子, 地 方 無 法 越 區 辦 案 外 送 亂 象 須 中 央 出 手, Jan. 13, 2021. [Online]. Available: https://www.businesstoday.com.tw/article/category/183027/post/ 202101130022 (visited on 01/28/2023). [9: Stone 2022] L. Stone, Queensland covid outbreaks drive spike in ubereats, deliveroo worker injuries, May 11, 2022. [Online]. Available: https : / / www . abc . net . au/news/2022- 05- 11/qld- covid- spike- delivery- driver- injuries- brisbane-lockdown/101052382 (visited on 01/31/2023). [10: Starship Technologies 2014] Starship Technologies, Starship robots –your local, community helpers, Jan. 11, 2014. [Online]. Available: https://www.starship. xyz/the-starship-robot/ (visited on 01/28/2023). [11: Madani and Ndiaye 2022] B. Madani and M. Ndiaye, “Hybrid Truck-Drone Delivery Systems: A Systematic Literature Review,” IEEE Access, vol. 10, pp. 92 854–92 878, 2022, ISSN: 2169- 3536. DOI: 10.1109/ACCESS.2022.3202895. [12: Ackerman 2022] E. Ackerman, What future do we want from suburban drone de- livery? suburban drone delivery absolutely works, but it may not be worth the ef- fort, Apr. 20, 2022. [Online]. Available: https://spectrum.ieee.org/wing- drone-delivery (visited on 01/31/2023). [13: Saeed et al. 2018] A. S. Saeed et al., “A survey of hybrid Unmanned Aerial Vehicles,” Progress in Aerospace Sciences, vol. 98, pp. 91–105, Apr. 1, 2018, ISSN: 0376-0421. DOI: 10. 1016/j.paerosci.2018.03.007. [14: United Parcel Service of America, Inc. 2020] United Parcel Service of America, Inc., Ups flight forward, cvs to launch residential drone delivery service in florida retirement community to assist in coronavirus response, Apr. 27, 2020. [Online]. Available: https://about.ups.com/sg/en/newsroom/press- releases/ innovation-driven/ups-flight-forward-cvs-to-launch-residential- drone - delivery - service - in - florida - retirement - community - to - assist-in-coronavirus-response.html (visited on 01/31/2023). [15: Zipline International Inc. 2021] Zipline International Inc., A first-ever look at the sustainability of autonomous aerial logistics, Nov. 2, 2021. [Online]. Available: https : / / www . flyzipline . com / post / a - first - ever - look - at - the - sustainability-of-autonomous-aerial-logistics (visited on 01/28/2023). [16: DHL Inc. 2023] DHL Inc., Dhl’s parcelcopter: Changing shipping forever, Jan. 31, 2023. [Online]. Available: https : / / www . dhl . com / discover / en - global / business/business-ethics/parcelcopter-drone-technology (visited on 01/31/2023). [17: X, a division of Google LLC. 2023] X, a division of Google LLC., Wing trans- forming the way goods are transported, Jan. 31, 2023. [Online]. Available: https: //x.company/projects/wing/ (visited on 01/31/2023). [18: Amazon.com, Inc. 2020] Amazon.com, Inc., Amazon customers in lockeford, cal- ifornia, will be among the first to receive prime air drone deliveries in the u.s. Jun. 13, 2020. [Online]. Available: https : / / www . aboutamazon . com / news / transportation/amazon- prime- air- prepares- for- drone- deliveries (visited on 01/31/2023). [19: Bell Textron Inc. 2022] Bell Textron Inc., Watch bell's autonomous pod transport vehicle complete a supply drop in airplane mode, Mar. 25, 2022. [Online]. Avail- able: https : / / news . bellflight . com / en - US / 212740 - watch - bell - s - autonomous - pod - transport - vehicle - complete - a - supply - drop - in - airplane-mode (visited on 01/31/2023). [20: 林佳龍 et al. 2020] 林佳龍 et al., “2020 交通科技產業政策白皮書,” 中華民國交通部, May 2020. [Online]. Available: https://gpi.culture.tw/books/1010900662 (visited on 03/2023). [21: Lee et al. 2022] T.-Y. Lee et al., “Advanced research planning on the industrial promotion of un- manned aerial vechicles technology development in taiwan,” 交通部運輸研究所, Mar. 2022. [Online]. Available: https://www.iot.gov.tw/cp-2273-205806- 31bb8-1.html (visited on 03/2023). [22: J. Gordon 2016] L. J. Gordon, Principles of Helicopter Aerodynamics | Aerospace Engineering (Cam- bridge Aerospace), 2nd ed. Cambridge, MA: Cambridge Univ. Press., Dec. 2016, ISBN: 978-1-107-01335-3. [23: Coleman 1997] C. P. Coleman, “A Survey of Theoretical and Experimental Coaxial Rotor Aerody- namic Research,” National Aeronautics and Space Administration, Ames Research Center, NASA Technical Paper, Mar. 1, 1997. [24: Franchi et al. 2018] A. Franchi et al., “Full-Pose Tracking Control for Aerial Robotic Systems With Laterally Bounded Input Force,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 534–541, Apr. 2018, ISSN: 1941-0468. DOI: 10.1109/TRO.2017.2786734. [25: Invernizzi et al. 2021] D. Invernizzi et al., “Comparison of Control Methods for Trajectory Tracking in Fully Actuated Unmanned Aerial Vehicles,” IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp. 1147–1160, May 2021, ISSN: 1558-0865. DOI: 10. 1109/TCST.2020.2992389. [26: Ryll, Bicego, and Franchi 2016] M. Ryll, D. Bicego, and A. Franchi, “Modeling and control of FAST-Hex: A fully- actuated by synchronized-tilting hexarotor,” in 2016 IEEE/RSJ International Con- ference on Intelligent Robots and Systems (IROS), Oct. 2016, pp. 1689–1694. DOI: 10.1109/IROS.2016.7759271. [27: Nguyen et al. 2018] H.-N. Nguyen et al., “A Novel Robotic Platform for Aerial Manipulation Using Quadrotors as Rotating Thrust Generators,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 353–369, Apr. 2018, ISSN: 1941-0468. DOI: 10 . 1109 / TRO . 2018 . 2791604. [28: Su et al. 2021] Y. Su et al., “Nullspace-Based Control Allocation of Overactuated UAV Platforms,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8094–8101, Oct. 2021, ISSN: 2377-3766. DOI: 10.1109/LRA.2021.3103637. [29: Su et al. 2022] Y. Su et al. “Downwash-aware Control Allocation for Over-actuated UAV Plat- forms.” arXiv: 2207 . 09645 [cs]. (Jul. 20, 2022), [Online]. Available: http : //arxiv.org/abs/2207.09645 (visited on 09/01/2022), preprint. [30: Yu et al. 2021] P. Yu et al., “An Over-Actuated Multi-Rotor Aerial Vehicle With Unconstrained At- titude Angles and High Thrust Efficiencies,” IEEE Robotics and Automation Let- ters, vol. 6, no. 4, pp. 6828–6835, Oct. 2021, ISSN: 2377-3766. DOI: 10.1109/LRA. 2021.3095035. [31: Invernizzi, Lovera, and Zaccarian 2020] D. Invernizzi, M. Lovera, and L. Zaccarian, “Dynamic Attitude Planning for Trajec- tory Tracking in Thrust-Vectoring UAVs,” IEEE Transactions on Automatic Con- trol, vol. 65, no. 1, pp. 453–460, Jan. 2020, ISSN: 1558-2523. DOI: 10.1109/TAC. 2019.2919660. [32: Villa, Brandão, and Sarcinelli-Filho 2020] D. K. D. Villa, A. S. Brandão, and M. Sarcinelli-Filho, “A Survey on Load Trans- portation Using Multirotor UAVs,” Journal of Intelligent & Robotic Systems, vol. 98, no. 2, pp. 267–296, May 1, 2020, ISSN: 1573-0409. DOI: 10.1007/s10846-019- 01088-w. [33: Chung et al. 2018] S.-J. Chung et al., “A Survey on Aerial Swarm Robotics,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 837–855, Aug. 2018, ISSN: 1941-0468. DOI: 10.1109/ TRO.2018.2857475. [34: Oung and D'Andrea 2014] R. Oung and R. D'Andrea, “The Distributed Flight Array: Design, implementation, and analysis of a modular vertical take-off and landing vehicle,” The International Journal of Robotics Research, vol. 33, no. 3, pp. 375–400, Mar. 1, 2014, ISSN: 0278- 3649. DOI: 10.1177/0278364913501212. [35: Saldaña et al. 2018] D. Saldaña et al., “ModQuad: The Flying Modular Structure that Self-Assembles in Midair,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), May 2018, pp. 691–698. DOI: 10.1109/ICRA.2018.8461014. [36: Mellinger et al. 2013] D. Mellinger et al., “Cooperative Grasping and Transport Using Multiple Quadro- tors,” in Distributed Autonomous Robotic Systems: The 10th International Sympo- sium, ser. Springer Tracts in Advanced Robotics, A. Martinoli et al., Eds., Berlin, Heidelberg: Springer, 2013, pp. 545–558, ISBN: 978-3-642-32723-0. DOI: 10.1007/ 978-3-642-32723-0_39. [37: Duffy and Samaritano 2015] M. Duffy and A. Samaritano, “The LIFT! Project - Modular, Electric Vertical Lift System with Ground Power Tether,” presented at the 33rd AIAA Applied Aerody- namics Conference, Jun. 22, 2015. DOI: 10.2514/6.2015-3013. [38: Li et al. 2019] G. Li et al., “ModQuad-Vi: A Vision-Based Self-Assembling Modular Quadrotor,” in 2019 International Conference on Robotics and Automation (ICRA), May 2019, pp. 346–352. DOI: 10.1109/ICRA.2019.8794056. [39: Litman et al. 2021] Y. Litman et al., “Vision-Based Self-Assembly for Modular Multirotor Structures,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2202–2208, Apr. 2021, ISSN: 2377-3766. DOI: 10.1109/LRA.2021.3061380. [40: Gabrich, Li, and Yim 2020] B. Gabrich, G. Li, and M. Yim, “ModQuad-DoF: A Novel Yaw Actuation for Mod- ular Quadrotors,” in 2020 IEEE International Conference on Robotics and Au- tomation (ICRA), May 2020, pp. 8267–8273. DOI: 10.1109/ICRA40945.2020. 9196735. [41: Xu, D'Antonio, and Saldaña 2021] J. Xu, D. S. D'Antonio, and D. Saldaña, “H-ModQuad: Modular Multi-Rotors with 4, 5, and 6 Controllable DOF,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), May 2021, pp. 190–196. DOI: 10 . 1109 / ICRA48506 . 2021.9561016. [42: Zhao et al. 2017] M. Zhao et al., “Whole-body aerial manipulation by transformable multirotor with two-dimensional multilinks,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), May 2017, pp. 5175–5182. DOI: 10.1109/ICRA.2017. 7989606. [43: Zhao et al. 2018] M. Zhao et al., “Transformable multirotor with two-dimensional multilinks: Mod- eling, control, and whole-body aerial manipulation,” The International Journal of Robotics Research, vol. 37, no. 9, pp. 1085–1112, Aug. 1, 2018, ISSN: 0278-3649. DOI: 10.1177/0278364918801639. [44: Gabrich et al. 2018] B. Gabrich et al., “A Flying Gripper Based on Cuboid Modular Robots,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), May 2018, pp. 7024–7030. DOI: 10.1109/ICRA.2018.8460682. [45: Saldaña, Gupta, and Kumar 2019] D. Saldaña, P. M. Gupta, and V. Kumar, “Design and Control of Aerial Modules for Inflight Self-Disassembly,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3410–3417, Oct. 2019, ISSN: 2377-3766. DOI: 10.1109/LRA.2019.2926680. [46: Zhao, Okada, and Inaba 2021] M. Zhao, K. Okada, and M. Inaba, “Enhanced Modeling and Control for Multi- linked Aerial Robot With Two DoF Force Vectoring Apparatus,” IEEE Robotics and Automation Letters, vol. 6, no. 1, pp. 135–142, Jan. 2021, ISSN: 2377-3766. DOI: 10.1109/LRA.2020.3032374. [47: Fink et al. 2011] J. Fink et al., “Planning and control for cooperative manipulation and transportation with aerial robots,” The International Journal of Robotics Research, vol. 30, no. 3, pp. 324–334, Mar. 1, 2011, ISSN: 0278-3649. DOI: 10.1177/0278364910382803. [48: Loianno and Kumar 2018] G. Loianno and V. Kumar, “Cooperative Transportation Using Small Quadrotors Using Monocular Vision and Inertial Sensing,” IEEE Robotics and Automation Let- ters, vol. 3, no. 2, pp. 680–687, Apr. 2018, ISSN: 2377-3766. DOI: 10.1109/LRA. 2017.2778018. [49: Jiang and Voyles 2014] G. Jiang and R. Voyles, “A nonparallel hexrotor UAV with faster response to distur- bances for precision position keeping,” in 2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014), Oct. 2014, pp. 1–5. DOI: 10.1109/ SSRR.2014.7017669. [50: Ryll et al. 2017] M. Ryll et al., “6D physical interaction with a fully actuated aerial robot,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), May 2017, pp. 5190–5195. DOI: 10.1109/ICRA.2017.7989608. [51: Ryll, Bülthoff, and Giordano 2015] M. Ryll, H. H. Bülthoff, and P. R. Giordano, “A Novel Overactuated Quadrotor Unmanned Aerial Vehicle: Modeling, Control, and Experimental Validation,” IEEE Transactions on Control Systems Technology, vol. 23, no. 2, pp. 540–556, Mar. 2015, ISSN: 1558-0865. DOI: 10.1109/TCST.2014.2330999. [52: Kamel et al. 2018] M. Kamel et al., “The Voliro Omniorientational Hexacopter: An Agile and Ma- neuverable Tiltable-Rotor Aerial Vehicle,” IEEE Robotics Automation Magazine, vol. 25, no. 4, pp. 34–44, Dec. 2018, ISSN: 1558-223X. DOI: 10.1109/MRA.2018. 2866758. [53: Ding and Lu 2021] C. Ding and L. Lu, “A Tilting-Rotor Unmanned Aerial Vehicle for Enhanced Aerial Locomotion and Manipulation Capabilities: Design, Control, and Applications,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 4, pp. 2237–2248, Aug. 2021, ISSN: 1941-014X. DOI: 10.1109/TMECH.2020.3036346. [54: Bodie et al. 2021] K. Bodie et al., “Active Interaction Force Control for Contact-Based Inspection With a Fully Actuated Aerial Vehicle,” IEEE Transactions on Robotics, vol. 37, no. 3, pp. 709–722, Jun. 2021, ISSN: 1941-0468. DOI: 10 . 1109 / TRO . 2020 . 3036623. [55: Preiss et al. 2017] J. A. Preiss et al., “Downwash-aware trajectory planning for large quadrotor teams,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 250–257. DOI: 10.1109/IROS.2017.8202165. [56: Ding et al. 2021] C. Ding et al., “Design, Sensing, and Control of a Novel UAV Platform for Aerial Drilling and Screwing,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3176– 3183, Apr. 2021, ISSN: 2377-3766. DOI: 10.1109/LRA.2021.3062305. [57: Lee et al. 2021] H. Lee et al., “CAROS-Q: Climbing Aerial RObot System Adopting Rotor Off- set With a Quasi-Decoupling Controller,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8490–8497, Oct. 2021, ISSN: 2377-3766. DOI: 10 . 1109 / LRA . 2021.3108489. [58: Scholz and Trommer 2016] G. Scholz and G. F. Trommer, “Model based control of a quadrotor with tiltable rotors,” Gyroscopy and Navigation, vol. 7, no. 1, pp. 72–81, Jan. 1, 2016, ISSN: 2075-1109. DOI: 10.1134/S2075108716010120. [59: Liao et al. 2007] F. Liao et al., “Constrained Nonlinear Finite-Time Control Allocation,” in 2007 American Control Conference, Jul. 2007, pp. 3801–3806. DOI: 10 . 1109 / ACC . 2007.4282512. [60: Liao et al. 2010] F. Liao et al., “Adaptive control allocation for non-linear systems with internal dy- namics,” IET Control Theory & Applications, vol. 4, no. 6, p. 909, 2010, ISSN: 1751- 8644. [61: Invernizzi and Lovera 2018] D. Invernizzi and M. Lovera, “Trajectory tracking control of thrust-vectoring UAVs,” Automatica, vol. 95, pp. 180–186, Sep. 1, 2018, ISSN: 0005-1098. DOI: 10.1016/ j.automatica.2018.05.024. [62: Johansen and Fossen 2013] T. A. Johansen and T. I. Fossen, “Control allocation—A survey,” Automatica, vol. 49, no. 5, pp. 1087–1103, May 1, 2013, ISSN: 0005-1098. DOI: 10.1016/j.automatica. 2013.01.035. [63: Stephan and Fichter 2019] J. Stephan and W. Fichter, “Fast Exact Redistributed Pseudoinverse Method for Linear Actuation Systems,” IEEE Transactions on Control Systems Technology, vol. 27, no. 1, pp. 451–458, Jan. 2019, ISSN: 1558-0865. DOI: 10 . 1109 / TCST . 2017.2765622. [64: Schaefer and Wolff 1999] H. H. Schaefer and M. P. Wolff, Topological Vector Spaces (Graduate Texts in Mathematics). New York, NY: Springer, 1999, vol. 3, ISBN: 978-1-4612-7155-0 978-1-4612-1468-7. DOI: 10.1007/978-1-4612-1468-7. [65: Bolling 1997] J. G. Bolling, “Implementation of Constrained Control Allocation Techniques Using an Aerodynamic Model of an F-15 Aircraft,” Thesis, Virginia Tech, May 21, 1997. [Online]. Available: https://vtechworks.lib.vt.edu/ handle/10919/35661 (visited on 03/12/2023). [66: Oppenheimer and Doman 2004] M. W. Oppenheimer and D. B. Doman, “Methods for Compensating for Control Allocator and Actuator Interactions,” Journal of Guidance, Control, and Dynamics, vol. 27, no. 5, pp. 922–927, Sep. 2004, ISSN: 0731-5090. DOI: 10.2514/1.7004. [67: Levine 2017] W. S. Levine, Ed., The Control Handbook: Control System Applications, Second Edition, 2nd ed. Boca Raton: CRC Press, Jan. 31, 2017, 944 pp., ISBN: 978-1-315- 21872-4. DOI: 10.1201/b10382. [68: Su et al. 2022] Y. Su et al., “Downwash-aware Control Allocation for Over-actuated UAV Plat- forms,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Sys- tems (IROS), Oct. 2022, pp. 10 478–10 485. DOI: 10 . 1109 / IROS47612 . 2022 . 9981140. [69: Shi et al. 2010] J. Shi et al., “Research on allocation efficiency of the redistributed pseudo inverse algorithm,” Science China Information Sciences, vol. 53, no. 2, pp. 271–277, Feb. 1, 2010, ISSN: 1862-2836. DOI: 10.1007/s11432-010-0032-x. [70: John and David ] V. John and B. David, “Multivariable control allocation and control law condition- ing when control effectors limit | Guidance, Navigation, and Control and Co-located Conferences,” in Proc. AIAA Guidance, Navigation and Control Conf.. [71: Oppenheimer, Doman, and Bolender 2006] M. W. Oppenheimer, D. B. Doman, and M. A. Bolender, “Control Allocation for Over-actuated Systems,” in 2006 14th Mediterranean Conference on Control and Automation, Jun. 2006, pp. 1–6. DOI: 10.1109/MED.2006.328750. [72: Bordignon 1996] K. A. Bordignon, “Constrained control allocation for systems with redundant con- trol effectors,” Dec. 19, 1996. [73: Bodson 2002] M. Bodson, “Evaluation of Optimization Methods for Control Allocation,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 4, pp. 703–711, Jul. 2002, ISSN: 0731-5090. DOI: 10.2514/2.4937. [74: Bordignon and Bessolo 2002] K. Bordignon and J. Bessolo, “Control Allocation for the X-35B,” in 2002 Biennial International Powered Lift Conference and Exhibit, ser. Aviation Technology, In- tegration, and Operations (ATIO) Conferences, American Institute of Aeronautics and Astronautics, Nov. 5, 2002. DOI: 10.2514/6.2002-6020. [75: Jin 2005] J. Jin, “Modified Pseudoinverse Redistribution Methods for Redundant Controls Allocation,” Journal of Guidance, Control, and Dynamics, vol. 28, no. 5, pp. 1076– 1079, Sep. 2005, ISSN: 0731-5090. DOI: 10.2514/1.14992. [76: Adams et al. 1994] R. J. Adams et al., Robust Multivariable Flight Control (Advances in Industrial Control). London: Springer, 1994, ISBN: 978-1-4471-2113-8 978-1-4471-2111-4. DOI: 10.1007/978-1-4471-2111-4. [77: Durham 1993] W. C. Durham, “Constrained control allocation,” Journal of Guidance, Control, and Dynamics, vol. 16, no. 4, pp. 717–725, Jul. 1993, ISSN: 0731-5090. DOI: 10.2514/ 3.21072. [78: Zhang et al. 2019] J. Zhang et al., “Control Allocation Framework with SVD-based Protection for a Tilt-rotor VTOL Transition Air Vehicle,” in AIAA Aviation 2019 Forum, ser. AIAA AVIATION Forum, American Institute of Aeronautics and Astronautics, Jun. 14, 2019. DOI: 10.2514/6.2019-3265. [79: Orr and Slegers 2014] J. S. Orr and N. J. Slegers, “High-Efficiency Thrust Vector Control Allocation,” Journal of Guidance, Control, and Dynamics, vol. 37, no. 2, pp. 374–382, 2014, ISSN: 0731-5090. DOI: 10.2514/1.61644. [80: Muir and Bradshaw 1996] E. Muir and A. Bradshaw, “Control Law Design for a Thrust Vectoring Fighter Aircraft Using Robust Inverse Dynamics Estimation (RIDE),” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 210, no. 4, pp. 333–343, Oct. 1, 1996, ISSN: 0954-4100. DOI: 10.1243/PIME_ PROC_1996_210_378_02. [81: Härkegård 2004] O. Härkegård, “Dynamic Control Allocation Using Constrained Quadratic Pro- gramming,” Journal of Guidance, Control, and Dynamics, vol. 27, no. 6, pp. 1028– 1034, Nov. 2004, ISSN: 0731-5090. DOI: 10.2514/1.11607. [82: Luo et al. 2007] Y. Luo et al., “Model-Predictive Dynamic Control Allocation Scheme for Reentry Vehicles,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 1, pp. 100– 113, Jan. 2007, ISSN: 0731-5090. DOI: 10.2514/1.25473. [83: Varadarajan 1984] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations (Graduate Texts in Mathematics). New York, NY: Springer, 1984, vol. 102, ISBN: 978-1-4612- 7016-4 978-1-4612-1126-6. DOI: 10.1007/978-1-4612-1126-6. [84: Chaturvedi, Sanyal, and McClamroch 2011] N. A. Chaturvedi, A. K. Sanyal, and N. H. McClamroch, “Rigid-Body Attitude Control,” IEEE Control Systems Magazine, vol. 31, no. 3, pp. 30–51, Jun. 2011, ISSN: 1941-000X. DOI: 10.1109/MCS.2011.940459. [85: Kevin M. and Frank C. 2017] L. Kevin M. and P. Frank C., Modern Robotics - Northwestern Mechatronics Wiki. Cambridge University Press., May 3, 2017. [86: Dronecode Project 2024] I. Dronecode Project. “The open standards for drone hardware,” Pixhawk. (Jan. 2024), [Online]. Available: https://pixhawk.org/ (visited on 02/01/2024). [87: Autopilot 2024] P. Autopilot, PX4-Autopilot, PX4 Autopilot, Jan. 8, 2024. [On- line]. Available: https : / / github . com / PX4 / PX4 - Autopilot (visited on 01/08/2024). [88: Meier 2009] L. Meier. “MAVLink.” (2009), [Online]. Available: https://mavlink.io/en/ (visited on 01/08/2024). [89: AprilRobotics 2024] AprilRobotics, AprilRobotics/apriltag_ros, AprilRobotics, Jan. 24, 2024. [Online]. Available: https://github.com/AprilRobotics/apriltag_ ros (visited on 01/26/2024). [90: Malyuta et al. 2020] D. Malyuta et al., “Long-duration fully autonomous operation of rotorcraft un- manned aerial systems for remote-sensing data acquisition,” Journal of Field Robotics, vol. 37, no. 1, pp. 137–157, 2020, ISSN: 1556-4967. DOI: 10.1002/rob.21898. [91: Wang and Olson 2016] J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial detection,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2016, pp. 4193–4198. DOI: 10.1109/IROS.2016.7759617. [92: Gerald Jay and Jack 2015] S. Gerald Jay and W. Jack, Structure and Interpretation of Classical Mechanics, Second Edition. The MIT Press, Feb. 6, 2015, ISBN: 978-0-262-02896-7. [93: Bernstein 2009] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas (Second Edi- tion). Princeton University Press, 2009, ISBN: 978-0-691-14039-1. JSTOR: j.ctt7t833. [94: Lee, Leok, and McClamroch 2010] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadro- tor UAV on SE(3),” in 49th IEEE Conference on Decision and Control (CDC), Dec. 2010, pp. 5420–5425. DOI: 10.1109/CDC.2010.5717652. [95: Lee 2015] T. Lee, “Global Exponential Attitude Tracking Controls on \mathsf SO(\mathsf 3),” IEEE Transactions on Automatic Control, vol. 60, no. 10, pp. 2837–2842, Oct. 2015, ISSN: 1558-2523. DOI: 10.1109/TAC.2015.2407452. [96: Qin et al. 2020] Y. Qin et al., “Gemini: A Compact Yet Efficient Bi-Copter UAV for Indoor Appli- cations,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3213–3220, Apr. 2020, ISSN: 2377-3766. DOI: 10.1109/LRA.2020.2974718. [97: Rao 2005] A. Rao, Dynamics of Particles and Rigid Bodies: A Systematic Approach. Cam- bridge University Press, Nov. 14, 2005, ISBN: 9780511805455. DOI: 10 . 1017 / CBO9780511805455. [98: Lee, Leok, and Mcclamroch 2010] T. Lee, M. Leok, and N. H. Mcclamroch, “Geometric tracking control of a quadrotor UAV on SE(3) for extreme maneuverability,” in Proc. IFAC World Congress, 2010, ISBN: 978-3-902661-93-7. DOI: 10.3182/20110828-6-IT-1002.03599. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92117 | - |
| dc.description.abstract | 隨著電商盛行,物流運輸達到新的高峰,最後一哩路的成本與效率變得至關重要。離島與山區等偏遠地區也亟需新的解決方案,除了本身運輸成本高昂的問題,若發生天災如地震、颱風導致聯絡道路失效,更有可能造成財產甚或生命上的重大損失。
本研究提出具有同軸螺旋槳設計之向量控制模組化群組無人機,藉由高冗餘、高可控性、可重組等特性,提升安全性、飛行效率、可操作性、機動性,提升抵抗外界干擾與馬達失效等能力,解決現有無人機對於航程、安全、效率等需求。無人機的模組化設計使其能夠通過改變模組類型與數量來因應不同的貨物大小與重量,以實現最佳任務性能。 本研究針對提出的設計推導其數學模型並探討其動態特性,包含單台無人機系統中的欠驅動系統,與群組無人機於不同組態下產生不同的操作空間的過驅動系統。基於估測不同組態下的可操作力空間,使得控制器可以自動調整控制器參數,當組態改變時,毋須重新設計控制器參數。本研究提出針對單台無人機以及群組無人機的控制器,並採用整合完全姿態控制器與重組式控制分配的階層式控制架構。首先,包含具有姿態規劃的全姿態追蹤控制器負責計算虛擬控制指令,使系統可以追蹤參考軌跡。接著提出精確捆綁重組式控制分配方法(EBRCA),其中包含一個虛擬邊界保護機制來解決黏壁問題,以及一個力矩增強方法來增強力矩分配,以應對非線性、耦合和受限制的可操作力矩空間。 為驗證提出系統之特性,在模擬中,系統被施加風吹、快速路徑變更、模組失效等干擾,並針對異向與同向組態的可控性討論其對於激進動作、非零姿態的路徑追蹤效果。全姿態控制器和控制分配演算法的有效性於靜態、動態和閉迴路測試的模擬中獲得驗證。模擬結果表明,所提出的機構設計與控制器在高機動性、非零姿態軌跡以及不同干擾條件下,例如未知負載重量、突然軌跡變化和未預期的馬達故障中表現良好。在模擬中亦進行EBRCA與CGI和SQP方法的性能比較,結果顯示EBRCA在力矩分配響應獲得更小誤差,並在軌跡追蹤任務中表現較短的穩定時間。此外亦發現,在不一致方向的群組配置下,無論是在靜態穩定還是動態追蹤任務中,都能實現較小的穩態誤差。在姿態穩定與繫留飛行的實驗中,控制架構與無人機設計的基本有效性已被初步驗證。 | zh_TW |
| dc.description.abstract | In this research, a Thrust-Vectoring Modular Drone (TVMD) with coaxial rotors is proposed to address delivery challenges, such as the last-mile delivery for e-commerce services and transporting time-sensitive packages to outlying islands and mountain areas, especially when natural disasters or accidents occur. The TVMD is designed with high redundancy, controllability, and reconfigurability to ensure safety, flight efficiency, mobility, and maneuverability. The modular design of the drone enables optimal task performance by changing the type and number of agents.
The dynamic model of the TVMD is derived and analyzed, which reveals the under-actuation property of the single-agent system and the over-actuation property of the teamed system. The proposed attainable space approximation algorithm estimates system characteristics in various team configurations, which also makes it possible to automatically calculate proper parameters for different team configurations without the need to re-design the controller. A cascaded control architecture is adopted for the teamed systems. Firstly, a full-pose trajectory tracking controller with an attitude planner takes the response to calculate virtual controls and forces the system to track the reference trajectory. Secondly, an exact bundled redistributed control allocation (EBRCA), incorporating pseudo-boundary protection (PBP) for the wall sticking issue and a post-torque enhancement (PTE) to strengthen torque allocations, is proposed to deal with the nonlinear, coupled, and constrained admissible force space. The effectiveness of the full-pose tracking controller and the control allocation is evaluated using static, dynamic and closed-loop tests in simulations. Simulation results demonstrate that the TVMD performs well in aggressive maneuvers, non-zero attitude trajectory tracking, and under various disturbances such as unknown payload weights, sudden trajectory change, and unexpected motor failures. The performance of the proposed EBRCA is compared with the cascaded generalized inverse (CGI) and the sequential quadratic programming (SQP) methods, and it shows that EBRCA has better torque allocation responses and results in a shorter settling time in tracking tasks. Also, inconsistent orientation team configurations achieve smaller steady-state errors in both regulation and tracking tasks. Preliminary experiments including attitude stabilization and tethered hovering are conducted to verify the basic effectiveness of the proposed control architecture and the UAV design. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:22:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-05T16:22:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | CONTENTS
摘要 i ABSTRACT iii CONTENTS v LIST OF FIGURES ix LIST OF TABLES xv Denotation xvii Chapter 1 Introduction 1 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Problems in Daily Life . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Problems in Current Solutions . . . . . . . . . . . . . . . . . . . . 6 1.2 The Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Key Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 Coordinate System Definitions . . . . . . . . . . . . . . . . . . . 15 1.3.2 Control Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.3 Subproblems of the Cacaded Control Scheme . . . . . . . . . . . . 18 1.3.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 24 Chapter 2 Background and Literature Overview 25 2.1 Teamed Aerial Delivery Problem . . . . . . . . . . . . . . . . . . . 25 2.1.1 Rigid Inter-Agent Connection . . . . . . . . . . . . . . . . . . . . 25 2.1.2 Flexible Inter-Agent Connection . . . . . . . . . . . . . . . . . . 27 2.1.3 Non-Rigid Inter-Agent Connection . . . . . . . . . . . . . . . . . 27 2.2 Thrust-Vectoring Aerial Vehicles . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Tilted thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.2 Rotatable thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.3 Passive thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Full-Pose Tracking Control . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.1 Tracking Control with Internal Dynamics . . . . . . . . . . . . . . 33 2.3.2 Tracking Control for Laterally Bounded Force System . . . . . . . 34 2.3.3 Control Allocation Problem . . . . . . . . . . . . . . . . . . . . . 36 2.3.3.1 Factors in Control Allocation . . . . . . . . . . . . . . . . 38 2.3.3.2 An Overview of Control Allocators . . . . . . . . . . . . . 39 2.3.3.3 Control Allocation for Aerial Vehicles . . . . . . . . . . . 45 Chapter 3 Related Algorithms 49 3.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . 49 3.1.1 Rotations and Attitudes . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.1.1 Rotation Matrix . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.1.2 Attitude Representation . . . . . . . . . . . . . . . . . . . 51 3.1.2 Rigid Body Motion and Twist . . . . . . . . . . . . . . . . . . . . 52 3.2 System Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.1 Recursive Newton-Euler Algorithm (RNEA) . . . . . . . . . . . . 54 3.3 Redistributed Control Allocation . . . . . . . . . . . . . . . . . . . . 57 3.3.1 Moore-Penrose Pseudo-Inverse . . . . . . . . . . . . . . . . . . . 57 3.3.2 Cascaded Generalized Inverse . . . . . . . . . . . . . . . . . . . . 57 3.3.3 Exact Redistributed Pseudo-Inverse . . . . . . . . . . . . . . . . . 58 Chapter 4 System Overview 61 4.1 The Hardware System . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.1.1 The Navigator Module . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.2 The Agent Module . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 An Overview of the Control Strategy . . . . . . . . . . . . . . . . . 64 Chapter 5 Dynamic Model and System Characteristics 67 5.1 The Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.1 Team Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1.2 The Admissible Input Space . . . . . . . . . . . . . . . . . . . . . 69 5.1.3 The Local Admissible Control Space . . . . . . . . . . . . . . . . 70 5.1.4 The Admissible Force Space . . . . . . . . . . . . . . . . . . . . 71 5.1.5 The Local Admissible Force Space . . . . . . . . . . . . . . . . . 73 5.2 Team System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.1 Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.2 The Control Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.2.1 The Effectiveness Model . . . . . . . . . . . . . . . . . . 77 5.2.2.2 Necessary Rank Condition . . . . . . . . . . . . . . . . . . 78 5.3 Approximation of Attainable Force Space . . . . . . . . . . . . . . . 78 5.4 The Feasible Attitude Set . . . . . . . . . . . . . . . . . . . . . . . 84 Chapter 6 Trajectory Tracking Control Strategy 87 6.1 Full-Pose Tracking Control . . . . . . . . . . . . . . . . . . . . . . . 87 6.1.1 Force Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1.2 The Attitude Planner . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.1.3 Lyapunov-Based Geometric Tracking Control . . . . . . . . . . . 93 6.2 Exact Bundled Redistributed Control Allocation . . . . . . . . . . . 96 6.2.1 Pseudo-Boundary Protection (PBP) . . . . . . . . . . . . . . . . . 98 6.2.2 Solution to Intersections on Admissible Force Space Boundaries . 102 6.2.2.1 The Subproblems to Solve the Intersections . . . . . . . . . 103 6.2.2.2 Solutions to the Intersections on the Boundaries . . . . . . 103 6.2.3 Truncated Wrench Allocation . . . . . . . . . . . . . . . . . . . . 106 6.2.4 Post-Torque Enhancement . . . . . . . . . . . . . . . . . . . . . . 108 6.2.5 Inverse Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Chapter 7 Simulations 115 7.1 Team Control Architecture Evaluation . . . . . . . . . . . . . . . . . 119 7.1.1 Attitude Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.1.1.1 Response of A Wrench Bypass System . . . . . . . . . . . 120 7.1.2 Control Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.1.2.1 Single Signal Allocation Responses . . . . . . . . . . . . 125 7.1.2.2 Single Signal Allocation Responses with PBP . . . . . . . 128 7.1.2.3 Single Signal Allocation Responses with PBP and PTE . . 129 7.1.2.4 Sequential Signal Allocation Responses . . . . . . . . . . 130 7.1.2.5 Closed-Loop System Response with PBP and PTE . . . . . 133 7.2 Team UAV Tracking Performance . . . . . . . . . . . . . . . . . . . 138 7.2.1 Tracking in Ideal Condition . . . . . . . . . . . . . . . . . . . . . 139 7.2.2 With Unknown Payload . . . . . . . . . . . . . . . . . . . . . . . 143 7.2.3 With Sudden Trajectory Change . . . . . . . . . . . . . . . . . . . 148 7.2.4 Tracking with Motor Failure . . . . . . . . . . . . . . . . . . . . . 150 7.3 Comparisons with Different Team Configurations . . . . . . . . . . . 156 7.3.1 Regulation Tasks with Different Control Allocation Algorithms . . 156 7.3.2 Tracking Tasks with Different Control Allocation Algorithms . . . 158 7.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Chapter 8 Experiments 163 8.1 Attitude Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 163 8.2 Tethered Hovering . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 8.2.1 Effectiveness of the Attitude Controller . . . . . . . . . . . . . . . 169 Chapter 9 Conclusions and Future Works 173 9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 9.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 References 177 Appendix A Rotor Configurations and Flight Efficiency 193 A.1 Rotor Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 193 A.1.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 195 Appendix B System Modeling 197 B.1 Gimbal Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 B.2 Equation of Motion of the Single Agent System . . . . . . . . . . . . 200 B.3 Model Reduction for the Single Agent System . . . . . . . . . . . . 201 Appendix C Trajectory Tracking Control Strategy for Single Agent System 205 C.1 The Under-Actuated Pose Controller . . . . . . . . . . . . . . . . . . 205 C.2 Motor Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Appendix D Proof for the Control Law 207 D.1 Mathematical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 D.2 Proof for Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 207 | - |
| dc.language.iso | en | - |
| dc.subject | 空中運輸 | zh_TW |
| dc.subject | 模組化系統 | zh_TW |
| dc.subject | 無人機 | zh_TW |
| dc.subject | 全姿態控制 | zh_TW |
| dc.subject | 垂直起降 | zh_TW |
| dc.subject | 姿態規劃器 | zh_TW |
| dc.subject | 過驅動系統 | zh_TW |
| dc.subject | 推力向量控制 | zh_TW |
| dc.subject | 拘束控制分配 | zh_TW |
| dc.subject | 重組式逆矩陣 | zh_TW |
| dc.subject | over-actuated system | en |
| dc.subject | full-pose tracking control | en |
| dc.subject | aerial delivery | en |
| dc.subject | modular system | en |
| dc.subject | unmanned aerial vehicle (UAV) | en |
| dc.subject | vertical takeoff and landing (VTOL) | en |
| dc.subject | attitude planner | en |
| dc.subject | redistributed pseudo-inverse | en |
| dc.subject | constrained control allocation | en |
| dc.subject | thrust-vectoring control (TVC) | en |
| dc.title | 基於階層式全姿態控制與重組控制分配之過驅動向量推進模組無人機於安全空中運輸應用 | zh_TW |
| dc.title | An Over-Actuated Thrust-Vectoring Modular Drone based on Cascaded Full-Pose Tracking Control with Redistributed Control Allocation for Safe Aerial Delivery Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 簡忠漢;李後燦;黃正⺠ | zh_TW |
| dc.contributor.oralexamcommittee | Jong-Hann Jean;Hou-Tsan Lee;Cheng-Ming Huang | en |
| dc.subject.keyword | 空中運輸,模組化系統,無人機,全姿態控制,垂直起降,姿態規劃器,過驅動系統,推力向量控制,拘束控制分配,重組式逆矩陣, | zh_TW |
| dc.subject.keyword | aerial delivery,modular system,unmanned aerial vehicle (UAV),vertical takeoff and landing (VTOL),attitude planner,full-pose tracking control,over-actuated system,thrust-vectoring control (TVC),constrained control allocation,redistributed pseudo-inverse, | en |
| dc.relation.page | 211 | - |
| dc.identifier.doi | 10.6342/NTU202400588 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-17 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 53.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
