請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92115完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游佳欣 | zh_TW |
| dc.contributor.advisor | Jiashing Yu | en |
| dc.contributor.author | 鄧廣志 | zh_TW |
| dc.contributor.author | Kuang-Chih Teng | en |
| dc.date.accessioned | 2024-03-05T16:21:31Z | - |
| dc.date.available | 2024-03-06 | - |
| dc.date.copyright | 2024-03-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-06 | - |
| dc.identifier.citation | 1. R. Lanza, R. Langer, J. P. Vacanti and A. Atala, Principles of tissue engineering, Academic press, 2020.
2. M. S. Chapekar, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2000, 53, 617-620. 3. C. A. Vacanti, Journal of cellular and molecular medicine, 2006. 4. P. K. Chandra, S. Soker and A. Atala, Principles of tissue engineering, 2020, 1-35. 5. A. I. Van Den Bulcke, B. Bogdanov, N. De Rooze, E. H. Schacht, M. Cornelissen and H. Berghmans, Biomacromolecules, 2000, 1, 31-38. 6. M. Butler, Mammalian cell biotechnology, IRL Press, 1991. 7. D. Muñoz-Espín and M. Serrano, Nature reviews Molecular cell biology, 2014, 15, 482-496. 8. N. Herranz and J. Gil, The Journal of clinical investigation, 2018, 128, 1238-1246. 9. R. I. Freshney, Culture of animal cells: a manual of basic technique, 2005. 10. R. I. Freshney, Culture of animal cells: a manual of basic technique and specialized applications, John Wiley & Sons, 2015. 11. N. F. Mathon and A. C. Lloyd, Nature reviews cancer, 2001, 1, 203-213. 12. R. L. Juliano and S. Haskill, The Journal of cell biology, 1993, 120, 577-585. 13. Y.-C. Chen, Y.-F. Lin, C.-T. Liu, Y.-C. Liu, M.-H. Lin, G.-Y. Lan, Y.-S. Cheng, H.-L. Yu, C.-C. Huang and H.-T. Chang, ACS Applied Polymer Materials, 2023. 14. M. Tkach and C. Théry, Cell, 2016, 164, 1226-1232. 15. L. Lei, Y. Bai, X. Qin, J. Liu, W. Huang and Q. Lv, Gels, 2022, 8, 301. 16. L. E. Kass and J. Nguyen, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1756. 17. F. Araiza-Verduzco, E. Rodríguez-Velázquez, H. Cruz, I. A. Rivero, D. R. Acosta-Martínez, G. Pina-Luis and M. Alatorre-Meda, Materials, 2020, 13, 534. 18. T.-Y. Lu, K.-F. Yu, S.-H. Kuo, N.-C. Cheng, E.-Y. Chuang and J.-S. Yu, Polymers, 2020, 12, 2997. 19. W. Hu, Z. Wang, Y. Xiao, S. Zhang and J. Wang, Biomaterials science, 2019, 7, 843-855. 20. J. Zhu and R. E. Marchant, Expert review of medical devices, 2011, 8, 607-626. 21. N. Bhattarai, J. Gunn and M. Zhang, Advanced drug delivery reviews, 2010, 62, 83-99. 22. A. R. Osi, H. Zhang, J. Chen, Y. Zhou, R. Wang, J. Fu, P. Müller-Buschbaum and Q. Zhong, ACS applied materials & interfaces, 2021, 13, 22902-22913. 23. H. Lee, K. Noh, S. C. Lee, I.-K. Kwon, D.-W. Han, I.-S. Lee and Y.-S. Hwang, Tissue Engineering and Regenerative Medicine, 2014, 11, 255-265. 24. J. G. Rouse and M. E. Van Dyke, Materials, 2010, 3, 999-1014. 25. K. Su and C. Wang, Biotechnology letters, 2015, 37, 2139-2145. 26. C. H. Lee, A. Singla and Y. Lee, International journal of pharmaceutics, 2001, 221, 1-22. 27. K.-F. Yu, T.-Y. Lu, Y.-C. E. Li, K.-C. Teng, Y.-C. Chen, Y. Wei, T.-E. Lin, N.-C. Cheng and J. Yu, Biomacromolecules, 2022. 28. J. R. Choi, K. W. Yong, J. Y. Choi and A. C. Cowie, BioTechniques, 2019, 66, 40-53. 29. Y. Wang, S. Zhang and J. Wang, Chinese Chemical Letters, 2021, 32, 1603-1614. 30. J. George, C.-C. Hsu, L. T. B. Nguyen, H. Ye and Z. Cui, Biotechnology advances, 2020, 42, 107370. 31. X. Zhao, N. Huebsch, D. J. Mooney and Z. Suo, Journal of applied physics, 2010, 107, 063509. 32. A. Richter, G. Paschew, S. Klatt, J. Lienig, K.-F. Arndt and H.-J. P. Adler, Sensors, 2008, 8, 561-581. 33. I. Tahir and R. Floreani, Foods, 2022, 11, 2829. 34. T. Chen, R. Janjua, M. K. McDermott, S. L. Bernstein, S. M. Steidl and G. F. Payne, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2006, 77, 416-422. 35. M. Hu, E. U. Azeloglu, A. Ron, K.-H. Tran-Ba, R. C. Calizo, I. Tavassoly, S. Bhattacharya, G. Jayaraman, Y. Chen and V. Rabinovich, Scientific Reports, 2017, 7, 1-13. 36. Y. Liu, R. Weng, W. Wang, X. Wei, J. Li, X. Chen, Y. Liu, F. Lu and Y. Li, International journal of biological macromolecules, 2020, 162, 405-413. 37. H. W. Sun, R. Feigal and H. Messer, Pediatr Dent, 1990, 12, 303-307. 38. C. Zhong, J. Wu, C. Reinhart-King and C. Chu, Acta biomaterialia, 2010, 6, 3908-3918. 39. A. Khanlari, J. E. Schulteis, T. C. Suekama, M. S. Detamore and S. H. Gehrke, Journal of Applied Polymer Science, 2015, 132. 40. I. Noh, N. Kim, H. N. Tran, J. Lee and C. Lee, Biomaterials research, 2019, 23, 1-9. 41. I. M. El-Sherbiny and M. H. Yacoub, Global Cardiology Science and Practice, 2013, 2013, 38. 42. S. Wang, Y. Xiong, J. Lalevée, P. Xiao, J. Liu and F. Xing, Toxicology in Vitro, 2020, 63, 104720. 43. R. Taschner, P. Gauss, P. Knaack and R. Liska, Journal of Polymer Science, 2020, 58, 242-253. 44. M. Wei, Y. Gao, S. Jiang, J. Nie and F. Sun, Polymer Chemistry, 2019, 10, 2812-2821. 45. L. Deng, L. Tang and J. Qu, Progress in Organic Coatings, 2022, 167, 106859. 46. H. Hecht and S. Srebnik, Biomacromolecules, 2016, 17, 2160-2167. 47. P. E. Ramos, P. Silva, M. M. Alario, L. M. Pastrana, J. A. Teixeira, M. A. Cerqueira and A. A. Vicente, Food Hydrocolloids, 2018, 77, 8-16. 48. R. Liu, B. Kong, Y. Chen, X. Liu and S. Mi, Sensors and Actuators B: Chemical, 2020, 304, 127069. 49. T. Wang, Q. Gu, J. Zhao, J. Mei, M. Shao, Y. Pan, J. Zhang, H. Wu, Z. Zhang and F. Liu, International journal of clinical and experimental pathology, 2015, 8, 6636. 50. K. Y. Lee and D. J. Mooney, Progress in polymer science, 2012, 37, 106-126. 51. R. A. Raus, W. M. F. W. Nawawi and R. R. Nasaruddin, Asian Journal of Pharmaceutical Sciences, 2021, 16, 280-306. 52. K. I. Draget, G. Skjåk-Bræk and O. Smidsrød, International journal of biological macromolecules, 1997, 21, 47-55. 53. S. Xu, W. Liang, G. Xu, C. Huang, J. Zhang and M. Lang, Applied Surface Science, 2020, 515, 145811. 54. S. I. Somo, K. Langert, C.-Y. Yang, M. K. Vaicik, V. Ibarra, A. A. Appel, B. Akar, M.-H. Cheng and E. M. Brey, Acta biomaterialia, 2018, 65, 53-65. 55. O. Jeon, J. E. Samorezov and E. Alsberg, Acta biomaterialia, 2014, 10, 47-55. 56. S. Ansari, S. Pouraghaei Sevari, C. Chen, P. Sarrion and A. Moshaverinia, ACS Biomaterials Science & Engineering, 2021, 7, 3774-3782. 57. J. A. Rowley, G. Madlambayan and D. J. Mooney, Biomaterials, 1999, 20, 45-53. 58. K. Miyamoto, M. Sasaki, Y. Minamisawa, Y. Kurahashi, H. Kano and S. i. Ishikawa, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2004, 70, 550-559. 59. J. Kevin, E. D''Emilio, E. D. Cranston, T. Geiger and G. Nyström, Carbohydrate polymers, 2020, 234, 115885. 60. Y. Ding, Y. Li, M. Qin, Y. Cao and W. Wang, Langmuir, 2013, 29, 13299-13306. 61. X. Cui, B. G. Soliman, C. R. Alcala‐Orozco, J. Li, M. A. Vis, M. Santos, S. G. Wise, R. Levato, J. Malda and T. B. Woodfield, Advanced healthcare materials, 2020, 9, 1901667. 62. L. Hao, S. Zhao, S. Hao, Y. He, M. Feng, K. Zhou, Y. He, J. Yang, H. Mao and Z. Gu, International Journal of Biological Macromolecules, 2023, 240, 124364. 63. E. M. Chandler, C. M. Berglund, J. S. Lee, W. J. Polacheck, J. P. Gleghorn, B. J. Kirby and C. Fischbach, Biotechnology and bioengineering, 2011, 108, 1683-1692. 64. Z. Wang, X. Jin, R. Dai, J. F. Holzman and K. Kim, RSC advances, 2016, 6, 21099-21104. 65. A. D. Rouillard, C. M. Berglund, J. Y. Lee, W. J. Polacheck, Y. Tsui, L. J. Bonassar and B. J. Kirby, Tissue Engineering Part C: Methods, 2011, 17, 173-179. 66. Z. Guo, Y. Xu, L. Dong, M. S. Desai, J. Xia, M. Liang, S.-W. Lee, S. Mi and W. Sun, Chemical Engineering Journal, 2022, 435, 135155. 67. A. X. Sun, H. Lin, M. R. Fritch, H. Shen, P. G. Alexander, M. DeHart and R. S. Tuan, Acta biomaterialia, 2017, 58, 302-311. 68. A. Zennifer, S. Manivannan, S. Sethuraman, S. G. Kumbar and D. Sundaramurthi, Materials Science and Engineering: C, 2021, 112576. 69. Y. Hua, H. Xia, L. Jia, J. Zhao, D. Zhao, X. Yan, Y. Zhang, S. Tang, G. Zhou and L. Zhu, Science advances, 2021, 7, eabg0628. 70. S. Ibrahim, C. Kothapalli, Q. Kang and A. Ramamurthi, Acta biomaterialia, 2011, 7, 653-665. 71. J. Silva‐Correia, J. M. Oliveira, S. Caridade, J. Oliveira, R. Sousa, J. Mano and R. Reis, Journal of tissue engineering and regenerative medicine, 2011, 5, e97-e107. 72. W. Kang, B. Bi, R. Zhuo and X. Jiang, Carbohydrate polymers, 2017, 160, 18-25. 73. T. Lai, J. Yu and W. Tsai, Journal of Materials Chemistry B, 2016, 4, 2304-2313. 74. S. Xiao, T. Zhao, J. Wang, C. Wang, J. Du, L. Ying, J. Lin, C. Zhang, W. Hu and L. Wang, Stem cell reviews and reports, 2019, 15, 664-679. 75. N. Celikkin, S. Mastrogiacomo, J. Jaroszewicz, X. F. Walboomers and W. Swieszkowski, Journal of Biomedical Materials Research Part A, 2018, 106, 201-209. 76. N. Rajabi, A. Rezaei, M. Kharaziha, H. R. Bakhsheshi-Rad, H. Luo, S. RamaKrishna and F. Berto, Tissue Engineering Part A, 2021, 27, 679-702. 77. A. L. Martinez-Hernandez, C. Velasco-Santos, M. d. Icaza and V. M. Castaño, e-Polymers, 2003, 3, 016. 78. Z. Xu, Z. Li, S. Jiang and K. M. Bratlie, ACS omega, 2018, 3, 6998-7007. 79. M. Peter and P. Tayalia, RSC advances, 2016, 6, 40878-40885. 80. X. Zhao, Q. Lang, L. Yildirimer, Z. Y. Lin, W. Cui, N. Annabi, K. W. Ng, M. R. Dokmeci, A. M. Ghaemmaghami and A. Khademhosseini, Advanced healthcare materials, 2016, 5, 108-118. 81. M. Nieberler, U. Reuning, F. Reichart, J. Notni, H.-J. Wester, M. Schwaiger, M. Weinmüller, A. Räder, K. Steiger and H. Kessler, Cancers, 2017, 9, 116. 82. S. L. Bellis, Biomaterials, 2011, 32, 4205-4210. 83. C. Chollet, C. Chanseau, M. Remy, A. Guignandon, R. Bareille, C. Labrugère, L. Bordenave and M.-C. Durrieu, Biomaterials, 2009, 30, 711-720. 84. C. Qu, Z. Bao, X. Zhang, Z. Wang, J. Ren, Z. Zhou, M. Tian, X. Cheng, X. Chen and C. Feng, International journal of biological macromolecules, 2019, 125, 78-86. 85. V. Mäde, S. Els-Heindl and A. G. Beck-Sickinger, Beilstein journal of organic chemistry, 2014, 10, 1197-1212. 86. J. L. Aleixandre-Tudo and W. Du Toit, Frontiers and new trends in the science of fermented food and beverages, 2018, 200-204. 87. C. H. Luan, T. M. Parker, D. C. Gowda and D. W. Urry, Biopolymers: Original Research on Biomolecules, 1992, 32, 1251-1261. 88. M. J. Kade, D. J. Burke and C. J. Hawker, Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48, 743-750. 89. J. W. Chan, C. E. Hoyle, A. B. Lowe and M. Bowman, Macromolecules, 2010, 43, 6381-6388. 90. P. N. Charron, L. M. Garcia, I. Tahir and R. Floreani, Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104932. 91. A. Mignon, D. Devisscher, G.-J. Graulus, B. Stubbe, J. Martins, P. Dubruel, N. De Belie and S. Van Vlierberghe, Carbohydrate polymers, 2017, 155, 448-455. 92. X. Huang and M. H. Garcia, Journal of fluid mechanics, 1998, 374, 305-333. 93. M. Santini, 2015. 94. L. MacLatchy and R. Müller, Journal of Human Evolution, 2002, 43, 89-105. 95. J. Peralta, R. Contreras, O. Taurian, F. Ortiz, D. De Kowalewski and V. Kowalewski, Magnetic resonance in chemistry, 1999, 37, 31-35. 96. A. H. Delgado and A. M. Young, PLoS One, 2021, 16, e0252999. 97. S. Vigneswari, J. M. Chai, K. H. Kamarudin, A.-A. A. Amirul, M. L. Focarete and S. Ramakrishna, Front Bioeng Biotechnol, 2020, 8, 567693. 98. D. P. Nair, M. Podgorski, S. Chatani, T. Gong, W. Xi, C. R. Fenoli and C. N. Bowman, Chemistry of Materials, 2014, 26, 724-744. 99. K. Reinmuth-Selzle, T. Tchipilov, A. T. Backes, G. Tscheuschner, K. Tang, K. Ziegler, K. Lucas, U. Pöschl, J. Fröhlich-Nowoisky and M. G. Weller, Analytical and Bioanalytical Chemistry, 2022, 414, 4457-4470. 100. D. Hueso, J. Fontecha and P. Gómez-Cortés, Frontiers in Nutrition, 2022, 9, 925565. 101. J. M. Walker, The protein protocols handbook, 2009, 11-15. 102. F. He, Bio-protocol, 2011, e44-e44. 103. K. A. Majorek, P. J. Porebski, A. Dayal, M. D. Zimmerman, K. Jablonska, A. J. Stewart, M. Chruszcz and W. Minor, Molecular immunology, 2012, 52, 174-182. 104. S. K. Vashist and C. K. Dixit, Biochemical and biophysical research communications, 2011, 411, 455-457. 105. S. K. Vashist, B. Zhang, D. Zheng, K. Al-Rubeaan, J. H. Luong and F.-S. Sheu, Analytical biochemistry, 2011, 417, 156-158. 106. M. Guvendiren, H. D. Lu and J. A. Burdick, Soft matter, 2012, 8, 260-272. 107. L. N. Russell and K. J. Lampe, ACS Biomaterials Science & Engineering, 2017, 3, 3459-3468. 108. S. Perez-Robles, C. Carotenuto and M. Minale, Polymers, 2022, 14, 635. 109. H. Zhou, L. Zheng, Q. Meng, R. Tang, Z. Wang, B. Dang, X. Shen and Q. Sun, Journal of Materials Chemistry C, 2021, 9, 12895-12903. 110. Y. Meng, L. Ye, P. Coates and P. Twigg, The Journal of Physical Chemistry C, 2018, 122, 3157-3167. 111. N. A. Peppas and R. Langer, Science, 1994, 263, 1715-1720. 112. R. F. Wallin and E. Arscott, Medical Device and Diagnostic Industry, 1998, 20, 96-98. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92115 | - |
| dc.description.abstract | 海藻酸鹽是一種常見的生物材料,由於其具備良好的生物相容性、強健的機械性質,以及特有的可與二價離子進行離子交聯的能力,因此其經常被應用為製備水凝膠的材料。然而,由於單純的二價離子交聯,容易使海藻酸鹽材料在細胞培養的過程中崩解,因此,我們利用了具有環氧乙烷官能基及雙鍵官能基的甲基丙烯酸縮水甘油酯與海藻酸鹽產生可經紫外光交聯的海藻酸鹽-甲基丙烯酸酐材料,形成具備兩種交聯機制的生物材料,以維持材料的穩定性,並且增加其機械強度。
除此之外,由於海藻酸鹽是多醣類的天然高分子,其通常不具有細胞辨識的配基,因此,細胞並不會貼附於海藻酸鹽類的水凝膠上,因此,我們在海藻酸鹽-甲基丙烯酸酐上,透過硫醇烯反應以及醯胺反應,分別在海藻酸鹽-甲基丙烯酸酐中的雙鍵以及海藻酸鹽主鏈上接枝具有精氨酸-甘胺酸-天門冬氨酸(RGD)序列的CGRGDY胜肽,RGD序列是一種親水性的氨基酸序列,過往的研究也證明適量的RGD胜肽有助於細胞貼附。 然而,過往對於海藻酸鹽-甲基丙烯酸酐-RGD的研究對於材料中接枝上的氨基酸定量之文獻資料較少,同時對於細胞貼附性質的討論也較為概括,本研究希望可以透過更深入探討材料中的物理性質、化學性質、機械性質、氨基酸定量及細胞貼附性質,提供未來研究者對於海藻酸鹽水凝膠在生醫組織工程實驗上更進一步的認識。 | zh_TW |
| dc.description.abstract | Alginate is a common biomaterial that is frequently used for the fabrication of hydrogels due to its good biocompatibility, robust mechanical properties, and unique ability to undergo ionic crosslinking with divalent cations. However, simple ionic crosslinking can cause alginate materials to break down during cell culture. To address this issue, we have developed a UV-crosslinkable alginate methacrylate (AlgMA) material that contains both ionic and covalent crosslinking mechanisms by utilizing glycidyl methacrylate, which contains epoxy group and double bond. This material maintains stability and increases mechanical strength.
In addition, because cells generally do not adhere well to alginate-based hydrogels due to its polysaccharides structure , we have grafted the cell-adhesive peptide CGRGDY onto the double bonds of AlgMA through novel thiol-ene reaction and traditional amidation reactions. Therefore, there will be dual-grafted mechanism of the CGRGDY grafting. This study aims to provide a more in-depth understanding of the physical, chemical, mechanical, amino acid quantification, and cell adhesion properties of AlgMA-RGD, which is anticipated to be useful for future researchers in the field of biomedical tissue engineering. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:21:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-05T16:21:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iv Abstract v Contents vi List of Figures ix List of Tables xi List of Equations xii Chapter 1 Introduction 1 1.1 Tissue Engineering 1 1.1.1 Overview of Tissue Engineering 1 1.1.2 Biomaterials 2 1.1.3 Cells 3 1.1.4 Signals 4 1.2 Hydrogels 5 1.2.1 Overview of Hydrogel 5 1.2.2 Common Category Types of Hydrogels 6 1.3 Alginate as A Biomaterial 8 1.3.1 Chemical Structure Characteristic 8 1.3.2 Physical and Mechanical Characteristic of Alginate 9 1.3.3 Alginate as A Hydrogel Material 10 1.3.4 Natural Restriction of Alginate Hydrogel in Cell Anchorage 11 1.4 Methacrylated Materials 12 1.4.1 Photo-crosslinkable Materials Synthesis 12 1.4.2 Methacrylated Biopolymer 12 1.5 RGD Peptides 15 1.5.1 Characteristics of RGD Peptide 15 1.5.2 CGRGDY peptide 16 1.6 Motivation and Aims 18 1.7 Research Framework 21 Chapter 2 Material and Methods 22 2.1 Materials 22 2.2 Equipment 24 2.3 Solution Formula 26 2.4 Methods 28 2.4.1 Synthesis of Alginate Methacrylate (AlgMA) 28 2.4.2 CGRGDY Peptide Grafting onto Alginate Methacrylate 29 2.4.3 Synthesis of Gelatin Methacrylate (GelMA) 32 2.4.4 Preparation of AlgMA and AlgMA-RGD Dual-Crosslinked Hydrogel 32 2.4.5 Chemical Structure Analysis 34 2.4.6 Degree of Grafting of AlgMA 35 2.4.7 Conversion of CGRGDY Peptide Grafting onto Alginate Methacrylate 37 2.4.8 UV-Crosslinking and Calcium Ion-Crosslinking Gelation Test 39 2.4.9 Gelation Time Testing and Mechanical Strength Test 40 2.4.10 The SEM Techniques to Construct the Morphology of Hydrogels 42 2.4.11 The Micro Computed Tomography of 3D Hydrogel Images Construction 42 2.4.12 Water Uptake Behavior of The Scaffold 43 2.4.13 Porosity of The Hydrogel 43 2.4.14 Cell Culture 44 2.4.15 Cytocompatibility and Cell Proliferation on Hydrogel 45 2.4.16 Cell Morphology on Hydrogel 47 2.4.17 Statistical Analysis 49 Chapter 3 Results and Discussions 50 3.1 Chemical Characterization Analysis of AlgMA/AlgMA-RGD 50 3.1.1 G/M Ratio of Selected Sodium Alginate 50 3.1.2 1H-NMR Analysis of AlgMA Reacted in Different pH Environments 50 3.1.3 1H-NMR Spectra of AlgMA and AlgMA-RGD 53 3.1.4 FTIR Spectra of AlgMA and AlgMA-RGD 53 3.2 Degree of Grafting (DOG) 59 3.2.1 Degree of Grafting Calculation of AlgMA at pH 3.0 and pH 7.0 59 3.2.2 Degree of grafting calculation for CGRGDY peptide on AlgMA 60 3.3 Mechanical properties of AlgMA Hydrogel 66 3.3.1 Gelation Test of Alginate Methacrylate 66 3.3.2 Modulus of AlgMA Solution Varying with Temperature 67 3.3.3 Viscosity of AlgMA Solution Varying with Shear Rate 68 3.3.4 Gelation Time and Modulus of AlgMA with Different pH Synthetic Procedure 69 3.3.5 Modulus of Photo-crosslinking and Dual-crosslinking AlgMA Hydrogel 70 3.3.6 Gelation Time and Modulus of AlgMA with Different Concentration 71 3.3.7 Elastic Analysis of AlgMA Hydrogel 72 3.4 The Morphology of AlgMA Hydrogels 87 3.4.1 SEM Images of AlgMA Hydrogel 87 3.4.2 Micro-CT 3D Structure Analysis 88 3.4.3 Porosity of AlgMA Hydrogel 90 3.5 The Biocompatibility of AlgMA Hydrogels 106 3.6 Cell morphology on AlgMA/AlgMA-RGD Hydrogels 109 Chapter 4 Conclusions and Future Works 112 | - |
| dc.language.iso | en | - |
| dc.subject | 海藻酸鹽 | zh_TW |
| dc.subject | UV 光交聯 | zh_TW |
| dc.subject | 離子交聯 | zh_TW |
| dc.subject | 水凝膠 | zh_TW |
| dc.subject | 醯胺化反應 | zh_TW |
| dc.subject | 烯-硫醇反應 | zh_TW |
| dc.subject | 組織工程 | zh_TW |
| dc.subject | RGD 肽 | zh_TW |
| dc.subject | 生物墨水 | zh_TW |
| dc.subject | ionic crosslinking | en |
| dc.subject | RGD peptide | en |
| dc.subject | tissue engineering | en |
| dc.subject | amidation reaction | en |
| dc.subject | alginate | en |
| dc.subject | thiol-ene reaction | en |
| dc.subject | hydrogel | en |
| dc.subject | bioink | en |
| dc.subject | UV-crosslinking | en |
| dc.title | 雙重交聯之海藻酸鹽水凝膠利用硫醇烯反應及醯胺化反應接枝 RGD 胜肽應用於纖維母細胞之貼附 | zh_TW |
| dc.title | Dual Crosslinked Alginate Hydrogel Modified with RGD Peptide via Thiol-ene Reaction and Amidation Reaction for Fibroblast Cell Attachment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉伊純;陳賢燁 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Cheun Yeh;Hsien-Yeh Chen | en |
| dc.subject.keyword | 海藻酸鹽,UV 光交聯,離子交聯,水凝膠,醯胺化反應,烯-硫醇反應,組織工程,RGD 肽,生物墨水, | zh_TW |
| dc.subject.keyword | alginate,UV-crosslinking,ionic crosslinking,hydrogel,thiol-ene reaction,amidation reaction,tissue engineering,RGD peptide,bioink, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202304585 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-02-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 16.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
